November 23, 2011

Roadmap

> Introduction 7

> Mining the history for relationships
— Logical coupling

> Recovering entity evolution

— Origin analysis

— Refactoring detection

> Mining a history for rules

— Common error patterns

> And more...

A History of Repository-Based Analysis

in Software

Logical

Coupling, MSR
by Gall et al. Workshop
’98 1

Mylyn becomes
an official
Eclipse project
10

NATO
Software Seesoft
Engineering Paper,
Conference by Eick et al.
'68 '92
SCCS RCS CVS
Bell Labs Purdue University Client Server
72 '82 90

2000

2010

> 20 years of software engineering before people start
doing research in analyzing software repositories

Roadmap

> Introduction

> Mining the history for relationships
— Logical coupling

> Recovering entity evolution

— Origin analysis

— Refactoring detection

> Mining a history for rules
— Common error patterns

> And more...

Logical Coupling

> Gall et al. ‘98

> Based on an an industrial
case study
— Subsystems
— Modules
— Programs

> Two steps
1. Change Sequence Analysis
2. Change Report Analysis

System

Subsystem A

Subsystem B

Subsystem C

1

Module ba

Module bb

Module bc

Program 100

Program 200

Program 300

How to detect dependencies

based on history?

Why history based?

> Structural / Data Flow
Analysis

— Disadvantages:

— can not capture all the
Situations (i.e. writing to a file,
reading from a file)

— does not work with
documents that are not
source code

Change Sequence Analysis

> Detects when two sub-
systems change together

> Logical coupling is
stronger if the
subsequence is larger

SUB,=<123467910 14>

A.aa.lll 2 (3 |4 |6 |7 |9 |10(14 |17 |19
B.ba.222 2 (3 |4 |6 |7 |9 [10[14 16|18
2 changes e SUB;=<1 2 4>
3changes
4 changes _ _ _ @

Change Report Analysis

> There are two types of
changes that are

SUB,=<2467>

system releases 1 2 45 6 7 8

documented
— Feature additions Asvs 00
— Bug Requests Bz

7

R

> The coupling between
subsystems must be
verified

BR 1443

FD 1
FD 2

FD 3

B
=

Logical Coupling Summary

> Advantages

— Does not require the code to
compile

— Can work with any types of
documents

> Simplification

— Versioning systems in the
real world are a mess (CVS)

— does not group

Alternative read:

Mining Version Histories to Guide

Software Changes
Zimmerman et al.

http://dl.acm.org/citation.cfm?id=999460

Roadmap

> |ntroduction

> Mining the history for relationships
— Logical coupling

> Recovering entity evolution

— Origin analysis

— Refactoring detection

> Mining a history for rules
— Common error patterns

> And more...

Origin Analysis

> Tu & Godfrey '02
> Works at the function level

> Combines

— Bertillonage Analysis

— Assumes that Complexity
Metrics do not change much

— Dependency Analysis

— Assumes that relationships do
not change much

RELEVE

SIGNALEMENT ANTHROPOMETRIQUE

4. Longweur de la téte. — 5, Largewr de la tite. — 6. Oveille droite. —
s Pud gauche — B Médius gauche. — g Cowlic gauche.

How to know if an
entity is the same
In two versions?

Refactoring Detection

> Dig et al. '06 detect ——
refaCtO ri n g S Of P aC kag eS y AbstractTextEditor AbstractTextEditor

Classes, Methods

> Combination of syntactic
and semantic analysis
How to detect refactorings
In object-oriented systems?

o>

> Shingles Algorithm

The Approach of Dig et al.: The Shingles
Algorithm

> Input

> Algorithm
— sequence of tokens gorit

representing method body —W: Wi”ijW size |
without signature — S: maximum set size

> Qutput — Cpr_npute ha_shes while
sliding the window

— Multi-sets of integers
. J — Sort shingles and keep the
— Similar inputs generate firat S

similar outputs

The Approach of Dig et al.: Shingles
Algorithm (Example with W=2 and S=10)

void doRevertToSaved() {

IDocumentProvider p= getDocumentProvider(); Shingles: { -1942396283, -1672190785,

if (p == null) -12148775115, -56733233372, 208215292,
return; 1307570125, 1431157461,

|perl‘ormRevertOperatlon(createRevertOperatlonO, | 190471951, 939507373}

| getProgressMonitor());

}

void doRevertToSaved() { Shingles: {-1942396283, 1672190785,

IDocumentProvider p= getDocumentProvider(); -1214877515, -5673233372, 208215292,

if (p == null) 1307570125, 1431157461 FHIWH
i 1)

-

The Approach of Dig et al.: Semantic

Analysis

> Seven Detection Strategies
—applied in order

— based on dependencies
between artifacts
— method calls
— Subclassing
— fields
— arguments
— parameters

N o oA WN =

. RenamePackage (RP)
. RenameClass (RC)
. RenameMethod (RM)

PullUpMethod (PUM)

. PushDownMethod (PDM)
. MoveMethod (MM)
. ChangeMethodSignature

(CMS)

The Approach of Dig et al.: Results

> More than 85% Precision
and Recall on
— Eclipse
— Struts
— HotDraw

> What’s next? CatchUp!
(Automatically refactoring
clients)

Automated Detection of Refactorings

in Evolving Components
Dig et al., ECOOP 2006

http://dl.acm.org/citation.cfm?id=999460

Roadmap

> |ntroduction

> Mining the history for relationships
— Logical coupling

> Recovering entity evolution

— Origin analysis

— Refactoring detection

> Mining a history for rules
— Common error patterns

> And more...

