November 23, 2011

Wednesday, November 23, 11

Roadmap

> |ntroduction
> Recovering entity evolution
— Origin analysis
— Refactoring detection
> Mining the history for relationships
— Logical coupling
— Change propagation
> Mining a history for rules

— Common error patterns
— Associating artefacts with tasks

> And more...

Wednesday, November 23, 11

Software is Data...

> Data that you analyze
> Data that you measure

> Data that evolves and
can be mined

Wednesday, November 23, 11

A History of History Analysis in Software

NATO
Software Seesoft Logical Mylyn becomes
Engineering Paper, Coupling, MSR an official
Conference by Eick et al. by Gall et al. Workshop Eclipse project
'68 '92 ‘08 ‘04 10

SCCS RCS CVS

Bell Labs Purdue University Client Server

72 '82 90

> 20 years of software engineering before people start
doing research in analyzing software repositories

Wednesday, November 23, 11

References

> Main Materials
— An Integrated Approach for Studying Architectural Evolution, Tu & Godfrey, '02
— Automated Detection of Refactorings in Evolving Components, Dig et al., 06
— Detection of Logical Coupling Based on Product Release History, Gall et al., ’98
— Predicting Change Propagation in Software Systems, Hassan & Holt, '04

— DynaMine: finding common error patterns by mining software revision histories,
Livshits & Zimmerman, ’05

Wednesday, November 23, 11

Roadmap

> |ntroduction

> Recovering entity evolution
— Origin analysis
— Refactoring detection
> Mining the history for relationships
— Logical coupling
— Change propagation
> Mining a history for rules
— Common error patterns
— Associating artefacts with tasks

> And more...

Wednesday, November 23, 11

A Quick Softwarenaut Demo...

> ... showing that new
classes appear all the
time during the evolution
of the system

> But are they really “new”?

Wednesday, November 23, 11

Origin Analysis

> Tu & Godfrey 02
> Works at the function level

> Combines

— Bertillonage Analysis

— Assumes that Complexity
Metrics do not change much

— Dependency Analysis

— Assumes that relationships do
not change much

RELEVE

SIGNALEMENT ANTHROPOMETRIQUE

1. Talle, — 3. Eavergwre. — 3. Busle. -
4. Longecur de la téte. 5, Largeur de la tite. — 6. Oveille droite. —
5. Pied gauche — 8 Méhes ganche. — g Cowlie gauche.

How to know If an
entity is the same
in two versions?

Wednesday, November 23, 11

Refactoring Detection

> D i g et al " ,06 d eteCt EclipseUl 2.1.3 EclipseUl 3.0
refaCtO ri n g S Of P aC kag eS y AbstractTextEditor AbstractTextEditor

Classes, Methods

> Combination of syntactic
and semantic analysis
How to detect refactorings
In object-oriented systems?

doRevertToSaved()

> Shingles Algorithm

Wednesday, November 23, 11

The Approach of Dig et al.: The Shingles
Algorithm

> Input

> Algorithm
— sequence of tokens JO

representing method body —W: winqow size |
without signature — S: maximum set size

> QOutput - C_or_npute ha_shes while
sliding the window

— Multi-sets of integeres
. J — Sort shingles and keep the
— Similar inputs generate first S

similar outputs

The original Shingles paper:
Broder, On the resemblance and containment of documents

Wednesday, November 23, 11

The Approach of Dig et al.: Shingles
Algorithm (Example with W=2 and S=10)

void doRevertToSaved() {

IDocumentProvider p= getDocumentProvider(); Shingles: { 1942396283, -1672190785,

if (p == null) -12148775115, -56733233372, 208215292,
return; 1307570125, 1431157461,

|performRevertOperatlon(createRevenOperatlono, | 190471951, 96930737j}
getProgressMonitor());

}

void doRevertToSaved() { Shingles: {-1942396283, 1672190785,

IDocumentProvider p= getDocumentProvider(); | -1214877515, -5673233372, 208215292,

if (p == null) 1307570125, 1431157461 FTRW}_I
i- 1K

-

Wednesday, November 23, 11

The Approach of Dig et al.: Semantic

Analysis

> Seven Detection Strategies
—applied in order

— based on dependencies
between artifacts
— method calls
— Subclassing
— fields
— arguments
— parameters

N O oA WD =

. RenamePackage (RP)
. RenameClass (RC)

. RenameMethod (RM)
. PullUpMethod (PUM)

PushDownMethod (PDM)

. MoveMethod (MM)
. ChangeMethodSignature

(CMS)

Wednesday, November 23, 11

The Approach of Dig et al.: Results

> More than 85% Precision
and Recall on
— Eclipse
— Struts
— HotDraw

> What’s next? CatchUp!

