
Jorge Ressia

Software Design and Evolution

11. Dynamic Analysis

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Advanced Dynamic Analysis Techniques
> Dynamic analysis in a Reverse Engineering Context
> What can we achieve with all this?
> Conclusion

Roadmap

2

Roadmap

3

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Advanced Dynamic Analysis Techniques
> Dynamic analysis in a Reverse Engineering Context
> What can we achieve with all this?
> Conclusion

What does this program do?

#include <stdio.h>main(t,_,a)char *a;{return!0<t?t<3?
main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a)):1,t<_?main(t
+1,_,a):3,main(-94,-27+t,a)&&t==2?_<13?main(2,_+1,"%s %d %d
¥n"):9:16:t<0?t<-72?main(_,t,"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}
+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+,/+#n+,/#¥;#q#n+,/+k#;*
+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l ¥q#'+d'K#!/+k#;q#'r}eKK#}
w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;# ¥){nl]!/
n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#n'wk nw'
¥iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlwb!/*de}'c ¥;;
{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;#'rdq#w! nr'/ ') }+}
{rl#'{n' ')# ¥}'+}##(!!/"):t<-50?_==*a?
putchar(31[a]):main(-65,_,a+1):main((*a=='/')+t,_,a+1) :0<t?
main(2,2,"%s"):*a=='/'||main(0,main(-61,*a,"!ek;dc i@bK'(q)-
[w]*%n+r3#l,{}:¥nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);}

Thomas Ball, The Concept of Dynamic Analysis, FSE’99

4

Source code can be hard to read and understand.
This is a legal C program, an extreme case of course.

This is intentionally obfuscated code. Obfuscation is a set of transformations that preserve the behavior of the program but make the internals hard to
reverse-engineer.
- Programming contests
- Prevent reverse engineering

Finding Features

Software Feature:
A distinguishing characteristic of a
software item.

IEEE 829
5

Bug reports often expressed in terms of
Features.

I can’t add new
contacts!!!

6

The software engineer needs to maintain a mental map between features and the parts of the code that implement them.
Features are not implemented in one class. Their implementation spreads out over lots of classes. The behavior consist of objects that collaborate at
runtime.

“Change requests and bug reports are usually expressed in a language that reflects the features of a system”
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

 	

 	

 	

 	

 	

 [Mehta and Heinemann 2002]

Bug reports often expressed in terms of
Features.

I can’t add new
contacts!!!

The
“add contacts“

feature

6

The software engineer needs to maintain a mental map between features and the parts of the code that implement them.
Features are not implemented in one class. Their implementation spreads out over lots of classes. The behavior consist of objects that collaborate at
runtime.

“Change requests and bug reports are usually expressed in a language that reflects the features of a system”
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

	

 	

 	

 	

 	

 	

 [Mehta and Heinemann 2002]

Feature-Centric Reverse Engineering

F2F1

Fn

F1

Fn

F2

Software System

Users
Software developer

7

Feature-Centric Reverse Engineering

F2F1

Fn

F1

Fn

F2

Software System

Users
Software developer

7

Finding Features

?}

{

}

{

}

{
}

{

}

{

8

I have a system and I need to find the features. Which part of the system belongs to which features?

What is Dynamic Analysis?

The investigation of the properties of
a running software system over one
or more executions

(Static analysis examines the
program code alone)

9

Why Dynamic Analysis?

Gap between run-time structure and code structure in OO programs

Trying to understand one [structure] from the other is like trying to
understand the dynamism of living ecosystems from the static
taxonomy of plants and animals, and vice-versa.

! ! ! -- Erich Gamma et al., Design Patterns

10

Programs can be hard to understand from their source code alone.
The static code does not explicitly reflect the dynamic behavior.
The code structure consists of classes in fixed inheritance relationships. Difficulties:
OO source code exposes a class hierarchy, not the run-time object collaborations
	

 Collaborations are spread throughout the code
	

 Polymorphism may hide which classes are instantiated
A program’s run-time structure consists of rapidly changing networks of communicating objects.

Roadmap

11

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Advanced Dynamic Analysis Techniques
> Dynamic analysis in a Reverse Engineering Context
> What can we achieve with all this?
> Conclusion

Runtime Information Sources

Many possibilities: hardware monitoring, tracing method
execution, values of variables, memory usage etc...

execute
program and
watch it from
outside

Internal viewExternal view

instrument
program and
watch it from
inside

12

External View

Program output, UI (examine behavior, performance, …)

Analyze used resources
CPU and memory usage (top)
Network usage (netstat, tcpdump)
Open files, pipes, sockets (lsof)

Examine logs (syslog, web logs, stdout/stderr, …)

13

Internal View

Log statements
in code Stack trace

Debugger

Many different tools are based on tracing: execution profilers,
test coverage analyzers, tools for reverse engineering…

Execution trace

14

- Logs: Single points in the execution.
- Stack trace: snapshot of the current stack
- Debugger: interactive, allows one to step into future method executions. Not persistent.
- Tracing: full history of all method executions

Execution Tracing

How can we capture “full”
OO program execution?

Trace entry and exit of methods

Additional information:
- receiver and arguments
- class instantiations
- …?

