
November 23, 2011

Mircea Lungu

Mining Software Repositories

> Introduction
> Mining the history for relationships

—Logical coupling
> Recovering entity evolution

—Origin analysis
—Refactoring detection

> Mining a history for rules
—Common error patterns

> And more...

Roadmap

A History of Repository-Based Analysis
in Software

1970

NATO
Software
Engineering
Conference
’68

1980 1990 2010

Seesoft
Paper,
by Eick et al.
’92

Mylyn becomes
an official
Eclipse project
’10

2000

Logical
Coupling,
by Gall et al.
’98

SCCS
Bell Labs
’72

RCS
Purdue University
’82

CVS
Client Server
’90

MSR
Workshop
‘04

> 20 years of software engineering before people start
doing research in analyzing software repositories

Roadmap

> Introduction
> Mining the history for relationships

—Logical coupling
> Recovering entity evolution

—Origin analysis
—Refactoring detection

> Mining a history for rules
—Common error patterns

> And more...

Logical Coupling

> Gall et al. ‘98
> Based on an an industrial

case study
—Subsystems
—Modules
—Programs

> Two steps
1. Change Sequence Analysis
2. Change Report Analysis

How to detect dependencies
based on history?

> Structural / Data Flow
Analysis
—Disadvantages:

– can not capture all the
situations (i.e. writing to a file,
reading from a file)

– does not work with
documents that are not
source code

Why history based?

Change Sequence Analysis

> Detects when two sub-
systems change together

> Logical coupling is
stronger if the
subsequence is larger

Change Report Analysis

> There are two types of
changes that are
documented
—Feature additions
—Bug Requests

> The coupling between
subsystems must be
verified

Logical Coupling Summary

> Advantages
—Does not require the code to

compile
—Can work with any types of

documents
> Simplification

—Versioning systems in the
real world are a mess (CVS)
– does not group

Alternative read:

Mining Version Histories to Guide
Software Changes
Zimmerman et al.

http://dl.acm.org/citation.cfm?id=999460

Roadmap

> Introduction
> Mining the history for relationships

—Logical coupling
> Recovering entity evolution

—Origin analysis
—Refactoring detection

> Mining a history for rules
—Common error patterns

> And more...

Origin Analysis

> Tu & Godfrey ’02
> Works at the function level
> Combines

—Bertillonage Analysis
– Assumes that Complexity

Metrics do not change much
—Dependency Analysis

– Assumes that relationships do
not change much How to know if an

entity is the same
in two versions?

Refactoring Detection

> Dig et al. ’06 detect
refactorings of Packages,
Classes, Methods

> Combination of syntactic
and semantic analysis

> Shingles Algorithm How to detect refactorings
in object-oriented systems?

The Approach of Dig et al.: The Shingles
Algorithm

> Input
—sequence of tokens

representing method body
without signature

> Output
—Multi-sets of integers
—Similar inputs generate

similar outputs

> Algorithm
—W: window size
—S: maximum set size
—Compute hashes while

sliding the window
—Sort shingles and keep the

first S

The Approach of Dig et al.: Shingles
Algorithm (Example with W=2 and S=10)

The Approach of Dig et al.: Semantic
Analysis

> Seven Detection Strategies
—applied in order
—based on dependencies

between artifacts
– method calls
– subclassing
– fields
– arguments
– parameters

1. RenamePackage (RP)
2. RenameClass (RC)
3. RenameMethod (RM)
4. PullUpMethod (PUM)
5. PushDownMethod (PDM)
6. MoveMethod (MM)
7. ChangeMethodSignature

(CMS)

The Approach of Dig et al.: Results

> More than 85% Precision
and Recall on
—Eclipse
—Struts
—HotDraw

> What’s next? CatchUp!
(Automatically refactoring
clients)

Automated Detection of Refactorings
in Evolving Components
Dig et al., ECOOP 2006

http://dl.acm.org/citation.cfm?id=999460

Roadmap

> Introduction
> Mining the history for relationships

—Logical coupling
> Recovering entity evolution

—Origin analysis
—Refactoring detection

> Mining a history for rules
—Common error patterns

> And more...

How to detect bugs in
apps that use APIs about
which you do not have
knowledge?

