
Oscar Nierstrasz

Understanding Classes and Metaclasses

Selected material courtesy Stéphane Ducasse

Object
Object class

Class

ClassDescription

Behavior

Metaclass

Metaclass class

ClassDescription class

Class class

Behavior class

Birds-eye view

Reify your metamodel — A fully reflective system
models its own metamodel.

2

Smalltalk is a fully reflective system in which its metamodel is
reified and accessible within the run-time system. You can
interact with these reified entities to query and change the system
at run time.
We will use a running example of a Snakes and Ladders game
implementation to explore the metamodel of the game and of the
Smalltalk system itself.

Roadmap

> OO modeling idioms
> Understanding self and super
> Metaclasses in 7 points

3

Roadmap

> OO modeling idioms
> Understanding self and super
> Metaclasses in 7 points

4

Programming is modeling

> Well-designed OO code obeys certain quality principles:
—Model domain concepts
—Use inheritance to model specialization and polymorphism
—Distribute responsibilities
—Code behaviour declaratively
—Test comprehensively
—...

5

All software programs can be thought of as executable models.
They apply a particular programming paradigm (OO, functional,
logic-based etc.) to express domain concepts as well as to model a
solution to the task at hand.
In order to analyze a software system we need to understand what
principles are being used to express models in software.
In this lecture we will first look at some of the idioms and design
principles used to model the Snakes and Ladders game in code,
and then afterwards we will explore the OO metamodel (of
Smalltalk) behind it.

Snakes and Ladders

6

Snakes and Ladders is a children’s game that is not very
interesting for adults to play as no strategy is required — the
players just alternate in rolling a die and following the rules of the
game to get to the final square first. It is just interesting for
children to learn how to play a game with fixed rules. On the
other hand it is sufficiently complex to make it interesting to
implement as an object-oriented programming exercise.

http://en.wikipedia.org/wiki/Snakes_and_ladders

Students who have followed the first-year Bachelor’s Object-
Oriented Programming course, P2, may recall the Java version of
the game.
We will implement the game in Smalltalk to illustrate and explore
the relationships between objects, classes and metaclasses in the
Smalltalk language metamodel.

Scripting a use case

7

SnakesAndLadders class>>example
"self example playToEnd"
^ (self new)

add: FirstSquare new;
add: (LadderSquare forward: 4);
add: BoardSquare new;
add: BoardSquare new;
add: BoardSquare new;
add: BoardSquare new;
add: (LadderSquare forward: 2);
add: BoardSquare new;
add: BoardSquare new;
add: BoardSquare new;
add: (SnakeSquare back: 6);
add: BoardSquare new;
join: (GamePlayer named: 'Jack');
join: (GamePlayer named: 'Jill');
yourself

> Construct the board
> Add some players
> Play the game

Die

players
squares
turn
die
over

SnakesAndLadders

position
player
board

BoardSquare

players
FirstSquare

back
SnakeSquare

forward
LadderSquare

roll
LoadedDiename

square

GamePlayer
*

*

1

1

0..1

We develop the game top-down be specifying a class-side script
as a concrete scenario. To play the game, we must first configure
the board as a sequence of different kinds of squares (the first
square, regular squares, snakes, and ladders), then we add the
players, and finally we send the message playToEnd.

Note the use of a cascade (;) to send a series of messages to an
object. Also note the final message yourself, which returns the
object itself, rather than whatever the previous message might
return as a result. (This is a common Smalltalk idiom.)

Distributing responsibilities

8

forwardBy: 0

eg:SnakesAndLadders jack loadedDie square1 ladder2 square6

playOneMove
moveWith: loadedDie

roll
1

forwardBy: 1
destination

forwardBy: 4

square6
moveTo: square6

leaveCurrentSquare
remove: self

landHere: self isOccupied
square6setSquare: square6

'jack moved...'

forwardBy: 3 ...