15

For now we consider this approach

Sequence and nesting: construct tree structure
Additional:
-receiver and arguments
-Return values
-Object creation
-Current feature
-Distinguish process (analyze concurrency properties)

Object referencing relationships not captured.
Object graph at particular point in time cannot be reconstructed, now, how it evolves

Tracing Techniques

Instrumentation approaches
—Sourcecode modification
—Bytecode modification
—Wrapping methods (Smalltalk)

Simulate execution (using debugger infrastructure)

Sampling

At the VM level
—Execution tracing by the interpreter
—(Dynamic recompilation, JIT)

16

Simulate execution: slow, but very precise control possible
Sampling: mainly used for profiling
Dynamic recompilation:
	

 - control optimizations: compile hot blocks/paths/procedures to machine code
	

 - data optimizations: garbage collection: move objects for locality

Technical Challenges

> Instrumentation influences the behavior of the
execution
> Overhead: increased execution time
> Large amount of data

> Code also used by the tracer, library and system
classes cannot be instrumented

-> Trace at the VM level
-> Scope instrumentation (Changeboxes)

17

Roadmap

18

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Advanced Dynamic Analysis Techniques
> Dynamic analysis in a Reverse Engineering Context
> What can we achieve with all this?
> Conclusion

Feature Analysis

?}

{

}

{

}

{
}

{

}

{

19

I have a system and I need to find the features. Which part of the system belongs to which features?

Loggers - low tech debugging

“…debugging statements stay with the program;
debugging sessions are transient. “
! ! ! ! Kerningham and Pike

public class Main {

public static void main(String[] args) {	 	
	 Clingon aAlien = new Clingon();

 System.out.println(“in main “);

	 aAlien.spendLife();
	 }
}

20

Inserting log statements into your code is a low-tech method for debugging it.
 It may also be the only way because debuggers are not always available or applicable.
This is often the case for distributed applications.

Loggers - low tech debugging

“…debugging statements stay with the program;
debugging sessions are transient. “
! ! ! ! Kerningham and Pike

Very messy!
public class Main {

public static void main(String[] args) {	 	
	 Clingon aAlien = new Clingon();

 System.out.println(“in main “);

	 aAlien.spendLife();
	 }
}

20

Inserting log statements into your code is a low-tech method for debugging it.
 It may also be the only way because debuggers are not always available or applicable.
This is often the case for distributed applications.

Smalltalk Mechanisms

> become: function
> Method Wrappers
> Anonymous Classes

21

Java Dynamic Proxies

public class DebugProxy implements java.lang.reflect.InvocationHandler {

 private Object obj;

 public static Object newInstance(Object obj) {
	 return java.lang.reflect.Proxy.newProxyInstance(
	 obj.getClass().getClassLoader(),
	 obj.getClass().getInterfaces(),
	 new DebugProxy(obj));
 }

 public Object invoke(Object proxy, Method m, Object[] args)
	 throws Throwable {
	 Feature data gathering ...
	 return m.invoke(obj, args);
 	 System.out.println("after method " + m.getName());
 }
}

22

http://docs.oracle.com/javase/1.3/docs/guide/reflection/
proxy.html

AOP

Aspect Oriented Programming

http://www.eclipse.org/aspectj/doc/next/progguide/language.html
23

In the pointcut-advice (PA) mechanism for aspect-oriented programming, as embodied in AspectJ and others, cross- cutting behavior is defined by means of pointcuts and advices. Points during execution at
which advices may be executed are called (dynamic) join points. A pointcut identifies a set of join points, and an advice is the action to be taken at a join point matched by a pointcut. An aspect is a module that
encompasses a number of pointcuts and advices. In AspectJ, the decision of whether or not to use an aspect within a program is done at build time; if so, the aspect has global scope, i.e. it sees all join points of
the program execution. Restricting the scope of an aspect can be done by introducing conditions in the pointcut definitions.

http://www.eclipse.org/aspectj/doc
http://www.eclipse.org/aspectj/doc

AOP

24

AOP

25

AOP

26

AOP Example

public class HelloWorld {

public static void say(String message) {
 System.out.println(message);
 }

 public static void sayToPerson(String message, String name) {
 System.out.println(name + ", " + message);
 }
}

27

AOP Example

public aspect Example {
 pointcut callSayMessage() :

call(public static void HelloWorld.say*(..));
 before() : callSayMessage() {
 System.out.println("Good day!");
 }
 after() : callSayMessage() {
 System.out.println("Thank you!");
 }
}

28

Feature Analysis AOP

public aspect FeatureAnalysis {
 pointcut callMessage() :

call(public * com.mycompany..*.*(..));

before() : callMessage() {
 ... save feature information ...
 }

}

29

Feature Analysis AOP

public aspect FeatureAnalysis {
 pointcut executeMessage() :

execute(public * com.mycompany..*.*(..));

before() : executeMessage() {
 ... save feature information ...
 }

}

30

So what's the difference between these join points? Well, there are a number of differences:

Firstly, the lexical pointcut declarations within and withincode match differently. At a call join point, the enclosing code is that of the call site. This means that call(void m()) &&
withincode(void m()) will only capture directly recursive calls, for example. At an execution join point, however, the program is already executing the method, so the enclosing code is the method itself:
execution(void m()) && withincode(void m()) is the same as execution(void m()).

Secondly, the call join point does not capture super calls to non-static methods. This is because such super calls are different in Java, since they don't behave via dynamic dispatch like other calls to non-static
methods.

The rule of thumb is that if you want to pick a join point that runs when an actual piece of code runs (as is often the case for tracing), use execution, but if you want to pick one that runs when a particular
signature is called (as is often the case for production aspects), use call.

