Software Evolution
in the Financial Industry

Carl Worms
Guest Lecture 2014
IAM Bern

Who | am

Studied Computer Science in Karlsruhe
Lived from programming for 15 years
Walter Masing awardee (DGQ)

IT Architect/SWE Process Architect at a major
Swiss bank

PC member of IEEE conferences since 2007

IT in Large Banks?

IT in large banks

 Huge global infrastructure
— >100.000 PC/Laptops
— ~30.000 Servers and a big mainframe
— A multitude of technologies (HW, OS, DB, ...)

— ~5.000 Applications, >100m SLOC
— ~2.000 SOA like Services
— ~50.000 Data Bases, >100.000 data attributes

IT in large banks

* Huge global IT organization
— ~25-30% of the bank’s staff isin IT
— The big Swiss banks are the major IT employers
— Global distributed SWE
— ~50 high level processes areas (one is SW design)
— A multitude of SWE methodologies
— A multitude of cultures

IT in large banks

High performance
— >100m transactions/month
— >10 tons of prints (accounts, tax reports)/year

High security
High regulatory constraints

Extreme change rate (monthly/quarterly)
>20.000 bug fixes/year in a major hub

Question 1

If you are the CIO (Chief Information Officer)
of a large bank - what’s your major concern?

Answer

i

|
I
!

Question 2

If you are the Chief Architect of a large bank -
what’s your long-term vision?

Answer

Managed
Evolution

From: Murer/Bonati/Furrer, Managed Evolution; Springer 2010

Driver: Solution delivery and IT

operations efficiency

Managed Evolution

- Managed Evolution:
¢ IT Efficiency Balanfed Development
of IT Effisiency and Business
Unbalanced IKelopment Value XX
s’ -
Project Contribution to
Business Value
a - /
"} Project Contribution e
to IT Efficiency _--
. — -
''''''''''' Unbalanced Development
>

Driver: Business requirements, Time to market Business Value

From: Murer/Bonati/Furrer, Managed Evolution; Springer 2010

Software Evolution Management
called IT Architecture

All systems have an architecture, be it an implicit or an explicit one

If the architecture is implicit, we have no way to control, analyze, reason
about, evolve, and communicate it

Software Evolution Management

Principles

* Flexibility with regard to business organization and

expansion
+ applications tend to live longer than the organization Thus, we keep the
architecture flexible (-> Multiple Channels, Multiple Countries,)

« Componentization

The whole platform is decomposed into components with well-defined interfaces
among each other.

Components encapsulate data and related functionality
Application domains serve as high-level components

The decomposition into components is supported by an adequate piece of
integration infrastructure

Software Evolution Management
Principles - Componentization

A
Complexity of Interfaces

high' [

Software Evolution Management
Principles

Accept and handle trade-offs

« Architecture is not an exact science
« There are conflicting goals and interests

=> necessity of architecture process to define standards...and to handle exceptions

The importance of standards

« The main property of a standard is its widespread acceptance and support in the
market

« The discussion of architecture will generally focus on standards rather than products

« Itis an important duty of IT Architecture to enforce guidelines that restrict the use of
the product to standard features

Avoid unnecessary technology diversity

« each infrastructure functionality is covered by exactly one product
... but temporary overlaps when old standard is being replaced by new one
... exception: exert price pressure on vendors

Software Evolution Management
Principles

* Be properly positioned in the technology life cycle

there is a lot of hype around life cycle
... a careful technology portfolio management is important

+ Managed Evolution makes it possible to predict the replacement of a specific technology
and to allow for an adequate transition phase

« Stay in themainstream

Generally our technology strategy will be an ‘early follower strategy’ of mainstream
products

* exceptions: Security, Channel technology, Large system integration

Software Evolution Management
Principles — Lifecycle Management

Standardization,

Exploration,

Phaseout-

Consulting
Pllot Use Of
Projects, Support
Architecture- organization
Decisions

Prototypes
Infrastructure-

Projects
in exploration State of the art
Phase 1: Phase 2: Phase 3: Phase 4:

New Ideas Technology Products Market

Phaseout-
Projects

in practice

Phase 6:
Domination Phaseout

Software Evolution Management
Principles

 Adequate make or buy decisions

Purchase Non bank-specific applications and technology infrastructure
Development activity should be concentrated on core business functions

ERP systems/Standard Software will pick up bank functionality

» business processes have to be adapted to given processes of
bought applications

» A highly developed integration architecture is key for successful
standard software projects

Software Evolution Management
Principles — Focus on Core Business

Block B

Non bank-specific applications

- extend role of ERP packages

- concentrate on few software
vendors for smooth integration

- follower strategy, low risk

- buy-only for new applications

-insulate bank-specific part

More

ERP
system

—basically same application useful e.g. to Nestlé

Infrastructure

More powerful
in

- only buy for new components
- forced replacement of in-house infrastructure components
- focus on integration of best-of-breed market standards

- extend role of infrastructure into applications

Block A

Block C

Bank-specific applications

build on higher level infrastructure
componentize system

individual make-buy decisions
when renewing parts of application

portfolio
be launch customer if beneficial

to overall strategy

Software Evolution Management
Principles

 Make it as simple as possible but not simpler

Choose the simplest solution that fulfills the requirements

No “overengineering”

« Design for low-cost production and simple
maintainability

the cumulated maintenance and production cost of an application by far
exceed its development cost

Software Evolution Management
Principles — Design for Maintenance

Total cost:

development + production Total cost of bad design
A or overengineering

Production cost of bad design
or overengineering

Development cost of bad design
or overengineering

== Total cost of good design

Productiont cost,of good design

Development cost of good degg

Enhancement1 Enhancement2 Enhancementn

>

Initial Development Lifespan of application / infrastructure

CreremeZ
2

LAvore’

S

Software Evolution Management
Questions & Answers
I

