
Code and Test Smells

Fabio Palomba
Assistant Professor

University of Salerno (Italy)
https://fpalomba.github.io

Understanding and Detecting Them

https://fpalomba.github.io

Code and Test Smells
Understanding and Detecting Them

During software evolution changes
 cause a drift of the original design, reducing its quality

Software evolution

Low design quality …

Victor R. Basili, Lionel Briand, and Walcelio L. Melo. A Validation Of Object-Oriented Design Metrics As Quality
Indicators. IEEE Transactions on Software Engineering (TSE), 22(10):751–761, 1995.
Aaron B. Binkley and Stephen R. Schach. Validation of the coupling dependency metric as a predictor of run-time
failures and maintenance measures. 20th International Conference on Software Engineering (ICSE 1998), pages
452–455.
Lionel C. Briand, Juergen Wuest, and Hakim Lounis. Using Coupling Measurement for Impact Analysis in Object-
Oriented Systems. 15th IEEE International Conference on Software Maintenance (ICSM 1999), pages 475–482.
Lionel C. Briand, Jurgen Wust, Stefan V. Ikonomovski, and Hakim Lounis. Investigating quality factors in object-
oriented designs: an industrial case study. 21st International Conference on Software Engineering (ICSE 1999),
pages 345–354.

… has been associated with lower productivity,
greater rework, and more significant efforts for

developers

“Bad Code Smells are symptoms of poor
design or implementation choices”

[Martin Fowler]

BLOB

[Martin
Fowler]

A Blob (also named God Class) is a “class implementing
several responsibilities, having a large number of attributes,
operations and dependencies with data classes”.

Blob (or God Class)

[Martin Fowler]

[Martin
Fowler]

A Blob (also named God Class) is a “class implementing
several responsibilities, having a large number of attributes,
operations and dependencies with data classes”.

Blob (or God Class)

[Martin Fowler]

Increasing maintenance costs due to the difficulty
of comprehending and maintaining the class.

Consequences

40+ different smells

40+ different smells
… and even more

Energy-related code smells

Security-related code smells

Performance-related code smells

…

40+ different smells
… and even more

Quality-related code smells

Negative Impact of Bad Smells

[Abbes et al. CSMR 2011]
Bad Smells hinder code comprehensibility

[Banker et al. Communications of the ACM]
Bad Smells increase maintenance costs

Negative Impact of Bad Smells

[Khomh et al. EMSE 2012]
Bad Smells increase change- and fault-proneness

Negative Impact of Bad Smells

Studies tried
explaining their lifespan [Peters and Zaidman - CSMR 2012]

Developers are aware of code smells,
but not very concerned about their impact

… their evolution [Chatzigeorgiou et al. - QUATIC 2010]

In the vast majority of these cases code
smell disappearance was not the result of
targeted refactoring activities but rather a

side effect of adaptive maintenance.

and longevity… [Arcoverde et al. - IWRT 2011]

Developers deliberately postpone
refactorings for different reasons

Why? [Kim et al. - TSE 2014]

Developers perceive refactoring
involves substantial cost and risks

1999

2000

2003

2007

WHEN AND WHY
YOUR CODE
TO SMELL BAD

STARTS

2010

?
CLASS

INTRODUCTION

IMPLEMENTED

NEW FEATURE

SMELL

INTRODUCTION

MAINTENANCE

OPERATION

MAINTENANCE

OPERATION

5smells considered from the
catalogues by Fowler and Brown

Blob
Class Data Should Be Private

Complex Class

Functional Decomposition

Spaghetti Code

Study Design

[Martin
Fowler]

A class exposing its attributes, violating the
information hiding principle.

Class Data Should Be Private

A class having high cyclomatic complexity
Complex Class

Functional Decomposition
A class where inheritance and polymorphism
are poorly used, declaring many fields and
implementing few methods

Spaghetti Code
A class without a structure that declares long
methods without parameters

3different ecosystems analyzed

Study Design

200
Study Design

total analyzed systems

?When are code smells
introduced

1999

2000

2003

2007

2010

CLASS

INTRODUCTION

IMPLEMENTED

NEW FEATURE

SMELL

INTRODUCTION

MAINTENANCE

OPERATION

MAINTENANCE

OPERATION

Commits required to a class for becoming smell

50 1000 25 75

Generally, blobs affect a class
since its creation

There are several cases in which a blob is introduced
during maintenance activities