AspectJ pointcuts

call(MethodPattern)
execution(MethodPattern)
get(FieldPattern)
set(FieldPattern)
call(ConstructorPattern)
execution(ConstructorPattern)
initialization(ConstructorPattern)
preinitialization(ConstructorPattern)
staticinitialization(TypePattern)
handler(TypePattern)
adviceexecution()
within(TypePattern)

withincode(MethodPattern)
withincode(ConstructorPattern)
cflow(Pointcut)
cflowbelow(Pointcut)
this(Type or Id)
target(Type or Id)
args(Type or Id, ...)
PointcutId(TypePattern or Id, ...)
if(BooleanExpression)
! Pointcut
Pointcut0 && Pointcut1
Pointcut0 || Pointcut1

31

This is just and example for AspectJ, there are many other aspect
languages with many different pointcuts with different objectives.

Operational Decomposition

McAffer - CodA - Meta-level Programming with CodA -
ECOOP 1995

32

Operational Decomposition

Iguana C++, IguanaJ
Bifröst
AOP
EAOP
AspectJ tracematches

33

Sub-method Feature Analysis

?}

{

}

{

}

{
}

{

}

{

34

We need to find which statements belong to which feature.

Sub-method Feature Analysis

Bytecode Instrumentation

35

Bytecode Instrumentation

Smalltalk

36

> Smalltalk code:

> Symbolic Bytecode

Example: Number>>asInteger

Number>>asInteger
! "Answer an Integer nearest
! the receiver toward zero."

! ^self truncated

9 <70> self
10 <D0> send: truncated
11 <7C> returnTop

37

Example: Step by Step

> 9 <70> self
—The receiver (self) is pushed on the stack

> 10 <D0> send: truncated
—Bytecode 208: send litereral selector 1
—Get the selector from the first literal
—start message lookup in the class of the object that is on

top of the stack
—result is pushed on the stack

> 11 <7C> returnTop
—return the object on top of the stack to the calling method

38

ByteSurgeon

> Library for bytecode transformation in Smalltalk
> Full flexibility of Smalltalk Runtime
> Provides high-level API
> For Pharo, but portable

> Runtime transformation needed for
—Adaptation of running systems
—Tracing / debugging
—New language features (MOP, AOP)

39

Example: Logging

> Goal: logging message send.
> First way: Just edit the text:

40

Logging with ByteSurgeon

> Goal: Change the method without changing program text
> Example:

41

Logging: Step by Step

42

Logging: Step by Step

> instrumentSend:
—takes a block as an argument
—evaluates it for all send bytecodes

43

Logging: Step by Step

> The block has one parameter: send
> It is executed for each send bytecode in the method

44

Logging: Step by Step

> Objects describing bytecode understand how to insert
code
—insertBefor
—insertAfter
—replace

45

Logging: Step by Step

> The code to be inserted.
> Double quoting for string inside string

– Transcript show: ’sending #test’

46

Inside ByteSurgeon

> Uses IRBuilder internally

> Transformation (Code inlining) done on IR

47

ByteSurgeon Usage

> On Methods or Classes:

> Different instrument methods:
—instrument:
—instrumentSend:
—instrumentTempVarRead:
—instrumentTempVarStore:
—instrumentTempVarAccess:
—same for InstVar

48

Advanced ByteSurgeon

> Goal: extend a send with after logging

49

Advanced ByteSurgeon

> With ByteSurgeon, something like:

> How can we access the receiver of the send?
> Solution: Metavariable

50

Advanced ByteSurgeon

> With Bytesurgeon, something like:

> How can we access the receiver of the send?
> Solution: Metavariable

51

Bytecode Instrumentation

Java

52

www.javassist.org
http://commons.apache.org/bcel/
http://asm.objectweb.org/

Bytecode Manipulation

> Java
—Javassist

– reflection
– RMI

—BCEL
– Decompiling, Obfuscation, and Refactoring
– AspectJ
– FindBugs

—ASM
– Groovy
– AspectWerkz

53

www.javassist.org
http://commons.apache.org/bcel/
http://asm.objectweb.org/

http://en.wikipedia.org/wiki/FindBugs
http://en.wikipedia.org/wiki/FindBugs

Javassist

class Point {
 int x, y;
 void move(int dx, int dy) { x += dx; y += dy; }
}

54

Javassist

ClassPool pool = ClassPool.getDefault();
CtClass cc = pool.get("Point");
CtMethod m = cc.getDeclaredMethod("move");
m.insertBefore("{ System.out.println($1);
System.out.println($2); }");
cc.writeFile();

55

Javassist

class Point {
 int x, y;
 void move(int dx, int dy) {
 { System.out.println(dx); System.out.println(dy); }
 x += dx; y += dy;
 }
}

56

Javassist - Edit Body

CtMethod cm = ... ;
cm.instrument(
 new ExprEditor() {
 public void edit(MethodCall m)
 throws CannotCompileException
 {
 if (m.getClassName().equals("Point")
 && m.getMethodName().equals("move"))
 m.replace("{ $1 = 0; $_ = $proceed($$); }");
 }
 });

57

searches the method body represented by cm and replaces all calls to move() in class Point with a block:

• { $1 = 0; $_ = $proceed($$); }

Problems with Bytecode Instrumentation

> Bytecode is not a good meta model

> Lost of management infrastructure is needed
—Hook composition
—Synthesized elements (hooks) vs original code
—Mapping to source elements

> Bytecode is optimized
—e.g. no ifTrue:

