

Software Metrics and Problem Detection

Mircea Lungu

Roadmap

- > Measurements
- > Software Metrics
 - Size / Complexity Metrics
 - Quality Metrics
 - Schedule / Cost
- > Metric-Based Problem Detection
 - Detecting Outliers
 - Encoding Design Problems
- > Discussion

Measurements

Estimation of quantity owes its existence to Measurement Calculation to Estimation of quantity Balancing of chances to Calculation and Victory to Balancing of chances.

Measurements

A measurement is a mapping domain range rules

A measure is a numerical value or a symbol assigned during mapping

In Software: measurements = metrics

Measurement Scales

- > Nominal
- > Ordinal
- > Interval
- > Ratio
- > Absolute
- > Analysis should take scales into account!!

and Victory to Balancing of chances.

Medical Markers are used in diagnositcs based on statistical data

- > Potassium Levels
- > Red Blood Cell Count
- > Glucose Levels
- > etc.

Google Measures N-gram Frequencies

Can you assess unknown code without reading it?

Can you assess unknown code without reading it?

Fraser:

One of the problems that is central to the software production process is to identify the nature of progress and to find some way of measuring it.

Fraser:

One of the problems that is central to the software production process is to identify the nature of progress and to find some way of measuring it.

McIlroy:

In programming efforts [...] clarity and style seem to count for nothing — the only thing that counts is whether the program works when put in place. It seems to me that it is important that we should **impose these types of aesthetic standards**.

Roadmap

- > Measurements
- > Software Metrics
 - Size / Complexity Metrics
 - Quality Metrics
 - -Schedule / Cost
- > Metric-Based Problem Detection
 - Detecting Outliers
 - Encoding Design Problems
- > Discussion

The Measurement Process

Targets without clear goals will not achieve their goals clearly.

Gilb's Principle

The Measurement Process

The Goal-Question-Metric model proposes three steps to finding the correct metrics.

(Victor Basili)

Targets without clear goals will not achieve their goals clearly.

Gilb's Principle

The Measurement Process

The Goal-Question-Metric model proposes three steps to finding the correct metrics.

(Victor Basili)

- 1) Establish the **goals** of your maintenance or development project.
- 2) Derive, for each goal, questions that allow you to verify its accomplishment.
- **3)** Find what should be **measured** in order to quantify the answer to the questions.

Targets without clear goals will not achieve their goals clearly.

Gilb's Principle

Roadmap

- > Measurements
- > Software Metrics
 - Size / Complexity Metrics
 - Quality Metrics
 - -Schedule / Cost
- > Metric-Based Problem Detection
 - Detecting Outliers
 - Encoding Design Problems
- > Discussion

Size Measures

LOC NOM NOA NOC NOP ... etc.

> Lorenz, Kidd, 1994 Chidamber, Kemerer, 1994

Cyclomatic Complexity (CYCLO)

The number of independent linear paths through a program.

(McCabe '77)

+ Measures minimum effort for testing

Weighted Methods per Class (WMC)

The complexity of a class by summing the complexity of its methods, usually using CYCLO.

(Chidamber & Kemerer '94)

+ A proxy for the time and effort required to maintain a class

Depth of Inheritance Tree (DIT)

Depth of Inheritance Tree (DIT)

The maximum depth level of a class in a hierarchy.

(Chidamber & Kemerer '94)

+ Inheritance depth is a good proxy for complexity

Access To Foreign Data (ATFD)

Access To Foreign Data (ATFD)

Access To Foreign Data (ATFD)

ATFD counts how many attributes from other classes are accessed directly from a given class.

(Lanza & Marinescu '06)

+ ATFD summarizes the interaction of a class with its environment

Roadmap

- > Measurements
- > Software Metrics
 - Size / Complexity Metrics
 - Quality Metrics
 - -Schedule / Cost
- > Metric-Based Problem Detection
 - Detecting Outliers
 - Encoding Design Problems
- > Discussion

Coupling Between Object Classes (CBO)

CBO for a class is the number of other classes to which it is coupled.