There are many possible ways to implement snakes and ladders. Here we
adopt an extreme OO design in which we model all the objects of the
domain and distribute responsibilities to each of them. To play the game,
the message playOneMove is sent repeatedly to the game until the game
is over. Then:

• the example game (eg) receives the message playOneMove
• the game asks the current play to move with a die (a loaded die is used for

test cases)
• the player rolls the die, yielding a number N
• it asks its current square to help it move forward N squares
• that square asks the next square, and so on
• the target square then computes the destination (itself, unless it is a snake

or a ladder)
• the player leaves its current square and moves to its destination
• if the destination is occupied, the player is transported to the first square

Lots of Little Methods

> Once and only once
—“In a program written with good style, everything is said once and

only once.”

> Lots of little pieces
—“Good code invariably has small methods and small objects. Only

by factoring the system into many small pieces of state and
function can you hope to satisfy the ‘once and only once’ rule.”

9

Kent beck has written a wonderful book of Smalltalk design
patterns and idioms, called “Smalltalk best Practice
Patterns” (1997).

A draft version can be found online:
http://stephane.ducasse.free.fr/FreeBooks/BestSmalltalkPractices/Draft-
Smalltalk%20Best%20Practice%20Patterns%20Kent%20Beck.pdf
http://scgresources.unibe.ch/Literature/Books/Beck97aDraftSmalltalkBestPracticePatterns.pdf

Composed Method

How do you divide a program into methods?

> Divide your program into methods that perform one
identifiable task.

—Keep all of the operations in a method at the same level of
abstraction.

—This will naturally result in programs with many small methods,
each a few lines long.

10

Snakes and Ladders methods

11

• 68 methods
• only 7 are more than 6 LOC

(including comments!)
— 1 of these is the “main” method
— the other 6 are test methods

Our implementation of Snakes and Ladders follows the “Lots of
Little Pieces” idiom. This makes it easy to understand and to
implement correctly each method.
The longest methods are test methods (scripts) and one algorithm
(the “main” method).
SnakesAndLadders>>playToEnd is still just 15 LOC,
including comment and blank lines.

How to initialize objects?

12

In Smalltalk,
—methods are public, and
— instance variables are private

So, how can a class (an object) initialize the
instance variables of its instances (other objects)?

Smalltalk differs from most OO languages in that the abstraction
boundary is the object, not the class. Since a class is an object, it
is distinct from its instances has has no access to their private
state. On the other hand, a class exists both to provide behaviour
to its instances and to provide a way to create them. So how can a
class initialise its instances?
The answer is that it does not. It can create an instance, but then
must use instance methods to complete the initialisation process.
This is very different from the way objects are constructed in
languages like Java.

Explicit Initialization

13

SnakesAndLadders>>initialize
super initialize.
die := Die new.
squares := OrderedCollection new.
players := OrderedCollection new.
turn := 1.
over := false.

How do you initialize instance variables to their
default values?
> Implement a method initialize that sets all the

values explicitly.
> This will be called automatically (in Pharo) when

new instances are created

Who calls initialize?

> In Pharo, the method new calls initialize by default.

> NB: You can override new, but you should never override
basicNew!

Behavior>>new
^ self basicNew initialize

14

Actually Beck’s book says “Override the class message new to
invoke it on new instances”. In some versions of Smalltalk this is
necessary, but in Pharo this is done automatically by the default
implementation of new in the class Behavior.
You are free to reimplement new for your own classes, but you
are strongly advised to never override basicNew or any method
starting with “basic”.

Constructor Method

15

LadderSquare class>>forward: number
^ self new initializeForward: number

SnakeSquare class>>back: number
^ self new initializeBack: number

How do you represent instance creation?

> Provide methods in the class side “instance creation”
protocol that create well-formed instances. Pass all
required parameters to them.

Note how these class side “constructors” send new to themselves
to create an instance and then use ordinary instance methods to
complete the initialisation. This is (almost) the only way that the
class can initialize state of new instances.

Aside: why send “self new” instead of “LadderSquare new”
or “SnakeSquare new”?

Constructor Parameter Method

16

SnakeSquare>>initializeBack: aNumber
back := aNumber.

BoardSquare>>initializePosition: aNumber board: aBoard
position := aNumber.
board := aBoard

LadderSquare>>initializeForward: aNumber
forward := aNumber.