WHEN blobs are introduced

?Why are code smells
introduced

1999

2000

2003

2007

2010

CLASS

INTRODUCTION

IMPLEMENTED

NEW FEATURE

SMELL

INTRODUCTION

MAINTENANCE

OPERATION

MAINTENANCE

OPERATION

WHY are code smells introduced
Maintenance Activity

BLOB

CDSBP

CC

FD

SC

BF E NF R

Blob

Class Data Should
Be Private

Complex Class

Functional
Decomposition

Spaghetti Code

Bug Fixing

0 1005025 75

Enhancement New
Feature

Refactoring

WHY are code smells introduced

BLOB

CDSBP

CC

FD

SC

Low Medium
High

0 1005025 75

Workload High

Low

Medium

Blob

Class Data Should
Be Private

Complex Class

Functional
Decomposition

Spaghetti Code

WHY are code smells introduced

0 1005025 75

Newcomer

BLOB

CDSBP

CC

FD

SC

True FalseTrue False

Blob

Class Data Should
Be Private

Complex Class

Functional
Decomposition

Spaghetti Code

Do They Really Smell Bad?
A Study on Developers’ Perception of
Bad Code Smells

“We don’t see things as they are,
 we see things as we are”
 Anais Nin

Study Design

Original Developers:
10

Industrial Developers
9

Master’s Students
15

Argo UML 0.34
Eclipse 3.6.1

jEdit 4.5.1

Class Data Should Be Private
Complex Class

Feature Envy
God Class

Inappropriate Intimacy
Lazy Class

Long Method
Long Parameter List

Middle Man
Refused Bequest
Spaghetti Code

Speculative Generality

Study Design

Smelly Class

Developer

Study Design

Smelly Class

Developer

In your opinion, does this code
component exhibit any design and/or
implementation problem?

Study Design

Smelly Class

Developer

In your opinion, does this code
component exhibit any design and/or
implementation problem?

• If YES, please explain what are, in your
opinion, the problems affecting the code
component.

Study Design

Smelly Class

Developer

In your opinion, does this code
component exhibit any design and/or
implementation problem?

• If YES, please explain what are, in your
opinion, the problems affecting the code
component.

• If YES, please rate the severity of the
design and/or implementation problem
by assigning a score on the following five-
points Likert scale: 1 (very low), 2 (low),
3 (medium), 4 (high), 5 (very high).

Developers are able to perceive smells related to long/complex code, while

several instances are perceived depending on the intensity of the problem
[Palomba et al. - ICSME 2014]

FEATURE ENVY

Refactoring operations are generally focused on code
components for which quality metrics do not suggest there

might be need for refactoring operations

The relation between code smells and refactoring is stronger

of refactoring operations are
performed on code entities
affected by code smells.42%

However, often refactoring fails in removing code smells!

7%
of the performed operations
actually remove the code
smells from the affected class.

Only

More Automation is Needed!

More Automation is Needed!

Detectors able to Take into Account the Findings on
Code Smell Introduction!

More Automation is Needed!

Detectors able to Take into Account the Findings on
Code Smell Introduction!

Detectors able to Produce Suggestions Closer to the
Developers’ Perception of Design Problems!

Where to refactor

To detect code smells, several approaches and tools have

been proposed, most of them relying on structural analysis

How would you detect code smells?

No smelly classOR combination

0

5

10

15

20

25

LCOM WMC CBO

t = 17

Metric-based code smell detection

AND combination

0

5

10

15

20

25

LCOM WMC CBO

t = 17

Metric-based code smell detection

Domain Analysis

Specification

Text-based descriptions of smells

Vocabulary, Taxonomy

Rule Cards

Algorithm Generation

Detection Algorithm

DECOR

[Moha et al. TSE 2010]

DECOR

The Blob (also called God class) corresponds to a large
controller class that depends on data stored in surrounding

data classes. A large class declares many fields and methods
with a low cohesion. A controller class monopolizes most of the
processing done by a system, takes most of the decisions, and

closely directs the processing of other classes. Controller
classes can be identified using suspicious names such as

Process, Control, Manage, System, and so on. A data class
contains only data and performs no processing on these data.