58

Smalltalk Mechanisms

Simulation

59

© Oscar Nierstrasz

ST — Working with Bytecode

Parsing and Interpretation

> First step: Parse bytecode
—enough for easy analysis, pretty printing, decompilation

> Second step: Interpretation
—needed for simulation, complex analyis (e.g., profiling)

> Pharo provides frameworks for both:
—InstructionStream/InstructionClient (parsing)
—ContextPart (Interpretation)

60

© Oscar Nierstrasz

ST — Working with Bytecode

The InstructionStream Hierarchy

InstructionStream
! ContextPart
! ! BlockContext
! ! MethodContext
! Decompiler
! InstructionPrinter
! InstVarRefLocator
! BytecodeDecompiler

61

© Oscar Nierstrasz

ST — Working with Bytecode

InstructionStream

> Parses the byte-encoded instructions
> State:

—pc: program counter
—sender: the method (bad name!)

Object subclass: #InstructionStream
! instanceVariableNames: 'sender pc'
! classVariableNames: 'SpecialConstants'
! poolDictionaries: ''
! category: 'Kernel-Methods'

62

© Oscar Nierstrasz

ST — Working with Bytecode

> Generate an instance:

> Now we can step through the bytecode with:

> Calls methods on a client object for the type of bytecode,
e.g.
— pushReceiver
— pushConstant: value
— pushReceiverVariable: offset

Usage

instrStream := InstructionStream on: aMethod

instrStream interpretNextInstructionFor: client

63

© Oscar Nierstrasz

ST — Working with Bytecode

InstructionClient

> Abstract superclass
—Defines empty methods for all methods that InstructionStream calls

on a client
> For convenience:

—Clients don’t need to inherit from this class

Object subclass: #InstructionClient
! instanceVariableNames: ''
! classVariableNames: ''
! poolDictionaries: ''
! category: 'Kernel-Methods'

64

© Oscar Nierstrasz

ST — Working with Bytecode

Example: A test

InstructionClientTest>>testInstructions
! "just interpret all of methods of Object"
! | methods client scanner|
!
! methods := Object methodDict values.
! client := InstructionClient new.!

! methods do: [:method |
! ! scanner := (InstructionStream on: method).
! ! [scanner pc <= method endPC] whileTrue: [
! ! ! ! self shouldnt:
! ! ! ! ! ! [scanner interpretNextInstructionFor: client]
! ! ! ! ! raise: Error.
! !].
!].

65

© Oscar Nierstrasz

ST — Working with Bytecode

Example: Printing Bytecode

> InstructionPrinter:
—Print the bytecodes as human readable text

> Example:
—print the bytecode of Number>>asInteger:

String streamContents:
! [:str | (InstructionPrinter on: Number>>#asInteger)
! ! ! ! printInstructionsOn: str]

'9 <70> self
10 <D0> send: truncated
11 <7C> returnTop
'

66

© Oscar Nierstrasz

ST — Working with Bytecode

InstructionPrinter

> Class Definition:

InstructionClient subclass: #InstructionPrinter
! instanceVariableNames: 'method scanner
 stream indent'
! classVariableNames: ''
! poolDictionaries: ''
! category: 'Kernel-Methods'

67

© Oscar Nierstrasz

ST — Working with Bytecode

InstructionPrinter

> Main Loop:
InstructionPrinter>>printInstructionsOn: aStream
! "Append to the stream, aStream, a description
! of each bytecode in the instruction stream."
! | end |
! stream := aStream.
! scanner := InstructionStream on: method.
! end := method endPC.
! [scanner pc <= end]
! ! whileTrue: [scanner interpretNextInstructionFor: self]

68

© Oscar Nierstrasz

ST — Working with Bytecode

InstructionPrinter

> Overwrites methods from InstructionClient to print
the bytecodes as text

> e.g. the method for pushReceiver

InstructionPrinter>>pushReceiver
! "Print the Push Active Context's Receiver
! on Top Of Stack bytecode."

! self print: 'self'

69

© Oscar Nierstrasz

ST — Working with Bytecode

Example: InstVarRefLocator

InstructionClient subclass: #InstVarRefLocator
! instanceVariableNames: 'bingo'
! classVariableNames: ''
! poolDictionaries: ''
! category: 'Kernel-Methods'

InstVarRefLocator>>interpretNextInstructionUsing: aScanner !
! bingo := false.
! aScanner interpretNextInstructionFor: self.
! ^bingo

InstVarRefLocator>>popIntoReceiverVariable: offset
! bingo := true

InstVarRefLocator>>pushReceiverVariable: offset
! bingo := true

InstVarRefLocator>>storeIntoReceiverVariable: offset
! bingo := true

70

© Oscar Nierstrasz

ST — Working with Bytecode

InstVarRefLocator

> Analyse a method, answer true if it references an
instance variable

CompiledMethod>>hasInstVarRef
! "Answer whether the receiver references an instance variable."

! | scanner end printer |

! scanner := InstructionStream on: self.
! printer := InstVarRefLocator new.
! end := self endPC.