How do you set instance variables from the parameters
to a Constructor Method?

> Code a single method that sets all the variables. Preface
its name with “set”, then the names of the variables.

Better yet, use “initialize” as the prefix

“set” as a prefix can be confused nowadays as a Java-style setter
method. By using “initialize” as the prefix we make the
intent clear, and communicate that the methods should only be
used for initialization, and never as an accessor.

Debug Printing Method

How do you code the default printing method?

> There are two audiences:
—you (wanting a lot of information)
—your clients (wanting only external properties)

> Override printOn: to provide information about object’s
structure to the programmer
—Put printing methods in the “printing” protocol

17

Viewing the game state

18

In order to provide a simple way to monitor the game state
and to ease debugging, we need a textual view of the game

The default view given by the Inspector gives no insight into the
actual state of the game. To fix this we should make each object
responsible for providing a textual representation of its state.
Whereas in Java we would implement toString(), in
Smalltalk we implement #printOn:

Implementing printOn:

19

SnakesAndLadders>>printOn: aStream
squares do: [:each | each printOn: aStream]

BoardSquare>>printOn: aStream
aStream nextPutAll: '[', position printString, self contents, ']'

LadderSquare>>printOn: aStream
super printOn: aStream.
aStream nextPutAll: forward asString, '+>'

SnakeSquare>>printOn: aStream
aStream nextPutAll: '<-', back asString.
super printOn: aStream

GamePlayer>>printOn: aStream
aStream nextPutAll: name

The #printOn: method expects a Stream object as its
argument. Send #nextPutAll: to print a String to a
Stream. (Browse the class for other streaming methods.)

Note the use of super sends to compose the #printOn:
methods of BoardSquare and its subclasses.

Viewing the game state

20

It may not be beautiful, but now we get a useful Inspector view of
the game state, showing the layout of the board and the position
of the players.

Interacting with the game

21

With a bit of care, the Inspector can serve as
a basic GUI for objects we are developing

NB: In order to refresh the textual view of “self”, you need to
click on the “refresh” icon.
With bit more effort, a dedicated “moldable” view can be
generated in the Playground, but that falls out of the scope of this
simple example …

Query Method

How do you represent testing a property of an object?

> Provide a method that returns a Boolean.
—Name it by prefacing the property name with a form of “be” — is,

was, will etc.

22

Some query methods

23

SnakesAndLadders>>isNotOver
^ self isOver not

BoardSquare>>isFirstSquare
^ position = 1

BoardSquare>>isLastSquare
^ position = board lastPosition

BoardSquare>>isOccupied
^ player notNil

FirstSquare>>isOccupied
^ players size > 0

Roadmap

> OO modeling idioms
> Understanding self and super
> Metaclasses in 7 points

24

Super

How can you invoke superclass behaviour?

> Invoke code in a superclass explicitly by sending a
message to super instead of self.

—The method corresponding to the message will be found in the
superclass of the class implementing the sending method.

—Always check code using super carefully. Change super to self if
doing so does not change how the code executes!

—Caveat: If subclasses are expected to call super, consider using a
Template Method instead!

25

4.37

Extending Super

How do you add to the implementation of a method
inherited from a superclass?

> Override the method and send a message to super in
the overriding method.

26

A closer look at super

27

> Snake and Ladder both extend the printOn: method of
their superclass

BoardSquare>>printOn: aStream
aStream nextPutAll:

'[', position printString, self contents, ']'

LadderSquare>>printOn: aStream
super printOn: aStream.
aStream nextPutAll: forward asString, '+>'

SnakeSquare>>printOn: aStream
aStream nextPutAll: '<-', back asString.
super printOn: aStream.

Normal method lookup

28

Two step process:
> Lookup starts in the class

of the receiver (an object)
—If the method is defined in the

method dictionary, it is used
—Else, the search continues in

the superclass
> If no method is found, this

is an error …

foo

A

bar

B

^ 'Afoo'

Object

aB «instanceOf»

foo

A common confusion is to think that super refers to the
superclass of the receiver. This is completely wrong.
super and self both refer to the receiver, i.e., an object, not a
class. The difference is in the way the method lookup is
performed.
With a normal send (and also with self sends), lookup starts in
the class of the receiver.
Here object aB is an instance of the class B. When it receives the
message #foo, lookup starts in the class B and, if necessary,
proceeds up the hierarchy until the method foo is found in the
class A.