It is composed of highly cohesive fields and accessors.

input example

[Moha et al. TSE 2010]

DECOR

[Moha et al. TSE 2010]

RULE_CARD : Blob {

RULE : Blob {ASSOC: associated FROM : mainClass ONE TO : DataClass MANY};

RULE : MainClass {UNION LargeClass, LowCohesion, ControllerClass};

RULE : LargeClass {(METRIC : NMD + NAD, VERY_HIGH, 20) } ;

RULE : LowCohesion { (METRIC : LCOM5, VERY_HIGH , 20) } ;

RULE : ControllerClass { UNION (SEMANTIC : METHODNAME,
{Process, Control , Ctrl , Command , Cmd, Proc, UI, Manage, Drive})
(SEMANTIC : CLASSNAME, { Process, Control, Ctrl, Command , Cmd, Proc , UI,
Manage, Drive , System, Subsystem }) } ;

RULE : DataClass {(STRUCT: METHOD_ACCESSOR, 90%)} ;
};

DECOR

[Moha et al. TSE 2010]

DECOR
Performances

Detect instances of four code
smells (i.e., Blob, Functional

Decomposition, Spaghetti Code,
and Swiss Army Knife) on 9

software systems

Average Recall: 100%
Average Precision: 60.5%

[Moha et al. TSE 2010]

But some smells are
intrinsically characterized by
how code evolves over time

Parallel Inheritance
Every time you make a subclass of one
class, you also have to make a subclass

of another

A
method1()

method2()

B
method1()

Parallel Inheritance

A
method1()

method2()

Every time you make a subclass of one
class, you also have to make a subclass

of another

B
method1()

C
method1()

method3()

D
method1()

Parallel Inheritance

A
method1()

method2()

Every time you make a subclass of one
class, you also have to make a subclass

of another

B
method1()

C
method1()

method3()

D
method1()

F
method1()

method5()

E
method1()

method2()

HIST

Historical Information
for Smell deTection

Extracting Change History Information

Extracting Change History Information

Extracting Change History Information

HIST

Historical Information
for Smell deTection

Extracting Change History Information

log download

git log

HIST

Historical Information
for Smell deTection

Extracting Change History Information

log download

git log files modified

HIST

Historical Information
for Smell deTection

Extracting Change History Information

log download

git log files modified

code analyzer

method
getUser

has been
added

method
getData

has been
modified

method
getLogin
has been

moved

class
User

has been
added

...

...

...

...

commit i

commit i+1

HIST

Historical Information
for Smell deTection

Change History Extractor

Code Smells Detector

log download code analyzer

method
getUser

has been
added

method
getData

has been
modified

method
getLogin
has been

moved

class
User

has been
added

...

...

...

...

Association rule discovery
to capture co-changes

between entities

Analysis of change
frequency of some specific

entities

Association Rule Mining

A

C

B

D

A

C

B

D

E

A

C

B

D

Files

Changes occurring in snapshots
C1 C2 C3 C4 C5 C6

Association Rule Mining

A

C

B

D

A

C

B

D

E

A

C

B

D

Files

Changes occurring in snapshots
C1 C2 C3 C4 C5 C6

Code Smells Detector
divergent change

A class is changed in different
ways for different reasons

Solution:
Extract Class Refactoring

Detection
Classes containing at least two sets of methods
such that:

(i) all methods in the set change together as
detected by the association rules

(ii) each method in the set does not change with
methods in other sets

Code Smells Detector
blob

A class implementing several
responsibilities, having a large size,
and dependencies with data classes

Solution:
Extract Class refactoring

Detection
Blobs are identified as classes frequently modified in
commits involving at least another class.

t1 t3t2 t4 t6t5 t7 t9t8

Evaluation
detection accuracy

Comparing HIST with static code
analysis technique on a manually

built oracle

20 open source
systems

Evaluation
detection accuracy

20 open source
systems

Shotgun Surgery

Parallel Inheritance

Divergent Change

Blob

Feature Envy

HIST F-Measure CA technique F-Measure
92%

71%

82%

64%

77%

0%

9%

11%

48%

68%

Comparing HIST with static code
analysis technique on a manually

built oracle

Evaluation
detection accuracy

HIST and
the CA techniques

are highly complementary

20 open source
systems

Comparing HIST with static code
analysis technique on a manually

built oracle

Structural and Historical Analysis are
only a part of the whole story

Toward a New Dimension of
Code Smell Detection

/* Insert a new user in the system.
 * @param pUser: the user to insert.*/
public void insert(User pUser){

 connect = DBConnection.getConnection();