Wednesday, November 23, 11

Roadmap

> |ntroduction

> Recovering entity evolution
— Origin analysis
— Refactoring detection
> Mining the history for relationships
— Logical coupling
— Change propagation
> Mining a history for rules
— Common error patterns
— Associating artefacts with tasks

> And more...

Wednesday, November 23, 11

Logical Coupling

> Gall et al. ‘98

> Based on an an industrial
case study
— Subsystems
— Modules
— Programs

> Two steps
1. Change Sequence Analysis
2. Change Report Analysis

System

Subsystem A

Subsystem B

Subsystem C

Module ba

Module bb

Module bc

Program 100

Program 200

Program 300

How to detect dependencies

based on history?

Wednesday, November 23, 11

Why history based?

> Structural / Data Flow
Analysis

— Disadvantages:

— can not capture all the
Situations (i.e. writing to a file,
reading from a file)

— does not work with
documents that are not
source code

Wednesday, November 23, 11

Change Sequence Analysis

SUB,=<1234679 10 14>

Aaa.lll |1 (2 (3 |4 |6 |7 |9 |10[14 |17 |19
Bba222|1 [2 |3 |4 [6 |7 |9 [10]14 |16 |18
> Detects when two sub-
systems change together _ —

> Logical coupling is
stronger if the
subsequence is larger

4 changes _ _ _

Wednesday, November 23, 11

Change Report Analysis

> There are two types of
changes that are

system releases |

SUB, =<2 46 7>

3 =5 e ¥ B
N '

documented
— Feature additions AabA
— Bug RequeStS B.be.20

N

> The coupling between
subsystems must be
verified

Wednesday, November 23, 11

Logical Coupling Summary

> Advantages

— Does not require the code to
compile
— Can work with any types of
documents
> Simplification
— Versioning systems in the
real world are a mess (CVS)

Wednesday, November 23, 11

Change Propagation

FE R
R
299
v o w

S

S I X T
-

® @

> Hassan & Holt '04

> Compare heuristics
— Developer (DEV)
— Historical co-change (HIS)

— Structural: Call/Use/Define
(CUD)

— Code layout (FIL) What other entities have
to change when a given
one changes?

A T I T
< »

|

Wednesday, November 23, 11

Evaluating the heuristics based on
history with precision and recall

> Precision
> Recall
> Compute for every relevant change set and average

Application DEV HIS CUD FIL
Recall Precision Recall Precision Recall Precision Recall Precision

NetBSD 0.74 0.01 0.87 0.06 0.37 0.02 0.79 0.16
FreeBSD 0.68 0.02 0.87 0.06 040 0.02 0.82 0.11
OpenBSD 0.71 0.02 0.82 0.08 0.38 001 0.80 0.14
Postgres 0.78 0.01 0.86 0.05 047 0.02 0.77 0.12
GCC 0.79 0.01 0.94 0.03 046 0.02 0.96 0.06
Average 0.74 0.01 0.87 0.06 042 0.02 0.83 0.12

Wednesday, November 23, 11

Hybrid Technique

Entities that changed

together at least A% of the OR

time (prune HIS)

Entities in the same file that
changed together at least

A%-B% of the time (FIL)

0.6 - —
Precision HYB1(80,10)
0.5 -)(_x X_S(
HYB2(80,30)
0.4 2 0 0
D\Q\‘
0.3 - A D
A
0.2 -
0.1 - HYB3(60,30)
Recall
0 .
0.45 0.55 0.65 0.75 0.85 0.95

Wednesday, November 23, 11

Change Propagation Discussion

> Heuristics

— Only work with one element
In the prediction set

— Are symmetric
> File-level is a limitation

Wednesday, November 23, 11

Roadmap

> |ntroduction

> Recovering entity evolution
— Origin analysis
— Refactoring detection
> Mining the history for relationships
— Logical coupling
— Change propagation
> Mining a history for rules
— Common error patterns
— Associating artefacts with tasks

> And more...

Wednesday, November 23, 11

Common Error Patterns

> Livshits & Zimmermann
‘05
> Data mining reveals

frequent patterns
- Matching Method

Pairs
_ - How to detect bugs in
State Machines apps that use APIs about

which you do not have
knowledge?

Wednesday, November 23, 11

Principles

1. APl specific errors
2. Co-addition is a pattern
3. Small commits are fixes

File

Revision

Added method calls

Foo.java

1.12

ol.addListener
ol.removelListener

Bar.java

1.47

o2.addListener
o2.removelListener
System.out.println

Baz.java

1.23

o3.addListener
o3.removelListener
list.iterator
iter.hasNext
iter.next

Qux.java

1.41

od.addListener

1.42

od.removelListener

Wednesday, November 23, 11

When to look for pattern violations?