Message not understood

NB: The default implementation
of doesNotUnderstand: may
be overridden by any class.

When method lookup fails, an error message is
sent to the object and lookup starts again with this
new message.

29

foo

A

bar

B

Object

aB «instanceOf»

foobar
1

2

3

4

self doesNotUnderstand: #foobar
5

6

7

8

open debugger

What happens if no method is found to respond to the given
message? The default behaviour in Smalltalk is to send a new
message #doesNotUnderstand: to the original receiver with
the original message as its argument.
Again the lookup proceeds as before. Typically the method for
#doesNotUnderstand: will be found in the class Object,
causing the Debugger to start up.
However it is also possible to implement
#doesNotUnderstand: lower in the hierarchy to do
something more interesting, as we will see later in the lecture on
metaprogramming.

Super

> Super modifies the usual method lookup to start in the
superclass of the class whose method sends to super

—NB: lookup does not start in the superclass of the receiver!
– Cf. C new bar on next slide

—Super is not the superclass!

30

Like self, super represents the receiver, but changes the
lookup algorithm. Instead of starting in the class of the receiver,
lookup starts in the superclass of the method containing the
super send.

NB: Again there is a common confusion, which is to think that
lookup starts in the superclass of the receiver’s class, but this is
also completely wrong, as we shall see.

Super sends

A new bar
B new bar
C new bar
D new bar
E new bar

'Abar'
'Abar & Afoo'
'Abar & Cfoo'
'Abar & Cfoo & Cfoo'
'Abar & Efoo & Cfoo'

NB: It is usually a mistake to
super-send to a different method.
D>>bar should probably do self
foo, not super foo!

31

foo
bar

A

bar

B

^ 'Abar'

^ 'Afoo'

foo

C

bar

D

foo

E

^ super bar,
' & ', self foo

^ 'Cfoo'

^ super bar,
' & ', super foo

^ 'Efoo'

This toy example illustrates how self and super interact.
A new bar → Abar

B new bar → Abar & Afoo

B>>#bar uses super to extend A>>#bar.
C new bar → Abar & Cfoo

C inherits the extended bar method and reimplements foo.
D new bar → Abar & Cfoo & Cfoo

D does a strange thing, using super not to extend foo but to hardwire its lookup
within D>>#bar.

E new bar → Abar & Efoo & Cfoo

Here we see that the wrong foo is looked up by D>>#bar but the correct one is
found by B>>#bar. Never use super to short-circuit lookup but only to extend an
overridden method. Use a self send instead.
Aside: Suppose lookup started in the superclass of the receiver? Then C new bar
would loop infinitely, since super bar would cause lookup to start again in B (C’s
superclass) rather than in A.

printOn:
contents

BoardSquare

printOn:

LadderSquare

ladder

printOn:

1 2

3super printOn:

self contents
4

5

6

Self and super

Sending to self is
always dynamic
Sending to super
is always static

32

The take-home message is that self is dynamic while super is
static.
A self send is looked-up dynamically depending on the class of
the receiver, while a super send statically refers to the nearest
method of that name looked up in the (static) class of the method
doing the super send. The receiver’s class is ignored.

Note that this holds for all single-inheritance object-oriented
languages, whether they are dynamically or statically typed. Also
in Java, a method call on this will be looked up dynamically,
while a call to super will be statically resolved.

Did you really understand self and super?

33

What is the result of
evaluating this code?

self == super

You can put this code in an method foo of an arbitrary class X
and try to evaluate X new foo, or you can simply evaluate it in
a Playground, where self will be bound to nil (an instance of
UndefinedObject).
In any case, the message == super will be sent to the instance.

What should normally be the result?
Under what circumstances would the result be different?

How to use super (and how not to)

> Proper usage: method extension
—Extending constructors/initializers (establishing superclass

invariant)
—Extending superclass methods

> Improper usage
—Composing arbitrary methods (use self instead)

– How would you find all methods that improperly use super?

