
SMA: Software Modeling and Analysis
AS2018

Prof. Dr. Oscar Nierstrasz
Pascal Gadient, Pooja Rani

Assignment 08 — 07/11/2018 – v1.0
Static Program Analysis

Please submit this exercise by mail to sma@list.inf.unibe.ch before 14 November 2018, 10:15am.

Installation

Download and unpack this project, then import it as Maven project into your IDE. Run Reaching-
DefinitionsAnalysis to start a reaching definition analysis on the provided TestClass. Rea-
chingDefinitionsAnalysis shows an example of a dataflow analysis. Its output is stored using
the file formats Jimple and Dot (on non-Windows computers also as PDF if you have the dot application
installed that converts Dot files into the PDF file format). If the execution fails with an error you probably
miss the dot application. Nevertheless, you can still visualize the Dot files by copying the content of a
*.dot file into this online renderer.

Exercise

Your task is to assess how Guava v18.0, a utility library from Google, makes use of its own APIs. You do
this by statically analyzing the Guava code and by counting how often each internal method is invoked.

Task 1: Completion of InternalInvocationAnalysis (6 Points)

InternalInvocationAnalysis counts how often a method of an application is invoked inter-
nally, i.e., how many calls it makes to its own methods. Your task is to implement Internal-
InvocationAnalysis#process() that is applied on all methods defined within the analyzed
application. Look at the class and its comments to get an idea on what is left to do. If you run
InternalInvocationAnalysis with an implemented InternalInvocationAnalysis#-
process, you will be shown the 10 most used methods. You might want to look into the Soot wiki to
better understand Soot.

a) Submit the code of the InternalInvocationAnalysis#process method.

b) Submit the output of the analysis.

Task 2: Inspection of results (4 Points)

Inspect the code (and the documentation) of the 10 most used methods in the Guava v18.0 repository
with your implementation of InternalInvocationAnalysis. Summarize how Guava “eats its
own dogfood”, i.e., what are the features that Guava uses from itself?

a) Submit a short summary of your inspection results.

page 1 of 1

mailto:sma@list.inf.unibe.ch
http://scg.unibe.ch/download/lectures/sma-exercises/A08E01-Code.zip
http://www.webgraphviz.com/
https://github.com/Sable/soot/wiki/Fundamental-Soot-objects
https://github.com/google/guava/tree/v18.0/guava