Common Error Patterns

> Livshits & Zimmermann
‘05
> Data mining reveals

frequent patterns
- Matching Method

Pairs
- State Machines

How to detect bugs in
apps that use APIs about
which you do not have

knowledge?

Principles

1. API specific errors
2. Co-addition is a pattern
3. Small commits are fixes

File

Revision

Added method calls

Foo.java

1.12

ol.addListener
ol.removelListener

Bar.java

1.47

o2.addListener
o2.removelistener
System.out.println

Baz.java

1.23

o3.addListener
o3.removelListener
list.iterator
iter.hasNext
iter.next

Qux.java

1.41

od.addListener

1.42

od.removelListener

When to look for pattern violations?

> Compile Time
— complicated (inter procedural analysis)

> Runtime
+ Scalability
+ Simplicity (no interprocedural analysis)
+ Counting occurrences
+ Zero False Positives
— Coverage

Dynamine: The Approach

Extract Mine likely pattemns Present

.- cvs revisions o Revision from revision DB - Likely for review - Eclipse
histones database patterns pattern view
Confirmed
Run instrumented program; R . patems
- Instrumented load dynamic results into Eclipse o Eclipse dynamic
program results view —_—
B Pattern
violations

> Human Input is required
> Mines from the history
> Validates at runtime

Mining for Likely Patterns: The Apriori
Algorithm

> Input
— Minimum Support
> Concepts
> QOutput
— Usage Pattern
. — Frequent Patterns
— Transaction

> Implementation
— lterative
— Exponential

— Support Count

Pattern Filtering

> (Consider a subset of the
methods
—ignore initial revisions
—ignore common calls

> Consider small patterns

only
— group calls by access path

Pattern Ranking & Classification

> Lexicographically on
support count

> Corrective ranking

— assumes on one-line
changes are bug-fixes

— used as first lexicographic
category improves bug
finding

> Classification

— Usage

— Error

— Unlikely

Results

METHOD PAIR (a, b) CONFIDENCE SUPPORT DyYNAMIC STATIC TYPE
Method a Method b conf | conf,_, conf,, | count v e v e
CORRECTIVE RANKING

Eclipse NewRgn DisposeRgn 0.76 0.92 0.82 49

(16 pairs) | kEventControlActivate kEventControlDeactivate 0.69 0.83 0.83 5
addDebugEventListener removeDebugEventListener 0.61 0.85 0.72 23 B 1 B 1 | Unlikely
beginTask done 0.60 0.74 0.81 493 332 759 | 41 28 | Unlikely
beginRule endRule 0.60 0.80 0.74 32 7 0 < 0 | Usage
suspend resume 0.60 0.83 0.71 5
NewPtr DisposePtr 0.57 0.82 0.70 23
addListener removeListener 0.57 0.68 0.83 90 143 140 [35 29 | Error
register deregister 0.54 0.69 0.78 40 2854 461 | 17 90 | Error
malloc free 0.47 0.68 0.68 28
addElementChangedListener removeElementChangedListener 0.42 0.73 0.57 8 6 1 1 1 | Error
addResourceChangelListener removeResourceChangelistener 0.41 0.90 0.46 26 27 1| 21 1 | Usage
addPropertyChangeListener removePropertyChangeListener 0.40 0.54 0.73 140 1,864 309 | 54 31 | Emor
start stop 0.39 0.59 0.65 32 69 18 | 20 9 | Error
addDocumentListener removeDocumentListener 0.36 0.64 0.56 29 38 2| 14 2 | Usage
addSyncSetChangedListener removeSyncSetChangedListener 0.34 0.62 0.56 24

JEdit addNotify removeNotify 0.60 0.77 0.77 17 3 0 3 0 | Unlikely

(8 pairs) | setBackground setForeground 0.57 0.67 0.86 12 75 175 5 5 | Unlikely
contentRemoved contentInserted 0.51 0.71 0.71 5 17 11 7 5 | Error
setInitialDelay start 0.40 0.80 0.50 - 0 32 0 2 | Unlikely
registerErrorSource unregisterErrorSource 0.28 0.45 0.62 o
start stop 0.20 0.39 0.52 33 83 98 | 10 13 | Error
addToolBar removeToolBar 0.18 0.60 0.30 6 24 43 - 5 | Ermror
init save 0.09 0.40 0.24 31

(24 pairs) Subtotals for the corrective ranking scheme: || 5,546 2,051 | 241 222 | 3U,8E

DynaMine: Finding Common Error Patterns

by Mining Software Revision Histories
Livshits and Zimmerman, FSE 2005

http://thomas-zimmermann.com/publications/files/livshits-fse-2005.pdf

Roadmap

> |ntroduction 7

> Mining the history for relationships
— Logical coupling

> Recovering entity evolution

— Origin analysis

— Refactoring detection

> Mining a history for rules

— Common error patterns

> And more...