34

The super construct has one proper usage: extending a superclass method
with new behaviour. There are two classical situations:

1.A constructor in a subclass should always call the superclass
constructor as its first statement. This will establish the class invariant
for all inherited state. In Smalltalk the method initialize should
always first evaluate super initialize.

2.An inherited and overridden method often extends rather than replaces
inherited behaviour. The super method may be invoked before, after or
in the middle of the new behaviour.

Frameworks often use template methods to avoid requiring subclasses to
invoke super. The template method contains the behaviour to be reused,
and subclasses just override or define the hook method.
Incorrect usage is using super to invoke different methods. This short-
circuits the dynamic lookup of the invoked method.
(Next week we will see how to query the system for such improper usage.)

Roadmap

> OO modeling idioms
> Understanding self and super
> Metaclasses in 7 points

35

Metaclasses in 7 points

1. Every object is an instance of a class
2. Every class eventually inherits from Object
3. Every class is an instance of a metaclass
4. The metaclass hierarchy parallels the class hierarchy
5. Every metaclass inherits from Class and Behavior
6. Every metaclass is an instance of Metaclass
7. The metaclass of Metaclass is an instance of Metaclass

Adapted from Goldberg & Robson, Smalltalk-80 — The Language
36

There are many possible metamodels for OO languages, but they
are all very similar. Smalltalk's metamodel is especially
interesting as it supports not only introspection but intercession:
we can change the system at run time.
The seven rules here are freely adapted from the book by Adele
Goldberg and David Robson, Smalltalk 80: the Language and its
Implementation, (Addison Wesley, 1983)

http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://scgresources.unibe.ch/Literature/Books/Gold83aBluebook.pdf

We will now illustrate these rules with the Snakes and Ladders
example.

Metaclasses in 7 points

1. Every object is an instance of a class
2. Every class eventually inherits from Object
3. Every class is an instance of a metaclass
4. The metaclass hierarchy parallels the class hierarchy
5. Every metaclass inherits from Class and Behavior
6. Every metaclass is an instance of Metaclass
7. The metaclass of Metaclass is an instance of Metaclass

37

1. Every object is an instance of a class

38

aSnakeSquare

SnakeSquare

«instanceOf»

UML class diagrams don’t include objects or an instance-of
relationship, so we will add a special double arrow to with an
«instance-of» stereotype to represent this concept.
Every object is an instance of a class, in particular a “snake
square” in the board game is an instance of the class
SnakeSquare.

Metaclasses in 7 points

1. Every object is an instance of a class
2. Every class eventually inherits from Object
3. Every class is an instance of a metaclass
4. The metaclass hierarchy parallels the class hierarchy
5. Every metaclass inherits from Class and Behavior
6. Every metaclass is an instance of Metaclass
7. The metaclass of Metaclass is an instance of Metaclass

39

2. Every class inherits from Object 

Every object is-an Object =
The class of every object
ultimately inherits from Object

aSnakeSquare is-a SnakeSquare
and is-a BoardSquare
and is-an Object

40

aSnakeSquare

SnakeSquare

BoardSquare

Object

«instanceOf»

The Meaning of is-a

When an object receives a message, the method is
looked up in the method dictionary of its class, and, if
necessary, its superclasses, up to Object

41

aSnakeSquare

SnakeSquare

BoardSquare

Object

«instanceOf»

1

printString:

2

3

4

5

self printOn:

The is-a relationship expresses that an object x satisfies all the
requirements of some class Y. In effect, an object x is-a Y for all
classes Y starting from its own class, all the way up the superclass
chain. In particular this rule simply states the obvious, which is
that every object is-an Object.
Pretty much every OO language has a class hierarchy with
Object as its root class.

Responsibilities of Object

> Object
—represents the common object behavior
—error-handling, halting …
—all classes should inherit ultimately from Object

42

Caveat: in Pharo, Object has a superclass called ProtoObject

In Pharo, Object contains roughly 400 methods. In other OO
languages, like Java, the root class is much leaner.
Caveat: In Pharo, there is a lean class that is a superclass of
Object, called ProtoObject. It can be mostly ignored, but we
will find it useful later for metaprogramming. (ProtoObject
has only about 40 methods.)