 String sql = "INSERT INTO USER"
 + "(login,first_name,last_name,password"
 + ",email,cell,id_parent) " + "VALUES ("
 + pUser.getLogin() + ","
 + pUser.getFirstName() + ","
 + pUser.getLastName() + ","
 + pUser.getPassword() + ","
 + pUser.getEMail() + ","
 + pUser.getCell() + ","
 + pUser.getIdParent() + ")";

 executeOperation(connect, sql);
 }

/* Delete an user from the system.
 * @param pUser: the user to delete.*/
public void delete(User pUser) {

 connect = DBConnection.getConnection();

 String sql = "DELETE FROM USER "
 + "WHERE id_user = "
 + pUser.getId();

 executeOperation(connect, sql);
 }

The textual content of source
code can provide useful hints for smell detection

/* Insert a new user in the system.
 * @param pUser: the user to insert.*/
public void insert(User pUser){

 connect = DBConnection.getConnection();

 String sql = "INSERT INTO USER"
 + "(login,first_name,last_name,password"
 + ",email,cell,id_parent) " + "VALUES ("
 + pUser.getLogin() + ","
 + pUser.getFirstName() + ","
 + pUser.getLastName() + ","
 + pUser.getPassword() + ","
 + pUser.getEMail() + ","
 + pUser.getCell() + ","
 + pUser.getIdParent() + ")";

 executeOperation(connect, sql);
 }

/* Delete an user from the system.
 * @param pUser: the user to delete.*/
public void delete(User pUser) {

 connect = DBConnection.getConnection();

 String sql = "DELETE FROM USER "
 + "WHERE id_user = "
 + pUser.getId();

 executeOperation(connect, sql);
 }

Indeed, source code vocabulary can be an useful
additional source of information

Extracting and Normalizing Text
private Connection connect = DBConnection.getConnection();

Extracting and Normalizing Text
private Connection connect = DBConnection.getConnection();

private Connection connect = DB Connection.get Connection();

Separating Composed Identifiers

Extracting and Normalizing Text
private Connection connect = DBConnection.getConnection();

private Connection connect = DB Connection.get Connection();

Separating Composed Identifiers

Lower Case Reduction

private connection connect = db connection.get connection();

Extracting and Normalizing Text
private Connection connect = DBConnection.getConnection();

private Connection connect = DB Connection.get Connection();

Separating Composed Identifiers

Lower Case Reduction

private connection connect = db connection.get connection();

Removing Special Characters, programming
keywords, and common English terms

connection connect = db connection get connection

Extracting and Normalizing Text
private Connection connect = DBConnection.getConnection();

private Connection connect = DB Connection.get Connection();

Separating Composed Identifiers

Lower Case Reduction

private connection connect = db connection.get connection();

Removing Special Characters, programming
keywords, and common English terms

connection connect = db connection get connection

Stemming

connect connect = db connect get connect

TACO

Textual Analysis for
Code smell detectiOn

We believe that code affected by a smell
contains unrelated textual content

Text Preprocessing

textual component
extractor

IR normalization
process

Stemming
Term separation

Stop word removal
…

Smell Detector

block
extractor

dissimilarity
computation

0.86
avg.

smelliness level

Code
ComponentCode
ComponentCode
Component

Smelliness Probability

50 1000 25 75

To detect smells, we need a threshold over the
probability distribution

As cut point, we select the median of the

non-null values of the smelliness

TACO can identify 5 different code smells
characterized by promiscuous responsibilities

Blob
Long Method

Promiscuous Package

TACO can detect 5 different code smells
characterized by promiscuous responsibilities

Blob
Long Method

Promiscuous Package Misplaced Class
Feature Envy

Detecting Long Method instances
public void insert(User pUser){

 connect = DBConnection.getConnection();

 String sql = "INSERT INTO USER"
 + "(login,first_name,last_name,password"
 + ",email,cell,id_parent) " + "VALUES ("
 + pUser.getLogin() + ","
 + pUser.getFirstName() + ","
 + pUser.getLastName() + ","
 + pUser.getPassword() + ","
 + pUser.getEMail() + ","
 + pUser.getCell() + ","
 + pUser.getIdParent() + ")";