! [scanner pc <= end] whileTrue:
! ! [(printer interpretNextInstructionUsing: scanner)
! ! ! ifTrue: [^true].].
! ^false

71

© Oscar Nierstrasz

ST — Working with Bytecode

InstVarRefLocator

> Example for a simple bytecode analyzer
> Usage:

> (has reference to variable testSelector)

> (has no reference to a variable)

aMethod hasInstVarRef

(TestCase>>#debug) hasInstVarRef

(Integer>>#+) hasInstVarRef

true

false

72

© Oscar Nierstrasz

ST — Working with Bytecode

ContextPart: Semantics for Execution

> Sometimes we need more than parsing
—“stepping” in the debugger
—system simulation for profiling

InstructionStream subclass: #ContextPart
! instanceVariableNames: 'stackp'
! classVariableNames: 'PrimitiveFailToken QuickStep'
! poolDictionaries: ''
! category: 'Kernel-Methods'

73

© Oscar Nierstrasz

ST — Working with Bytecode

Simulation

> Provides a complete Bytecode interpreter

> Run a block with the simulator:

(ContextPart runSimulated: [3 factorial]) 6

74

What is the big picture?

BytecodeSource
code

75

What is the big picture?

BytecodeSource
code ?

75

AST Instrumentation

code AST ASTScanner
/ Parser

Semantic
Analysis BytecodeCode

Generation

76

Reflectivity

> Marcus Denker
—Pharo Smalltalk
—Geppetto 2
—Phersephone

> Using Partial Behavioral Reflection Model
—Reflex, Tanter etal.

77

Compiler: AST

> AST: Abstract Syntax Tree
—Encodes the Syntax as a Tree
—No semantics yet!
—Uses the RB Tree:

– Visitors
– Backward pointers in ParseNodes
– Transformation (replace/add/delete)
– Pattern-directed TreeRewriter
– PrettyPrinter

RBProgramNode
! RBDoItNode
! RBMethodNode
! RBReturnNode
! RBSequenceNode
! RBValueNode
! ! RBArrayNode
! ! RBAssignmentNode
! ! RBBlockNode
! ! RBCascadeNode
! ! RBLiteralNode
! ! RBMessageNode
! ! RBOptimizedNode
! ! RBVariableNode

78

Reflectivity

source code

(AST)

meta-object

activation

condition

links

79

Links for AST nodes

Reflectivity

source code

(AST)

meta-object

activation

condition

links

Reflectivity

Denker 2008

79

Links for AST nodes

Reflectivity

source code

(AST)

meta-object

activation

condition

links

Reflectivity

Denker 2008Reflectivity

Denker 2008

79

Links for AST nodes

Reflectivity

source code

(AST)

meta-object

activation

condition

links

Reflectivity

Denker 2008Reflectivity

Denker 2008Reflectivity

Denker 2008

79

Links for AST nodes

Reflective Architecture

80

> Organize the meta-level
> Explicit meta-object
> Structural and Behavioral reflection
> Partial Reflection
> Unanticipation
> Selective Reifications
> No VM requirements

81

Object

Meta-object

Class

82

Object

Meta-object

Class

83

Evolved Object

Meta-object

Class

84

	 | aMetaObject |
	 aMetaObject := BFBehavioralMetaObject new.
	 aMetaObject
	 	 when: (ASTExecutionEvent new)
	 	 do: [... feature information gathering ...].
	 aMetaObject bindTo: self

Feature Analysis

85

http://scg.unibe.ch/research/bifrost

Implicit Problems

> Partial Reflection
—We want to reflect on portions of the system

> Unanticipation
—We want to reflect without having to anticipate where in the system

> Selective Reifications
—We want to have runtime reifications available

> Composition
—We want to be able to compose different analysis

86

Roadmap

87

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Advanced Dynamic Analysis Techniques
> Dynamic analysis in a Reverse Engineering Context
> What can we achieve with all this?
> Conclusion

Simultaneous Feature Analysis

?}

{

}

{

}

{
}

{

}

{

Login

Printing

88

Simultaneous Feature Analysis

Dynamic Scope

89

Simultaneous Feature Analysis

objectsLegend dynamic scope

90

Simultaneous Feature Analysis

objectsLegend printing featurelogin feature

91

CaesarJ

deploy(a){block}

Dynamically scoped aspects

92

Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview of CaesarJ. In Transactions on Aspect-Oriented Software Development, volume 3880 of Lecture
Notes in Computer Science, pages 135–173. Springer-Verlag, February 2006.

whereby the aspect instance a sees all join points produced in the dynamic extent of the execution of block

Dynamically scoped aspects

> AspectScheme

> CaesarJ

> AspectS

93

Deployment Strategies

depl(a, δ⟨c, d, f ⟩, e)
a is an aspect
δ is the strategy

c stack propagation function
d object propagation function
f joint point filter

e is an expression

94

Éric Tanter. Expressive Scoping of Dynamically-Deployed Aspects. In Proceedings of the 7th ACM International Conference on Aspect-Oriented Software Development (AOSD 2008), p. 168—179, ACM
Press, Brussels, Belgium, April 2008.

Deployment Strategies

deploy[true,-,if(cars_sp.contains(jp.args(1)))](sp){
next.process(batch);

}

95

Example from a car factory. Only some cars with a special package should get this adaptation

Scoping Strategies

Propagation and Activation Problem

96

Éric Tanter. Beyond static and dynamic scope. In Proceedings of the 5th symposium on Dynamic languages, DLS '09 p. 3—14, ACM, New York, NY, USA,
2009.