(Chidamber & Kemerer '94)

+ Meant to assess modular design and reuse

Tight Class Cohesion (TCC)

TCC counts the relative number of method-pairs that access attributes of the class in common.

(Bieman & Kang, 95)

+ Can lead to improvement action

$$TCC = 2 / 10 = 0.2$$

Roadmap

- > Measurements
- > Software Metrics
 - Size / Complexity Metrics
 - Quality Metrics
 - -Schedule / Cost
- > Metric-Based Problem Detection
 - Detecting Outliers
 - Encoding Design Problems
- > Discussion

Man-Month/Year

Man-Month/Year

The amount of work performed by an average developer in a month/year.

Function Point (FP)

FP is a unit of measurement to express the amount of functionality an information system provides to a user.

- Risks hiding the internal functions (algorithms)

Roadmap

- > Measurements
- > Software Metrics
 - Size / Complexity Metrics
 - Quality Metrics
 - -Schedule / Cost
- > Metric-based Problem Detection
 - Detecting Outliers
 - Encoding Design Problems
- > Discussion

Roadmap

- > Measurements
- > Software Metrics
 - Size / Complexity Metrics
 - Quality Metrics
 - -Schedule / Cost
- > Metric-based Problem Detection
 - Detecting Outliers
 - Encoding Design Problems
- > Discussion

Lanza, Marinescu 2006

Inheritance

Size

Communication

Size

Communication

Inheritance

				ANDC	0.31			
				AHH	0.12			
			20.21	NOP	19			
		9.42	NOC		384			
	9.72	NOM			3618	NOM	418	
0.15	LOC				35175	15128	CALLS	0.56
CYCLO					5579	8590		FANOUT

close to high

close to average

close to low

close to high

close to average

close to low

How to obtain the thresholds?

		Java			C++	
	LOW	AVG	HIGH	LOW	AVG	HIGH
CYCLO/LOC	0.16	0.20	0.24	0.20	0.25	0.30
LOC/NOM	7	10	13	5	10	16
NOM/NOC	4	7	10	4	9	15
•••						

How to obtain the thresholds?

		Java			C++	
	LOW	AVG	HIGH	LOW	AVG	HIGH
CYCLO/LOC	0.16	0.20	0.24	0.20	0.25	0.30
LOC/NOM	7	10	13	5	10	16
NOM/NOC	4	7	10	4	9	15
•••						

By statistical static analysis of many systems

How to obtain the thresholds?

		Java			C++	
	LOW	AVG	HIGH	LOW	AVG	HIGH
CYCLO/LOC	0.16	0.20	0.24	0.20	0.25	0.30
LOC/NOM	7	10	13	5	10	16
NOM/NOC	4	7	10	4	9	15
•••						

By statistical static analysis of many systems Context is important (e.g. programming language)

Roadmap

- > Measurements
- > Software Metrics
 - Size / Complexity Metrics
 - Quality Metrics
 - -Schedule / Cost
- > Metric-based Problem Detection
 - Detecting Outliers
 - Encoding Design Problems
- > Discussion

Bad Smells Comments Switch Statement Shotgun Surgery

. .

Bad Smells Comments Switch Statement Shotgun Surgery

Design Heuristics Encapsulation Minimize Coupling Class Coherence Inheritance Depth

. .

Bad Smells Comments Switch Statement Shotgun Surgery

. . .

Design HeuristicsEncapsulation

Encapsulation
Minimize Coupling
Class Coherence
Inheritance Depth

...

Design principles come in prose - how to measure them?

Bad Smells
Comments
Switch Statement
Shotgun Surgery

Design Heuristics
Encapsulation
Minimize Coupling
Class Coherence
Inheritance Depth

Design principles come in prose - how to measure them?

Rarely a single metric is sufficient >>> Detection Strategies

Detection Strategies...

... are metric based queries for detecting design problems (Marinescu 2002)

Detection Strategies...