Common Error Patterns

> Livshits & Zimmermann
’05

> Data mining reveals
frequent patterns

- Matching Method
Pairs
- State Machines

Principles

1. API specific errors
2. Co-addition is a pattern
3. Small commits are fixes

When to look for pattern violations?

> Compile Time
—complicated (inter procedural analysis)

> Runtime
+ Scalability
+ Simplicity (no interprocedural analysis)
+ Counting occurrences
+ Zero False Positives
—Coverage

Dynamine: The Approach

> Human Input is required
> Mines from the history
> Validates at runtime

Mining for Likely Patterns: The Apriori
Algorithm

> Concepts
—Usage Pattern
—Transaction
—Support Count

> Input
—Minimum Support

> Output
—Frequent Patterns

> Implementation
—Iterative
—Exponential

Pattern Filtering

> Consider a subset of the
methods
—ignore initial revisions
—ignore common calls

> Consider small patterns
only
—group calls by access path

Pattern Ranking & Classification

> Lexicographically on
support count

> Corrective ranking
—assumes on one-line

changes are bug-fixes
—used as first lexicographic

category improves bug
finding

> Classification
—Usage
—Error
—Unlikely

Results

DynaMine: Finding Common Error Patterns
by Mining Software Revision Histories
Livshits and Zimmerman, FSE 2005

http://thomas-zimmermann.com/publications/files/livshits-fse-2005.pdf

Roadmap

> Introduction
> Mining the history for relationships

—Logical coupling
> Recovering entity evolution

—Origin analysis
—Refactoring detection

> Mining a history for rules
—Common error patterns

> And more...

Associating Artifacts with Tasks

> Kersten & Murphy ‘05
> Mylar/Mylin
> Task-Focused Interface
> Degree of Interest

ranking
How to filter the large
amount of information
available in the IDE?

Further Directions (Kagdi et al. ’07)

> Change-Based repositories
—Replay (Hattori et. al ’11)

> Bug prediction
—Extensive comparison of approaches (D’Ambros et al. ’10)

> Risk Prediction
—The Code Orb, (Lopez ’11)

Enablers of Historical Analysis

> Versioning systems
> Availability of different types of data

—developer interaction
—bug/issue tracking

> Modern IDE’s
—plugin philosophy

– collecting data
– playground for features

Benefits of Historical Analysis

> Increase the amount of available information
> Allows temporal mining
> Predict various aspects of the system based on the past

> Allows empirical validation of hypotheses based on
mining many systems

> Introduction
> Mining the history for relationships

—Logical coupling
> Recovering entity evolution

—Origin analysis
—Refactoring detection

> Mining a history for rules
—Common error patterns

> And more...

Roadmap

What you should know!

> What are some of the problems that can be solved by
mining software repositories

> What is the problem of origin analysis and how to solve it
> How can logical coupling be detected, and why it matters
> What kind of error patterns can be detected by mining

software repositories
> How to architect a system that can recommend entities

that are likely to need to be changed

33

Can you answer these questions?

> How would you solve the problem of origin analysis?
> What are some of the challenges when in comes to

automatically detecting refactorings?
> What are the advantages of taking into account dynamic

analysis when mining API protocols?
> What heuristics would you use to predict classes that

change together and why?
> Can you discuss some of the advantages and some of

the disadvantages of the shingles technique?

34

References

> Mandatory Reading (minimum one paper)
— Detection of Logical Coupling Based on Product Release History, Gall et al., ’98
— Automated Detection of Refactorings in Evolving Components, Dig et al., ’06
— Mining Version Histories to Guide Software Changes, Zimmermann et al. ‘04
— DynaMine: finding common error patterns by mining software revision histories, Livshits

& Zimmerman, ’05

> Further Reading
— An Integrated Approach for Studying Architectural Evolution, Tu & Godfrey, ’02
— Mylar, a Degree of Interest model for IDE’s, Kersten & Murphy ’05
— The Role of Refactorings in API Evolution, Dig & Johnson, ’05
— The code orb: supporting contextualized coding via at-a-glance views, Lopez ’11
— Modeling History to Understand Software Evolution, Girba, ’05
— An extensive comparison of bug prediction approaches, D’Ambros et al., ’10
— Software Evolution Comprehension: Replay to Rescue, Hattori et al., ’11
— A survey and taxonomy of approaches for mining software repositories in the context of

software evolution, Kagdi et al. ’07

35

http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