Dynamic Scoping

Prisma

97

Dynamic Scoping

98

Simultaneous Feature Analysis

objectsLegend printing featurelogin feature

99

Dynamic Scoping

> Prisma
—Execution Reification
—Reflective Architecture
—Execution composed of meta-objects
—Reuse of Execution
—Execution is not tied to threads
—Broadening of Scope
—Dynamic change of conditions

100

Execution levels

objectsLegend profilingfeature analysis

101

Execution levels

operation

meta-object

links

level 0

metameta-

object

link

level 1

base

meta

meta-2

Denker etal. Meta Context

102

Execution levels

> Polymorphic Bytecode Instrumentation (PBI)
—Dynamic dispatch amongst several, possibly independent

instrumentations
—Instrumentations are saved and indexed by a version identifier
—Implemented over BCEL
—JVM
—Scala, JRuby, etc.
—Execution levels
—Monitoring
—Mixin Layers
—Promising performance

103

Philippe Moret, Walter Binder, and Éric Tanter. Polymorphic bytecode instrumentation. In Proceedings of the tenth international conference on Aspect-oriented software development, AOSD '11 p. 129—140,
ACM, New York, NY, USA, 2011.

Scoping Dimensions

> Nature of Adaptation. A structural adaptation depicts the addition or change of a
structural element, like refinements in Classboxes. A behavioral adaptation
execute some action when specific runtime events are triggered.

> Scoped Definition. The boundaries of the scope are defined by the entry and
exit points. These boundaries can be implicit or explicit.

> Scope Information Exposure. Some approaches allow to bind a value to a
variable which is bound to the scope. This trait is particularly important to provide
reusable adaptations.

> Scope Binding. There are two binding dimensions. The adaptation can be
defined at compile time or at runtime, this is call binding time. The binding mode
describes wether an adaptation can be undone/redone during execution, if so the
binding mode is said to be dynamic otherwise is static.

> Thread Locality. The scope can be defined locally to a single thread. For
example, cflow in AspectJ is by default thread local, while tracematch in AspectJ
extension is by default global.

104

Roadmap

105

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Advanced Dynamic Analysis Techniques
> Dynamic analysis in a Reverse Engineering Context
> What can we achieve with all this?
> Conclusion

Reverse Engineering

Rev
ers

e E
ng

ine
eri

ng
static view

106

In this course you have been introduced to the concepts of reverse engineering. Reverse engineering
Reverse engineering abstracts high level abstractions that support system understanding [Chikofsky and Cross, 1990].

“Object-oriented language characteristics such as inheritance,
dynamic binding and polymorphism mean that the behavior
of a system can only be determined at runtime.” [Jerding 1996,
 Demeyer2003a]

A static perspective of the system over looks semantic knowledge of the problem domain of a system. The semanic knowledge
Should not be ignored. We need a way to enrich the static views with information about their intent. Which features do they
Participate in at runtime? Are they specific to one part of the system, one feature, or is it general functionality that implements sone infrastructural functionality?

So lets extend our analysis by incorporating dynamic data captured while executing the features.

Reverse Engineering

Rev
ers

e E
ng

ine
eri

ng
static view

+

execution traces dynamic view

+ Dynamic Analysis

106

In this course you have been introduced to the concepts of reverse engineering. Reverse engineering
Reverse engineering abstracts high level abstractions that support system understanding [Chikofsky and Cross, 1990].

“Object-oriented language characteristics such as inheritance,
dynamic binding and polymorphism mean that the behavior
of a system can only be determined at runtime.” [Jerding 1996,
 Demeyer2003a]

A static perspective of the system over looks semantic knowledge of the problem domain of a system. The semanic knowledge
Should not be ignored. We need a way to enrich the static views with information about their intent. Which features do they
Participate in at runtime? Are they specific to one part of the system, one feature, or is it general functionality that implements sone infrastructural functionality?

So lets extend our analysis by incorporating dynamic data captured while executing the features.

Dynamic Analysis for Program
Comprehension

Post Mortem Analysis of execution traces
Metrics Based Approaches

-Frequency Analysis [Ball, Zaidman]
-Runtime Coupling Metrics based on Web mining techniques to
detect key classses in a trace.
 [Zaidman 2005]
-High-Level Polymetric Views of Condensed Run-Time
Information [Ducasse, Lanza and Bertoulli 2004]

-Query-based approaches
 Recoverind high-level views from runtime data
! ! ! [Richner and Ducasse 1999]

107

.They define an execution scenario to maximize coverage of the system and ‘preciseness’. To execute all the features.

Frequency analysis - small number of methods are responsible for a large amount of the trace. They focus on call relationships between methods to learn
something about a system.

Coupling metrics:

Runtime metrics
- how many methods of a class were invoked during the execution of a system.
-which classes create objects
-Which classes communicate with each other

Visualization of Runtime Behavior

Problem
of

Large
traces

[JinSight, De Pauw 1993] 108

Traces of execution behavior lead to huge execution traces of tens of thousands of events. This makes them difficult to interpret or to
Extract high level views. We need techniques to reduce the volume of information without loss of details needed to answer a specific research question. For
example: “Which classes and methods implement the save contact feature?”

Wim dePauw [JinSight, De Pauw 1993].

Other compression approaches
Use graph algorithms to detect patterns and reduce the volume of data. Use
patterns to learn something about the system behavior.

Dividing a trace into features

Feature 1 Feature 2 Feature n

109

Feature Identification is a technique to
map features to source code.

“A feature is an observable unit of behavior of a system triggered by
the user” [Eisenbarth etal. 2003]

Software Reconnaissance [Wilde and Scully]
Run a (1) feature exhibiting scenario and a
(2) non-exhibiting scenario and compare the traces.
Then browse the source code.

110

Other researchers had devised variations of software reconnaissance - Antoniol, Eisenberg etc.