 String sql = "DELETE FROM USER "
 + "WHERE id_user = "
 + pUser.getId();

X. Whang, L. Pollock, K. Shanker
“Automatic Segmentation of Method Code Into Meaningful Blocks: Design and Evaluation”

JSEP 2013

Detecting Long Method instances
public void insert(User pUser){

 connect = DBConnection.getConnection();

 String sql = "INSERT INTO USER"
 + "(login,first_name,last_name,password"
 + ",email,cell,id_parent) " + "VALUES ("
 + pUser.getLogin() + ","
 + pUser.getFirstName() + ","
 + pUser.getLastName() + ","
 + pUser.getPassword() + ","
 + pUser.getEMail() + ","
 + pUser.getCell() + ","
 + pUser.getIdParent() + ")";

 String sql = "DELETE FROM USER "
 + "WHERE id_user = "
 + pUser.getId();

X. Whang, L. Pollock, K. Shanker
“Automatic Segmentation of Method Code Into Meaningful Blocks: Design and Evaluation”

JSEP 2013

Detecting Long Method instances
public void insert(User pUser){

 connect = DBConnection.getConnection();

 String sql = "INSERT INTO USER"
 + "(login,first_name,last_name,password"
 + ",email,cell,id_parent) " + "VALUES ("
 + pUser.getLogin() + ","
 + pUser.getFirstName() + ","
 + pUser.getLastName() + ","
 + pUser.getPassword() + ","
 + pUser.getEMail() + ","
 + pUser.getCell() + ","
 + pUser.getIdParent() + ")";

 String sql = "DELETE FROM USER "
 + "WHERE id_user = "
 + pUser.getId();

X. Whang, L. Pollock, K. Shanker
“Automatic Segmentation of Method Code Into Meaningful Blocks: Design and Evaluation”

JSEP 2013

Method Cohesion
Computation

Detecting Long Method instances
public void insert(User pUser){

 connect = DBConnection.getConnection();

 String sql = "INSERT INTO USER"
 + "(login,first_name,last_name,password"
 + ",email,cell,id_parent) " + "VALUES ("
 + pUser.getLogin() + ","
 + pUser.getFirstName() + ","
 + pUser.getLastName() + ","
 + pUser.getPassword() + ","
 + pUser.getEMail() + ","
 + pUser.getCell() + ","
 + pUser.getIdParent() + ")";

 String sql = "DELETE FROM USER "
 + "WHERE id_user = "
 + pUser.getId();

X. Whang, L. Pollock, K. Shanker
“Automatic Segmentation of Method Code Into Meaningful Blocks: Design and Evaluation”

JSEP 2013

Method Cohesion
Computation

Long Method Probability
Computation

Detecting Feature Envy instances

Detecting Feature Envy instances

C3

method1()
method2()

…
methodN()

Cclosest

C5C2

C1

C4

Extracting the class Cclosest having the highest
textual similarity with Mi

C6

Detecting Feature Envy instances

method1()
method2()

…
methodN()

Cclosest

Feature Envy Probability Computation

method1()
method2()

…
methodN()

CO

TACO - Evaluating its performance

TACO
Alternative Structural Technique

TACO - Evaluating its performance

+22%
on average in terms of F-Measure

TACO - Evaluating its performance
Method: findTypesAndPackages()

Goal: Discover the classes and the packages of a given project

Class: CompletionEngine - Eclipse Core

TACO - Evaluating its performance
Method: findTypesAndPackages()

Goal: Discover the classes and the packages of a given project

Class: CompletionEngine - Eclipse Core

65
lines of code

TACO - Evaluating its performance
Method: findTypesAndPackages()

Goal: Discover the classes and the packages of a given project

Class: CompletionEngine - Eclipse Core

65
lines of code

A Structural Approach cannot
detect the smell!

TACO - Evaluating its performance
Method: findTypesAndPackages()

Goal: Discover the classes and the packages of a given project

Class: CompletionEngine - Eclipse Core

65
lines of code

A Structural Approach cannot
detect the smell!

TACO, instead, is able to detect a
Long Method instance

TACO - Evaluating complementarity
with structural approaches

TACO
Alternative Structural Technique
Overlap

Textual and Structural Information

are Highly Complementary

Toward a combination of
code smell detection

techniques?