> Runtime
+ Scalability
+ Simplicity (no interprocedural analysis)
+ Counting occurrences
+ Zero False Positives
— Coverage

Wednesday, November 23, 11

Dynamine: The Approach

Extract
revisions

Revision

— - Cs
histones

! Instrumented
program

Mine likely patterns
from revision DB

Present

Fo-

database

Run instrumented program;
load dynamic results into Eclipse

Likely
patterns

> Human Input is required
> Mines from the history
> Validates at runtime

Eclipse dynamic
results view

for review = Eclipse
pattern view
Confirmed
/’_/__,_,, patterns
T Pattern
violations

Wednesday, November 23, 11

Mining for Likely Patterns: The Apriori
Algorithm

> Input
— Minimum Support
> Concepts - Outout
— Usage Pattern P
. — Frequent Patterns
— Transaction _
_ Support Count > Implementation

— lterative
— Exponential

Wednesday, November 23, 11

Pattern Filtering

> Consider a subset of the
methods
—Ignore Initial revisions
—ignore common calls

> Consider small patterns
only
—group calls by access path

Wednesday, November 23, 11

Pattern Ranking & Classification

> Lexicographically on
support count

> Corrective ranking

—assumes on one-line
changes are bug-fixes

— used as first lexicographic
category improves bug
finding

> Classification

— Usage

— Error

— Unlikely

Wednesday, November 23, 11

Results

METHOD PAIR (a, b) CONFIDENCE SUPPORT DYNAMIC STATIC TYPE
Method a Method b conf | conf_, conf, | count v e v e
CORRECTIVE RANKING

Eclipse NewRgn DisposeRgn 0.76 0.92 0.82 49

(16 pairs) | kEventControlActivate kEventControlDeactivate 0.69 0.83 0.83 5
addDebugEventListener removeDebugEventListener 0.61 0.85 0.72 23 - 1 - 1 | Unlikely
beginTask done 0.60 0.74 0.81 493 332 759 | 41 28 | Unlikely
beginRule endRule 0.60 0.80 0.74 32 7 0 - 0 | Usage
suspend resume 0.60 0.83 0.71 5
NewPtr DisposePtr 0.57 0.82 0.70 23
addListener removeListener 0.57 0.68 0.83 90 143 140 | 35 29 | Ermror
register deregister 0.54 0.69 0.78 40 2854 461 | 17 90 | Ermor
malloc free 0.47 0.68 0.68 28
addElementChangedListener removeElementChangedListener 0.42 0.73 0.57 8 6 1 1 1 | Error
addResourceChangelListener removeResourceChangelistener 041 0.90 0.46 26 27 1| 21 1 | Usage
addPropertyChangeListener removePropertyChangeListener 0.40 0.54 0.73 140 1864 309 | 54 31 | Error
start stop 0.39 0.59 0.65 32 69 18| 20 9 | Error
addDocumentListener removeDocumentListener 0.36 0.64 0.56 29 38 2| 14 2 | Usage
addSyncSetChangedListener removeSyncSetChangedListener 0.34 0.62 0.56 24

JEdit addNotify removeNotify 0.60 0.77 0.77 17 3 0 3 0 | Unlikely

(8 pairs) | setBackground setForeground 0.57 0.67 0.86 12 75 175 5 5 | Unlikely
contentRemoved contentInserted 0.51 0.71 0.71 2 17 11 7 5 | Error
setInitialDelay start 0.40 0.80 0.50 - 0 32 0 2 | Unlikely
registerErrorSource unregisterErrorSource 0.28 0.45 0.62 -
start stop 0.20 0.39 0.52 33 83 98 | 10 13 | Error
addToolBar removeToolBar 0.18 0.60 0.30 6 24 43 5 5 | Error
init save 0.09 0.40 0.24 31

(24 pairs) Subtotals for the corrective ranking scheme: || 5,546 2,051 | 241 222 | 3U,8E

Wednesday, November 23, 11

Associating Artefacts with Tasks

> Kersten & Murphy ‘05
> Mylar/Mylin
> Task-Focused Interface

> Degree of Interest
ranking

The reenimanasy ‘st fusoned sartecs e Ve

L s e

Gmapy | bwran e U v P o s A ot R N

B bt et o Age bd ALV rhey g -l

Ihww s o sehmary vy Wi e AN el vt ol s el Ay -

Myt 1 b S med it wdamn (At e X S anem e sy e :
M mansn et ¢ 0 Caee bt of e O rmgrates wO NM-M‘»\M 3 Migyn - B Phgriind