Metaclasses in 7 points

1. Every object is an instance of a class
2. Every class eventually inherits from Object
3. Every class is an instance of a metaclass
4. The metaclass hierarchy parallels the class hierarchy
5. Every metaclass inherits from Class and Behavior
6. Every metaclass is an instance of Metaclass
7. The metaclass of Metaclass is an instance of Metaclass

43

3. Every class is an instance of a metaclass

44

> Classes are objects too!
—Every class X is the unique instance of its metaclass, called X class

aSnakeSquare
«instanceOf»

SnakeSquare

BoardSquare

Object

SnakeSquare class

BoardSquare class

Object class

Since everything is an object in Smalltalk, classes are objects too.
This means that they are instances of special classes known as
metaclasses.
Here different OO languages take different design decisions. In
Java, classes are not objects, so there is no need for metaclasses.
You may ask an object for a representation of its class, but this is
not the actual class. In particular, you cannot modify a “class
object” in Java to change the behaviour of its instances.

Metaclasses are implicit

> There are no explicit metaclasses
—Metaclasses are created implicitly when classes are created
—No sharing of metaclasses (unique metaclass per class)

45

Another important difference is that in some languages, like
CLOS (Common Lisp Object System), metaclasses can be
explicitly programmed. In classic Smalltalk, metaclasses are
implicit. Every class X automatically is assigned a unique
metaclass called X class.

Metaclasses by Example

46

SnakeSquare canUnderstand: #initializeBack:
SnakeSquare canUnderstand: #new
SnakeSquare class canUnderstand: #new

true
false
true

SnakeSquare allInstances
SnakeSquare instVarNames

an Array(<-2[6] <-4[11])
#('back')

SnakeSquare back: 5 <-5[nil]

SnakeSquare selectors
#(#destination #initializeBack: #printOn:)

BoardSquare allSubclasses

an OrderedCollection(FirstSquare LadderSquare SnakeSquare)

SnakeSquare class selectors #(#back:)

Here are several examples of class-side methods, i.e., methods
implemented in the metaclass of the given class as receiver.
A class serves as a repository for the behaviour of its instances.
So the selectors (method signatures) implemented by
SnakeSquare are those understood by its instances, e.g.,
#destination. On the other hand, the messages understood
by the class SnakeSquare, such as #back:, are implemented
by the metaclass, i.e., SnakeSquare class

NB: #canUnderstand: tells you which messages instances
can understand. This is more than just the selectors (messages)
that it implements. A SnakeSquare does not understand new,
but its class does!

Metaclasses in 7 points

1. Every object is an instance of a class
2. Every class eventually inherits from Object
3. Every class is an instance of a metaclass
4. The metaclass hierarchy parallels the class hierarchy
5. Every metaclass inherits from Class and Behavior
6. Every metaclass is an instance of Metaclass
7. The metaclass of Metaclass is an instance of Metaclass

47

4. The metaclass hierarchy parallels the class
hierarchy

48

aSnakeSquare

«instanceOf»

SnakeSquare

BoardSquare

Object

SnakeSquare class

BoardSquare class

Object class

This is a pragmatic design choice in the Smalltalk-80 system. By
making the metaclass hierarchy parallel the class hierarchy, we
ensure that every class also inherits its class-side methods from
its metaclass.

Uniformity between Classes and Objects

back: is a Snake constructor method
49

> Classes are objects too, so …
—Everything that holds for objects holds for classes as well
—Same method lookup strategy

– Look up in the method dictionary of the metaclass

SnakeSquare

BoardSquare

Object

SnakeSquare class

BoardSquare class

Object class

back: 6
1

2

3 self new
4

5

6

7

?