Code and Test Smells
Understanding and Detecting Them

Smells in Test Code

[Van Deursen et al. - XP 2001]

“Test Smells represent a set of a
poor design solutions to write tests ”

11
test smells related to the way
developers write test fixtures

and test cases

Smells in Test Code

public void test12 () throws Throwable {
JSTerm jSTerm0 = new JSTerm();
jSTerm0.makeVariable () ;
jSTerm0.add((Object) ””);
jSTerm0.matches(jSTerm0);
assertEquals (false, jSTerm0.isGround ());
assertEquals(true, jSTerm0.isVariable());
}

public void test12 () throws Throwable {
JSTerm jSTerm0 = new JSTerm();
jSTerm0.makeVariable () ;
jSTerm0.add((Object) ””);
jSTerm0.matches(jSTerm0);
assertEquals (false, jSTerm0.isGround ());
assertEquals(true, jSTerm0.isVariable());
}

The test method checks the production method isGround()

Smells in Test Code

public void test12 () throws Throwable {
JSTerm jSTerm0 = new JSTerm();
jSTerm0.makeVariable () ;
jSTerm0.add((Object) ””);
jSTerm0.matches(jSTerm0);
assertEquals (false, jSTerm0.isGround ());
assertEquals(true, jSTerm0.isVariable());
}

But also the production method isVariable()

Smells in Test Code

public void test12 () throws Throwable {
JSTerm jSTerm0 = new JSTerm();
jSTerm0.makeVariable () ;
jSTerm0.add((Object) ””);
jSTerm0.matches(jSTerm0);
assertEquals (false, jSTerm0.isGround ());
assertEquals(true, jSTerm0.isVariable());
}

This is an Eager Test, namely a test which checks more than
one method of the class to be tested, making difficult

the comprehension of the actual test target.

Smells in Test Code

A test case is affected by a Resource Optimism when
it makes assumptions about the state or the existence
of external resources, providing a non-deterministic
result that depend on the state of the resources.

An Assertion Roulette comes from having a number of
assertions in a test method that have no explanation.

If an assertion fails, the identification of
the assert that failed can be difficult.

Smells in Test Code

Smells in Test Code

Tests affected by test smells are more change- and fault-
prone than tests not participating in design flaws and affect
the reliability of production code

In 54% of the cases, test code flakiness can be induced by
the presence of some design flaw in test code

Detecting test smells using heuristics

public void test12 () throws Throwable {
JSTerm jSTerm0 = new JSTerm();
jSTerm0.makeVariable () ;
jSTerm0.add((Object) ””);
jSTerm0.matches(jSTerm0);
assertEquals (false, jSTerm0.isGround ());
assertEquals(true, jSTerm0.isVariable());
}

Test smell detected if the number of
method calls > 3

Text Preprocessing

textual component
extractor

IR normalization
process

Stemming
Term separation

Stop word removal
…

Smell Detector

block
extractor

dissimilarity
computation

0.86
avg.

smelliness level

Code
ComponentCode
ComponentCode
Component

test method m

A.x()
…

A.y()
…

TASTE: Detecting test smells using the textual
component of test code

production class A

public void x() {

}

public void y() {

}

// some content

// some other content

test method m

A.x()
…

A.y()
…

TASTE: Detecting test smells using the textual
component of test code

production class A

A.x()
…

A.y()
…

public void x() {

}

public void y() {

}

// some content

// some other content

test method m’

TASTE: Detecting test smells using the textual
component of test code

A.x()
…

A.y()
…
// some content

// some other content

test method m’
IR normalization

TASTE: Detecting test smells using the textual
component of test code

A.x()
…

A.y()
…
// some content

// some other content

test method m’ IR normalization

TASTE: Detecting test smells using the textual
component of test code

mean
i != j sim(m’i,m’j)

A.x()
…

A.y()
…
// some content

// some other content

test method m’ IR normalization

TASTE: Detecting test smells using the textual
component of test code

mean
i != j sim(m’i,m’j)pET(t) = 1 —

A.x()
…

A.y()
…
// some content

// some other content

test method m’ IR normalization

TASTE: Detecting test smells using the textual
component of test code

pET(t) > 0.5

Code and Test Smells

Fabio Palomba
Assistant Professor

University of Salerno (Italy)
https://fpalomba.github.io

Understanding and Detecting Them

https://fpalomba.github.io