Feature Identification is a technique to
map features to source code.

“A feature is an observable unit of behavior of a system triggered by
the user” [Eisenbarth etal. 2003]

Software Reconnaissance [Wilde and Scully]
Run a (1) feature exhibiting scenario and a
(2) non-exhibiting scenario and compare the traces.
Then browse the source code.

110

Other researchers had devised variations of software reconnaissance - Antoniol, Eisenberg etc.

Feature Identification is a technique to
map features to source code.

“A feature is an observable unit of behavior of a system triggered by
the user” [Eisenbarth etal. 2003]

Software Reconnaissance [Wilde and Scully]
Run a (1) feature exhibiting scenario and a
(2) non-exhibiting scenario and compare the traces.
Then browse the source code.

110

Other researchers had devised variations of software reconnaissance - Antoniol, Eisenberg etc.

Feature-Centric Analysis:
3 Complementary Perspectives

F1

F3

F2

F4

F5

111

1) How are classes related to features?
2) How are features related to classes?
3) How are features related to each other?

We define a Feature-Affinity metric to distinguish between various levels of characterization of classes.

Feature-Centric Analysis:
3 Complementary Perspectives

F1

F3

F2

F4

F5Classes
Perspective

111

1) How are classes related to features?
2) How are features related to classes?
3) How are features related to each other?

We define a Feature-Affinity metric to distinguish between various levels of characterization of classes.

Feature-Centric Analysis:
3 Complementary Perspectives

F1

F3

F2

F4

F5

Features Perspective
Classes
Perspective

111

1) How are classes related to features?
2) How are features related to classes?
3) How are features related to each other?

We define a Feature-Affinity metric to distinguish between various levels of characterization of classes.

Feature-Centric Analysis:
3 Complementary Perspectives

F1

F3

F2

F4

F5

Features Perspective

Features Relationships
Perspective

Classes
Perspective

111

1) How are classes related to features?
2) How are features related to classes?
3) How are features related to each other?

We define a Feature-Affinity metric to distinguish between various levels of characterization of classes.

Dynamix - A Model for Dynamic Analysis

112

DynaMoose - An Environment for
Feature Analysis

113

DynaMoose - An Environment for
Feature Analysis

113

DynaMoose - An Environment for
Feature Analysis

113

DynaMoose - An Environment for
Feature Analysis

113

DynaMoose - An Environment for
Feature Analysis

113

DynaMoose - An Environment for
Feature Analysis

113

Demo of Feature Analysis - Feature
Views of Classes

Feature Views of PhoneSim Classes

PhoneButtonEventBackSpace

PhoneStateContact
PhoneStateContactForm
EditableText
CustomTextArea

114

Here we see the feature views (of classes)
Our question was “Which classes participate in the addContacts feature?”

Feature Views of ‘Phonesim’ Methods

Feature Views of PhoneSim Methods
115

Which methods participate in the feature ‘addContacts()’?

22 single feature methods

Object Flow Analysis

Method execution traces do not
reveal how
… objects refer to each other
… object references evolve

Trace and analyze object flow
— Object-centric debugger: Trace

back flow from errors to code that
produced the objects

— Detect object dependencies
between features

116

Roadmap

117

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Advanced Dynamic Analysis Techniques
> Dynamic analysis in a Reverse Engineering Context
> What can we achieve with all this?
> Conclusion

What is the future?

Live Feature
Analysis

118

Live Feature Analysis

Source Traces

Denker etal.

119

Marcus Denker, Jorge Ressia, Orla Greevy, and Oscar Nierstrasz. Modeling Features at Runtime. In Proceedings of MODELS 2010 Part II, LNCS 6395 p. 138—152, Springer-Verlag, October
2010.

Live Feature Analysis

SourceTraces

Denker etal.

120

Marcus Denker, Jorge Ressia, Orla Greevy, and Oscar Nierstrasz. Modeling Features at Runtime. In Proceedings of MODELS 2010 Part II, LNCS 6395 p. 138—152, Springer-Verlag, October
2010.

Live Feature Analysis

source code
(AST)

Feature tagger
 meta-object

tags node with
feature annotation

on execution

121

What is the future?

Object Centric
Debugging

122

Object Centric Debugging

}

{

}

{

}

{
}

{

}

{

http://scg.unibe.ch/research/bifrost/OCD 123

Marcus Denker, Jorge Ressia, Orla Greevy, and Oscar Nierstrasz. Modeling Features at Runtime. In Proceedings of MODELS 2010 Part II, LNCS 6395 p. 138—152, Springer-Verlag, October
2010.

http://scg.unibe.ch/research/bifrost/OCD
http://scg.unibe.ch/research/bifrost/OCD

Object Centric Debugging

}

{

}

{

}

{
}

{

}

{

http://scg.unibe.ch/research/bifrost/OCD 123

Marcus Denker, Jorge Ressia, Orla Greevy, and Oscar Nierstrasz. Modeling Features at Runtime. In Proceedings of MODELS 2010 Part II, LNCS 6395 p. 138—152, Springer-Verlag, October
2010.

http://scg.unibe.ch/research/bifrost/OCD
http://scg.unibe.ch/research/bifrost/OCD

Object Centric Debugging

http://scg.unibe.ch/research/bifrost/OCD

}

{

}

{

}

{
}

{

}

{

124

Marcus Denker, Jorge Ressia, Orla Greevy, and Oscar Nierstrasz. Modeling Features at Runtime. In Proceedings of MODELS 2010 Part II, LNCS 6395 p. 138—152, Springer-Verlag, October
2010.

http://scg.unibe.ch/research/bifrost/OCD
http://scg.unibe.ch/research/bifrost/OCD

Object Centric Debugging

Object>>haltAtNextMessage
	 | aMetaObject |
	 aMetaObject := BFBehavioralMetaObject new.
	 aMetaObject
	 	 when: (BFMessageReceiveEvent new)
	 	 do: [self metaObject unbindFrom: self.