... are metric based queries for detecting design problems (Marinescu 2002)

God Classes

... tend to centralize the intelligence of the system, to do everything, and to use data from small data-classes

God Classes ...

Complexity (WMC)

... tend to centralize the intelligence of the system, to do everything, and to use data from small data-classes

Lack of cohesion (TCC)

Foreign data usage (ATFD)

God Classes

God Classes

WOC - Weight Of a Class				
Definition	The number of "functional" public methods divided by the total number of public members (Mar02a)			

WOC - Weight Of a Class		
Definition	The number of "functional" public methods divided by the total number of public members (Mar02a)	

NOAP = #Public Attributes, NOAM = #Accessor Methods

NOAP = #Public Attributes, NOAM = #Accessor Methods

Feature Envy is ...

Feature Envy is ...

This one you find in the Lanza-Marinescu Book!

Roadmap

- > Measurements
- > Software Metrics
 - Size / Complexity Metrics
 - Quality Metrics
 - -Schedule / Cost
- > Metric-based Problem Detection
 - Detecting Outliers
 - Encoding Design Problems
- > Discussion

Empirical Analysis

Empirical Analysis

- > Basil et al. showed that DIT, RFC, NOC, CBO were correlated with faulty classes
- > D'Ambros et al. showed that design flaws correlate with software defects

> There is need for more ...

McClure:

I know of one organisation that attempts to apply time and motion standards to the output of programmers. They judge a programmer by the amount of code he produces. This is guaranteed to produce insipid code — code which does the right thing but which is twice as long as necessary.

FAMIX 3.0

- > Meta-model
- > Core independent of programming language
- > Implemented in Moose

name: String isPackage: Boolean isAbstract: Boolean isPrivate: Boolean sPublic: Boolean belongsTo: ContainerEntity modifiers: String* isStub: Boolean parentPackage: Package -> childNamedEntities receivingInvocations: Invocation* -> receiver ContainerEntity incomingReferences: Reference* -> target /types: Type* -> container Entity outgoingReferences: Reference* -> source SourcedEntity sourceAnchor: SourceAnchor -> element /comments: Comment* -> container Comment content: String container: SourcedEntity -> comments Invocation candidates: BehaviouralEntity* -> incomingInvocations receiver: NamedEntity -> receivingInvocations signature: String receiverSourceCode: String sender: BehaviouralEntity -> outgoingInvocations Access Association isWrite: Boolean /next: Association -> previous VisRead: Boolean previous: Association -> next accessor: BehaviouralEntity -> accesses from: NamedEntity variable: StructuralEntity -> incomingAccesses to: NamedEntity Reference source: ContainerEntity -> outgoingReferences target: ContainerEntity -> incomingReferences Inheritance subclass: Type -> superInheritances superclass: Type -> subInheritances

sriotected, boolean

Wednesday, November 16, 11

Wednesday, November 16, 11

What you should know!

- > Software metrics are measurements
- > Every scale allows certain operations and analyses
- > Detection strategies are queries for design problem detection
- > The Goal Question Metric model has three phases
- > Bad smells encode bad OO practices
- > Design heuristics encode good OO practices

Can you answer these questions?

- > How do you compute TCC for a given class?
- > Can you explain how the God Class detection strategy works?
- > Can you list several of the elements of the FAMIX metamodel?
- > What are three metrics appropriate for OO systems but not be appropriate for procedural systems?
- > Can you give examples of three bad smells?
- > Why are comments a bad smell? But switch clauses?
- > Can you give examples of three design heuristics?

Further Reading

- > Cohesion and Reuse in Object Oriented Systems, by Bieman & Kang
- > OOMIP by Lanza and Marinescu (Sections 5.3 5.5)
- > http://sourcemaking.com/refactoring/bad-smells-in-code
- > http://scg.unibe.ch/staff/mircea/sde/60-design-heuristics

Attribution-ShareAlike 3.0

You are free:

- to copy, distribute, display, and perform the work
- to make derivative works
- to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/3.0/