Since classes are objects too, we can suppose that method lookup
works exactly as it does for ordinary objects. The only difference
is that methods are looked up in the metaclass hierarchy.
When we evaluate SnakeSquare back: 5 we look up
#back: in SnakeSquare class. That method sends self
new, which starts the lookup again. Since neither
SnakeSquare class nor BoardSquare class
implement #new, the lookup continues up the hierarchy.
The question is, where is #new found?

aSnakeSquare

«instanceOf» SnakeSquare
SnakeSquare class

«instanceOf»

About the Buttons (in Pharo)

50

In order to switch between the methods of a class and its
metaclass you must toggle the “Class” button in the browser.
Note that in the class-side view all the methods and protocols are
in bold.

aSnakeSquare

«instanceOf» SnakeSquare
SnakeSquare class

«instanceOf»

Metaclasses in Gt

51

In Gt, on the other hand, instance and class methods are displayed
together, but tagged to indicate which kind of method they are.

Metaclasses in 7 points

1. Every object is an instance of a class
2. Every class eventually inherits from Object
3. Every class is an instance of a metaclass
4. The metaclass hierarchy parallels the class hierarchy
5. Every metaclass inherits from Class and Behavior
6. Every metaclass is an instance of Metaclass
7. The metaclass of Metaclass is an instance of Metaclass

52

5. Every metaclass inherits from Class and
Behavior

Every class is-a Class =
The metaclass of every
class inherits from Class

53aSnakeSquare
«instanceOf»

SnakeSquare

BoardSquare

Object

SnakeSquare class

BoardSquare class

Object class

Class

ClassDescription

Behavior

Since rule 2 tells us that all classes eventually inherit from
Object, we should infer that the same holds for metaclasses,
which are also classes. So the metaclass hierarchy does not stop
with Object class, but rather with Object.
In between, however, we have the special system classes Class,
ClassDescription and Behavior.

Where is new defined?

54

SnakeSquare

BoardSquare

Object

SnakeSquare class

BoardSquare class

Object class

Class

ClassDescription

Behavior

new1

2

3

4

5

6

7

aSnakeSquare
«instanceOf»

8

«creates»

So, #new is not defined in Object, or even in Object
class, but in Behavior.
Note however that it is possible to override #new in any
metaclass, for example to track the creation of instances. In Pharo
#new is rarely overridden since most special initialization
behavior can be invoked automatically in the instance-side
#initialize method.

Responsibilities of Behavior

> Behavior
—Minimum state necessary for objects that have instances.
—Basic interface to the compiler.
—State:

– class hierarchy link, method dictionary, description of instances
(representation and number)

—Methods:
– creating a method dictionary, compiling method
– instance creation (new, basicNew, new:, basicNew:)
– class hierarchy manipulation (superclass:, addSubclass:)
– accessing (selectors, allSelectors, compiledMethodAt:)
– accessing instances and variables (allInstances, instVarNames)
– accessing class hierarchy (superclass, subclasses)
– testing (hasMethods, includesSelector, canUnderstand:, inheritsFrom:,

isVariable)

55

Responsibilities of ClassDescription

> ClassDescription
—adds a number of facilities to basic Behavior:

– named instance variables
– category organization for methods
– the notion of a name (abstract)
– maintenance of Change sets and logging changes
– most of the mechanisms needed for fileOut

—ClassDescription is an abstract class: its facilities are intended for
inheritance by the two subclasses, Class and Metaclass.

56

Responsibilities of Class

> Class
—represents the common behavior of all classes

– name, compilation, method storing, instance variables …
—representation for classVariable names and shared pool variables

(addClassVarName:, addSharedPool:, initialize)
—Class inherits from Object because Class is an Object

– Class knows how to create instances, so all metaclasses should inherit
ultimately from Class

57

Metaclasses in 7 points

1. Every object is an instance of a class
2. Every class eventually inherits from Object
3. Every class is an instance of a metaclass
4. The metaclass hierarchy parallels the class hierarchy
5. Every metaclass inherits from Class and Behavior
6. Every metaclass is an instance of Metaclass
7. The metaclass of Metaclass is an instance of Metaclass

58

6. Every metaclass is an instance of Metaclass

59

Every metaclass
is-a Metaclass

aSnakeSquare
«instanceOf»

SnakeSquare

BoardSquare

Object

SnakeSquare class

BoardSquare class

Object class

Class

ClassDescription

Behavior

Metaclass

If everything is an object and classes are objects, it follows that
metaclasses are objects too. What then is the class of
a metaclass?
Here we have another language design choice. Rather than having
implicit meta-metaclasses (and so on), we have a single (explicit)
class, called Metaclass, of which all metaclasses are instances.
This class serves as the shared repository of behavior for all
metaclasses (just as Class is the shared repository of behavior
for all normal classes).
In other words, “every metaclass is-a Metaclass”.

