
SMA:
Software Modeling and Analysis

Practical Session
Week 09

Assignment 08

Discussion

A08 - Exercise 01 | Code smells
a) Choose two different code smells and explain them.

Class Data Should be Private, Complex Class, Spaghetti Code, ...

b) What is the fundamental problem in developers code smell
perception?
The perception is a subjective matter. Anaïs Nin sums it up quite
nicely: "We don't see things as they are, we see things as we are."

c) What is “association rule mining” in the context of HIST?
Association rules represent correlations between subsets of methods in
the same class that frequently change together. The discovery of all
association rules within one or more projects is then called
"association rule mining".

A08 - Exercise 02 | Test code smells

a) Choose one test code smell and explain it.
Eager Test, Ignored Test, Sleepy Test, ...

b) Find and explain the test code smell in the test below. (2 pts)

multiple assert statements in a single test method might cause unexpected outcomes
= code is harder to debug and maintain

A08 - Exercise 03 | Detection of eager tests

Extract all JUnit3 tests from modelWeka that suffer from the “Eager
Test” code smell.

tests := modelWeka allModelMethods select: #isJUnit3Test.

eagerTests := tests select: [: m |

| asserts astNode |

asserts := OrderedCollection new.

astNode := m gtASTNode.

astNode

ifNotNil: [astNode

allNodesOfType: JavaMethodInvocationNode

do: [:node |

(node name value beginsWith: 'assert’)

ifTrue: [asserts add: node]]].

asserts size > 1].

Assignment 09

Preview

A09 - Exercise 01 | Theory (6 pts)
a) What is the difference between static and dynamic analysis?

b) Suppose you want to analyze the code that a method downloads arbitrarily

from the internet. Can you perform such an inspection with static analyses?

Why?

c) Suppose you want to analyze the code that a method downloads arbitrarily

from the internet. Can you perform such an inspection with dynamic

analyses? Why?

A09 - Exercise 01 | Theory
d) Choose a static analysis scenario where it is crucial to have no false

positives, but false negatives can be accepted. Explain.

e) Choose a statically-typed language, and briefly describe what makes it

statically-typed.

f) Choose a dynamically-typed language, and briefly describe what makes it

dynamically-typed.

g) Is the collection of variable name declarations in the method body of Java’s
String.println(Strings)intraprocedural or interprocedural?

Explain why.

A09 - Exercise 02 | Control flow graphs
a) Draw a CFG by hand (or with a flow chart tool) for the following code block:

(1.5 pts)

A09 - Exercise 02 | Control flow graphs
b) Draw a CFG by hand (or with a flow chart tool) for the following code block:

(2.0 pts)

A09 - Exercise 02 | Control flow graphs
c) What is the cyclomatic complexity of both code blocks, i.e., from task a) and

task b)? You should use the formula from A08. (1 pt)

d) Create the interval CFG for both code blocks, i.e., from task a) and task b).

You can find an example CFG at the bottom of slide 20 (page 32). (2 pts)

Example

A09 - Exercise 03 | Template methods (6 pts BONUS)

Find all template methods in modelWeka with the help of #gtASTNodes, and plot them with

GtMondrian.

NB: Template methods are abstract methods (in abstract classes).

Step 1: Select all methods that are in the namespace scope weka::core.

Step 2: Of those methods, find those that are abstract. Use gtASTNode for the AST traversal.

Step 3: Visualize the found methods in Step 2 with GtMondrian.

Use the following parameters:
shape type: BlElement with a size that represents #children of each method

shape geometry: BlCircle

shape background: all methods that have more than three elements in children

should be in red, the others in gray

A09 - Exercise 03 | Template methods

The final plot...