 TransparentBreakpoint signal].
	 aMetaObject bindTo: self

125

What is the future?

MetaSpy
Domain-specific

Profiling
126

Domain-specific Profiling

http://scg.unibe.ch/research/bifrost/metaspy

Profile

}

{

}

{

}

{
}

{

}

{

Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

127

Alexandre Bergel, Oscar Nierstrasz, Lukas Renggli, and Jorge Ressia. Domain-Specific Profiling. In Proceedings of the 49th International Conference on Objects, Models, Components and Patterns
(TOOLS'11), LNCS 6705 p. 68—82, Springer-Verlag, June 2011.

http://scg.unibe.ch/research/bifrost/OCD
http://scg.unibe.ch/research/bifrost/OCD

Domain-specific Profiling

http://scg.unibe.ch/research/bifrost/metaspy

Domain

Profile

}

{

}

{

}

{
}

{

}

{

Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

127

Alexandre Bergel, Oscar Nierstrasz, Lukas Renggli, and Jorge Ressia. Domain-Specific Profiling. In Proceedings of the 49th International Conference on Objects, Models, Components and Patterns
(TOOLS'11), LNCS 6705 p. 68—82, Springer-Verlag, June 2011.

http://scg.unibe.ch/research/bifrost/OCD
http://scg.unibe.ch/research/bifrost/OCD

Domain-specific Profiling

http://scg.unibe.ch/research/bifrost/metaspy

Domain

Profile

}

{

}

{

}

{
}

{

}

{

Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

127

Alexandre Bergel, Oscar Nierstrasz, Lukas Renggli, and Jorge Ressia. Domain-Specific Profiling. In Proceedings of the 49th International Conference on Objects, Models, Components and Patterns
(TOOLS'11), LNCS 6705 p. 68—82, Springer-Verlag, June 2011.

http://scg.unibe.ch/research/bifrost/OCD
http://scg.unibe.ch/research/bifrost/OCD

Domain-specific Profiling

http://scg.unibe.ch/research/bifrost/metaspy

Domain

Profile

}

{

}

{

}

{
}

{

}

{

Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

127

Alexandre Bergel, Oscar Nierstrasz, Lukas Renggli, and Jorge Ressia. Domain-Specific Profiling. In Proceedings of the 49th International Conference on Objects, Models, Components and Patterns
(TOOLS'11), LNCS 6705 p. 68—82, Springer-Verlag, June 2011.

http://scg.unibe.ch/research/bifrost/OCD
http://scg.unibe.ch/research/bifrost/OCD

Domain-specific Profiling

http://scg.unibe.ch/research/bifrost/metaspy

Profile

}

{

}

{

}

{
}

{

}

{

Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

128

Alexandre Bergel, Oscar Nierstrasz, Lukas Renggli, and Jorge Ressia. Domain-Specific Profiling. In Proceedings of the 49th International Conference on Objects, Models, Components and Patterns
(TOOLS'11), LNCS 6705 p. 68—82, Springer-Verlag, June 2011.

http://scg.unibe.ch/research/bifrost/OCD
http://scg.unibe.ch/research/bifrost/OCD

Domain-specific Profiling

http://scg.unibe.ch/research/bifrost/metaspy

Domain

Profile

}

{

}

{

}

{
}

{

}

{

Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

128

Alexandre Bergel, Oscar Nierstrasz, Lukas Renggli, and Jorge Ressia. Domain-Specific Profiling. In Proceedings of the 49th International Conference on Objects, Models, Components and Patterns
(TOOLS'11), LNCS 6705 p. 68—82, Springer-Verlag, June 2011.

http://scg.unibe.ch/research/bifrost/OCD
http://scg.unibe.ch/research/bifrost/OCD

Domain-specific Profiling

129

Paradox

We claim to be doing dynamic analysis but we keep on
going back to the static abstractions.

For dynamic languages the Dilemma is even worst. We
are happy to have a dynamic environment like Smalltalk
but, in certain way, we are trapped using the static
abstractions when we should use the dynamic ones.

130

Roadmap

131

> Motivation
> Sources of Runtime Information
> Dynamic Analysis Techniques
> Advanced Dynamic Analysis Techniques
> Dynamic analysis in a Reverse Engineering Context
> What can we achieve with all this?
> Conclusion

Dynamic vs. Static Analysis

Static analyses extract properties that hold for all possible program runs

Dynamic analysis provides more precise information
 …but only for the execution under consideration

Dynamic analysis cannot show that a program satisfies a particular
property, but can detect violations of the property

132

Conclusions: Pros and Cons

Dependent on input
—Advantage: Input or features can be directly related to execution
—Disadvantage: May fail to exercise certain important paths and poor choice of input
may be unrepresentative

Broad scope: dynamic analyses follow long paths and may discover semantic
dependencies between program entities widely separated in space and time

However, understanding dynamic behavior of OO systems is difficult
Large number of executed methods
Execution paths crosscut abstraction layers
Side effects

133

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