ﬂWNWQQ-QH“-C‘IWNMNMW = 0n po
WL STy W) W et AT N Ta e e TN s Pe eormetar g, -
@ s Lgme a1 i (s k) Ny g T et - —g
e A Ny TG WO G e VG o B
Oowioads
v w Pe wael od ymamd Vi wmane

1
=
i§
i
|
. ¢t
3 . ‘ . 5
55t wEnnd o ¥ i
siecls : '
‘2 31328 & 3
e 4 g s 19 e
Fiss "¥1i; : 3 . -
11 Sy RERTRECE 5
. :
i : g -
4 £y 1f fa .8
2 v 1}
—

—_— T i
Ly g ot Wi w8y AW AL St b s = Carety Sy Y e T
1.0 Ovcmntor B0, Baw - Noww P2 VAKX = Cove

A Sarnien 00 Lobpes gt s amw Saturas o e 3 4 Ave 0 2o .~

Wytyn L8 winaned A 0 N0 b
[0 e

Vown Fpcnnas “ww Brngog (ot w Tt vt bach
SRR Mo Dy VA et Ao 12 Jo

e e et R u-n.— rrvae e by Vet
w.‘mmh :xy

A.-n. arvian's pradiasncn s Gobpen Wyye snd AN Jarnvary m
B

Wyiye et W bow el Litee e S M X7

Wiyhys 13 T ol Bhn Spmaed of Thghel ateud by Vb Canvinn (Tiionl Ay
. 008

How to fllter the Iarge
amount of information
available in the IDE?

Wednesday, November 23, 11

Roadmap

> |ntroduction

> Recovering entity evolution
— Origin analysis
— Refactoring detection
> Mining the history for relationships
— Logical coupling
— Change propagation
> Mining a history for rules
— Common error patterns
— Associating artefacts with tasks

> And more...

Wednesday, November 23, 11

Further Directions (Kagdi et al. '07)

> Basic evolution principles
— Refactorings breaking clients (Dig & Johnson ’05)
— Understanding the rethoric of small changes (Puru & Perry ’05)

> Change-Based repositories
— Replay (Hattori et. al '11)

> Bug prediction
— Extensive comparison of approaches (D’Ambros et al. '10)

> Risk Prediction
— The Code Orb, (Lopez '11)

Wednesday, November 23, 11

Benefits of Historical Analysis

> Predict various aspects of the system based on the past
— Temporal locality
— Co-change patterns

> |ncrease the amount of available information
> Allows empirical validation of hypotheses

Wednesday, November 23, 11

Enablers of Historical Analysis

> Versioning systems
> |ncreased amounts of historical data

> Availability of different types of data
—developer interaction
— bug/issue tracking

> Modern IDE’s
— plugin philosophy
— collecting data
— playground for features

Wednesday, November 23, 11

Roadmap

> |ntroduction

> Recovering entity evolution
— Origin analysis
— Refactoring detection
> Mining the history for relationships
— Logical coupling
— Change propagation
> Mining a history for rules
— Common error patterns
— Associating artefacts with tasks

> And more...

Wednesday, November 23, 11

What you should know!

> What is origin analysis

> What is logical coupling

> How does the Apriori algorithm function
> What are shingles and how do they work

39

Wednesday, November 23, 11

Can you answer these questions?

> How does origin analysis work in the approach of Tu &
Godfrey?

> Can you compare the Bertillonage and the Shingles
approaches?

> Why does the Dynamine tool require dynamic analysis?

> What heuristics would you use to predict classes that
change together and why?

> Can you discuss some of the advantages and some of
the disadvantages of the shingles technique?

40

Wednesday, November 23, 11

Further Reading

> Mpylar, a Degree of Interest model for IDE’s, Kersten & Murphy ‘05

> The Role of Refactorings in APl Evolution, Dig & Johnson, '05

> The code orb: supporting contextualized coding via at-a-glance views, Lopez ’11

> Modeling History to Understand Software Evolution, Girba, '05

> An extensive comparison of bug prediction approaches, D’Ambros et al., ’10

> Software Evolution Comprehension: Replay to Rescue, Hattori et al., 11

> A survey and taxonomy of approaches for mining software repositories in the context of software

evolution, Kagdi et al. '07

41

Wednesday, November 23, 11

@creative
commons

COMMO N S D E E D

Attribution-ShareAlike 2.5
You are free:
to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions:
@ Attribution. You must attribute the work in the manner specified by the author or

. licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

Wednesday, November 23, 11

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

