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> 20 years of software engineering before people start 
doing research in analyzing software repositories
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Logical Coupling

> Gall et al. ‘98
> Based on an an industrial 

case study
—Subsystems
—Modules
—Programs

> Two steps
1. Change Sequence Analysis
2. Change Report Analysis

How to detect dependencies 
based on history?



> Structural / Data Flow 
Analysis
—Disadvantages: 

– can not capture all the 
situations (i.e. writing to a file, 
reading from a file)

– does not work with 
documents that are not 
source code

Why history based?



Change Sequence Analysis

> Detects when two sub-
systems change together

> Logical coupling is 
stronger if the 
subsequence is larger



Change Report Analysis

> There are two types of 
changes that are 
documented
—Feature additions
—Bug Requests

> The coupling between 
subsystems must be 
verified



Logical Coupling Summary

> Advantages
—Does not require the code to 

compile
—Can work with any types of 

documents
> Simplification

—Versioning systems in the 
real world are a mess (CVS)
– does not group 



Alternative read:

Mining Version Histories to Guide 
Software Changes
Zimmerman et al. 

http://dl.acm.org/citation.cfm?id=999460
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Origin Analysis

> Tu & Godfrey ’02
> Works at the function level 
> Combines

—Bertillonage Analysis
– Assumes that Complexity 

Metrics do not change much
—Dependency Analysis

– Assumes that relationships do 
not change much How to know if an 

entity is the same 
in two versions?



Refactoring Detection

> Dig et al. ’06 detect 
refactorings of Packages, 
Classes, Methods 

> Combination of syntactic 
and semantic analysis

> Shingles Algorithm How to detect refactorings 
in object-oriented systems?



The Approach of Dig et al.: The Shingles 
Algorithm

> Input
—sequence of tokens 

representing method body 
without signature

> Output
—Multi-sets of integers
—Similar inputs generate 

similar outputs

> Algorithm
—W: window size 
—S: maximum set size
—Compute hashes while 

sliding the window 
—Sort shingles and keep the 

first S



The Approach of Dig et al.: Shingles 
Algorithm (Example with W=2 and S=10)



The Approach of Dig et al.: Semantic 
Analysis

> Seven Detection Strategies 
—applied in order
—based on dependencies 

between artifacts
– method calls
– subclassing
– fields
– arguments
– parameters

1. RenamePackage (RP) 
2. RenameClass (RC) 
3. RenameMethod (RM) 
4. PullUpMethod (PUM) 
5. PushDownMethod (PDM) 
6. MoveMethod (MM) 
7. ChangeMethodSignature 

(CMS) 



The Approach of Dig et al.: Results

> More than 85% Precision 
and Recall on
—Eclipse
—Struts
—HotDraw

> What’s next? CatchUp! 
(Automatically refactoring 
clients)

Automated Detection of Refactorings 
in Evolving Components
Dig et al., ECOOP 2006

http://dl.acm.org/citation.cfm?id=999460
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How to detect bugs in 
apps that use APIs about 
which you do not have 
knowledge?

Common Error Patterns

> Livshits & Zimmermann 
’05

> Data mining reveals 
frequent patterns 

- Matching Method 
Pairs
- State Machines



Principles

1. API specific errors
2. Co-addition is a pattern
3. Small commits are fixes



When to look for pattern violations?

> Compile Time
—complicated (inter procedural analysis)

> Runtime
+ Scalability
+ Simplicity (no interprocedural analysis)
+ Counting occurrences
+ Zero False Positives
—Coverage



Dynamine: The Approach

> Human Input is required
> Mines from the history
> Validates at runtime



Mining for Likely Patterns: The Apriori 
Algorithm

> Concepts
—Usage Pattern
—Transaction
—Support Count

> Input
—Minimum Support

> Output
—Frequent Patterns

> Implementation 
—Iterative
—Exponential



Pattern Filtering

> Consider a subset of the 
methods
—ignore initial revisions
—ignore common calls

> Consider small patterns 
only
—group calls by access path



Pattern Ranking & Classification

> Lexicographically on 
support count

> Corrective ranking
—assumes on one-line 

changes are bug-fixes
—used as first lexicographic 

category improves bug 
finding

> Classification
—Usage
—Error
—Unlikely



Results

DynaMine: Finding Common Error Patterns 
by Mining Software Revision Histories 
Livshits and Zimmerman, FSE 2005

http://thomas-zimmermann.com/publications/files/livshits-fse-2005.pdf
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Associating Artifacts with Tasks

> Kersten & Murphy ‘05
> Mylar/Mylin
> Task-Focused Interface
> Degree of Interest 

ranking
How to filter the large 
amount of information 
available in the IDE?



Further Directions (Kagdi et al. ’07)

> Change-Based repositories
—Replay (Hattori et. al ’11)

> Bug prediction
—Extensive comparison of approaches (D’Ambros et al. ’10)

> Risk Prediction
—The Code Orb, (Lopez ’11)



Enablers of Historical Analysis

> Versioning systems
> Availability of different types of data

—developer interaction
—bug/issue tracking

> Modern IDE’s
—plugin philosophy

– collecting data
– playground for features



Benefits of Historical Analysis

> Increase the amount of available information 
> Allows temporal mining
> Predict various aspects of the system based on the past

> Allows empirical validation of hypotheses based on 
mining many systems
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What you should know!

> What are some of the problems that can be solved by 
mining software repositories 

> What is the problem of origin analysis and how to solve it
> How can logical coupling be detected, and why it matters
> What kind of error patterns can be detected by mining 

software repositories
> How to architect a system that can recommend entities 

that are likely to need to be changed

33



Can you answer these questions?

> How would you solve the problem of origin analysis? 
> What are some of the challenges when in comes to 

automatically detecting refactorings?
> What are the advantages of taking into account dynamic 

analysis when mining API protocols?
> What heuristics would you use to predict classes that 

change together and why?
> Can you discuss some of the advantages and some of 

the disadvantages of the shingles technique?

34
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