Metaclass Responsibilities

> Metaclass
—Represents common metaclass Behavior

– instance creation (subclassOf:)
– creating initialized instances of the metaclass’s sole instance
– initialization of class variables
– metaclass instance protocol (name:inEnvironment:subclassOf:....)
– method compilation (different semantics can be introduced)
– class information (inheritance link, instance variable, ...)

60

Metaclasses in 7 points

1. Every object is an instance of a class
2. Every class eventually inherits from Object
3. Every class is an instance of a metaclass
4. The metaclass hierarchy parallels the class hierarchy
5. Every metaclass inherits from Class and Behavior
6. Every metaclass is an instance of Metaclass
7. The metaclass of Metaclass is an instance of

Metaclass

61

7. The metaclass of Metaclass is an instance of
Metaclass

62aSnakeSquare
«instanceOf»

SnakeSquare

BoardSquare

Object

SnakeSquare class

BoardSquare class

Object class

Class

ClassDescription

Behavior

Metaclass

Metaclass class

ClassDescription class

Class class

Behavior class

Finally we arrive at the fixpoint. Metaclass is a regular class.
By rule 2 it must be an instance of its metaclass, Metaclass
class. By rule 6 however that metaclass must be an instance of
Metaclass, thus yielding rule 7.
In other words:
Metaclass class class = Metaclass → true

Parallel hierarchies

63

Viewed another way, we can clearly see two parallel
hierarchies. Every class in the left (class) hierarchy is
an instance of its metaclass in the right hierarchy.
Each of the metaclasses in the right (metaclass)
hierarchy is an instance of Metaclass.

Navigating the metaclass hierarchy

64

MetaclassHierarchyTest>>testHierarchy
"The class hierarchy"
self assert: SnakeSquare superclass equals: BoardSquare.
self assert: BoardSquare superclass equals: Object.
self assert: Object superclass superclass equals: nil.
"The parallel metaclass hierarchy"
self assert: SnakeSquare class name equals: 'SnakeSquare class'.
self assert: SnakeSquare class superclass equals: BoardSquare class.
self assert: BoardSquare class superclass equals: Object class.
self assert: Object class superclass superclass equals: Class.
self assert: Class superclass equals: ClassDescription.
self assert: ClassDescription superclass equals: Behavior.
self assert: Behavior superclass equals: Object.
"The Metaclass hierarchy"
self assert: SnakeSquare class class equals: Metaclass.
self assert: BoardSquare class class equals: Metaclass.
self assert: Object class class equals: Metaclass.
self assert: Class class class equals: Metaclass.
self assert: ClassDescription class class equals: Metaclass.
self assert: Behavior class class equals: Metaclass.
self assert: Metaclass superclass equals: ClassDescription.
"The fixpoint"
self assert: Metaclass class class equals: Metaclass

What you should know!

> How is a new instance of a class initialized?
> Why is super static and self dynamic?
> Why is it usually a mistake for a method to super-send a

different message?
> What does is-a mean?
> What is the difference between sending a message to an

object and to its class?
> What are the responsibilities of a metaclass?
> What is the superclass of Object class?
> Where is #new defined?

65

Can you answer these questions?

> When should you override #new?
> When does self = super?
> When does super = self?
> What does self refer to in the method SnakesAndLadders
class>>#example?

> Why are there no explicit metaclasses?
> Why do metaclasses inherit from Class and not from
Metaclass?

> Are there any classes that don’t inherit from Object?
> Is Metaclass a Class? Is it a metaclass? Why or why not?
> Where are the methods #class and #superclass

defined?
66

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