Associating Artifacts with Tasks

S W —— W P —- [

Mylyn

Wi o P s o e wher My te maragmed AV bemwwen b | gaa b e
The rewsiutianey test Ansuned atartane P Wyiys m Arvarte o0 Martetpiore
Bigre e CF e banhe me P pon. wm iy o ot oty i cwrt
Tek -
N eet g e b o by s
D L e e P R YY) v 9

B Wned siasprmn of Agre bt AW
Ihawa o vt g W el AN e At ol e Aty el

My 4 et S med shetee Wl (A e el B C e e vy eeey : wes
My maman Wats o St cuse pot of P O mmpraies S0 000 e a0ing S ALV wom [P ——
L Ay s g e @ ety b e 6 \ees i el e met pe e TV g ®
WL RSy W et O eTE N T e o Cerd TR e P SRt g
et @ s LG e 8 T e (A Ry By s v A e et Ay
ARG 00 e T g o et

) Ocwnicads
W Gt b et ot ot Wy winane

Suppon

U rodt sopot ant rammt wi sse st smemogen

CGet S2aned

P a0smen WYt A WaR N LADAEN N IO

e ey P Wi sty AW A e b B Tastiey By
30 Owvwniiur B0, Ba . Nowm Py

WMye 3 4 et Aovende b MY

Kersten & Murphy ‘05
Mylar/Mylin
Task-Focused Interface ST | mE

apen hey by Vs Kaviee e 17 2070

GA Garen Madens wnd ame Wypn be rie e ol presmrater by Gefes
Pogel et Buryume \hmawie Are 71 M1

Rond WMo Parsten s oduinss o Litpsn Wye wd AN ey 190

Degree of Interest ——

Whn LB Coow ot 0 Bonad of Though satamd by W Saryen Tatool A%
n ree

ranking e —
How to filter the large

amount of information
available in the IDE?

vV V V V

Further Directions (Kagdi et al. '07)

> Change-Based repositories
— Replay (Hattori et. al '11)

> Bug prediction
— Extensive comparison of approaches (D’Ambros et al. '10)

> Risk Prediction
— The Code Orb, (Lopez '11)

Enablers of Historical Analysis

> Versioning systems

> Availability of different types of data
— developer interaction
— bug/issue tracking

> Modern IDE’s
— plugin philosophy
— collecting data
— playground for features

Benefits of Historical Analysis

> Increase the amount of available information
> Allows temporal mining
> Predict various aspects of the system based on the past

> Allows empirical validation of hypotheses based on
mining many systems

Roadmap

> |ntroduction 7

> Mining the history for relationships
— Logical coupling

> Recovering entity evolution

— Origin analysis

— Refactoring detection

> Mining a history for rules

— Common error patterns

> And more...

What you should know!

> What are some of the problems that can be solved by
mining software repositories

> What is the problem of origin analysis and how to solve it
> How can logical coupling be detected, and why it matters

> What kind of error patterns can be detected by mining
software repositories

> How to architect a system that can recommend entities
that are likely to need to be changed

33

Can you answer these questions?

> How would you solve the problem of origin analysis?

> What are some of the challenges when in comes to
automatically detecting refactorings?

> What are the advantages of taking into account dynamic
analysis when mining API protocols?

> What heuristics would you use to predict classes that
change together and why?

> Can you discuss some of the advantages and some of
the disadvantages of the shingles technique?

34

References

> Mandatory Reading (minimum one paper)

Detection of Logical Coupling Based on Product Release History, Gall et al., '98
Automated Detection of Refactorings in Evolving Components, Dig et al., ‘06
Mining Version Histories to Guide Software Changes, Zimmermann et al. ‘04

DynaMine: finding common error patterns by mining software revision histories, Livshits
& Zimmerman, ‘05

> Further Reading

An Integrated Approach for Studying Architectural Evolution, Tu & Godfrey, '02
Mylar, a Degree of Interest model for IDE’s, Kersten & Murphy 05

The Role of Refactorings in API Evolution, Dig & Johnson, 05

The code orb: supporting contextualized coding via at-a-glance views, Lopez '11
Modeling History to Understand Software Evolution, Girba, ‘05

An extensive comparison of bug prediction approaches, D’Ambros et al., ’10
Software Evolution Comprehension: Replay to Rescue, Hattori et al., '11

A survey and taxonomy of approaches for mining software repositories in the context of
software evolution, Kagdi et al. ‘07

35

@creative
commons

COMMO N S D E E D

Attribution-ShareAlike 2.5
You are free:
to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions:
@ Attribution. You must attribute the work in the manner specified by the author or

. licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.orqg/licenses/by-sa/2.5/

http://creativecommons.org/licenses/by-sa/2.5/

