Code anc

Understanc

Test Smells

INg and

Detecting [hem

Fabio Palomba

Assistant Professor
University of Salerno (ltaly)
https://fpalomba.github.io

https://fpalomba.github.io

Code and lest Smells
Understanding and Detecting [hem

Software evolution

B— _ T e PR — —— — &3 - — —

During software evolution changes

CdUsSE d C

BB aldCsign, reducing its quality

Low design quality ...

... has been associated with lower productivity,
oreater rework, and more significant efforts for
developers

W ———e

Victor R. Basili, Lionel Briand, and Walcelio L. Melo. A Validation Of Object-Oriented Design Metrics As Quality
Indicators. |[EEE Transactions on Software Engineering (TSE), 22(10):/51-761, 1995.

Aaron B. Binkley and Stephen R. Schach.Validation of the coupling dependency metric as a predictor of run-time

fallures and maintenance measures. 20th International Conference on Software Engineering (ICSE 1998), pages
452-455.

Lionel C. Briand, Juergen Wuest, and Hakim Lounis. Using Coupling Measurement for Impact Analysis in Object-
Oriented Systems. | 5th |EEE International Conference on Software Maintenance (ICSM 1999), pages 4/75—482.

Lionel C. Briand, Jurgen Wust, Stefan V. lkonomovski, and Hakim Lounis. Investigating quality factors in object-

oriented designs: an industrial case study. 2| st International Conference on Software Engineering (ICSE 1999),
Elsesisa5-— 554,

.l'-

pe. = "Bad Code Smells are symptoms of poor
%.\- _ design or implementation choices”
= 'Martin Fowler]

ista Condivisione Finestra Aiuto B Interrompi registrazione A H 4 (&P 030 ven9.4

Java - xerces/src/org/apache/xerces/xinclude/XIncludeHandler.java - Eclipse - /Users/Gabriele/Universita/eclipse_build/workspace

IES &3 0-Q | BHFCG | @S & | R e @I & §e oy

Y %5 Debug a"java 22

= g

package org.apache.xerces.xinclude;

W E D

@import java.io.CharConversionException;[]

At

.;p;-

This is a pipel}
W3C specificy
</p>
<p>
This comgbnent analyzes each event in the pipeline, looking for &1lt;include>
elementsfl An &1t;includelgt; element is one which ha

children of\the &1lt;includelgt; element are ignor
\nvalid children as outlined in the Pn) . the inclusion
fails, the &1t¥Nallback> child of the <in X rocessed.
</p>

<p>

more information on how nclude is to be used.

</p>

<p> N\

This component requires the fo g features and properties from the
component manager that uses it: X

<U1> D

<lizhttp://xml.org/sax/features/allow-dtd-Nag
http://apache.org/xml/properties/internal/cxgg
http://apache.org/xml/properties/internal/enti

Optional property:

<lizhttp://apache.org/xml/properties/input-buffer-size</1i>

Furthermore, the <code>NamespaceContext</code> used in the pipeline is required
to be an instance of <code>XIncludeNamespaceSupport</codex>.

</p>

<p>

Currently, this implementation has only partial support for the XInclude specification.
Specifically, it is missing support for XPointer document fragments. Thus, only whole

RS e . 8 % 2.8 0 N B .20 F R .2 SEE B SN S.EAE R B8N0

k

0 =

.......... — | Oz

=

=]

-9

= %

R = o

=

on for XML Inclusions. [?—,,I

J o® Writable Smart Insert 103:2

Blob (or God Class)

A Blob (also named God Class) Is a ““class implementing
several responsibilities, having a large number of attributes,
operations and dependencies with data classes’.

[Martin Fowler]

Blob (or God Class)

A Blob (also named God Class) Is a ““class implementing
several responsibilities, having a large number of attributes,
operations and dependencies with data classes’.

[Martin Fowler]

Consequences

t Increasing maintenance costs due to the difficulty §
§ of comprehending and maintaining the class. §

40+ different smells

EFACTORIN(-

IMPROVING THE DESIG »®
oF ExisTING CopE

MARTIN FOWLER

With comtribations By Kent Beck, John Brant,
William Opdyke, =« Don Roberts

roceweed by Erich Gamma
Object Technology International, Inc

Refactoring Software, Architectures,
: and Projects in Crisis
BO0CH pro.
JACOBS0)
EUMBAUG:

William H. Brown Raphael C. Malveau
Hays W.“Skip” McCormicklll Thomas J. Mowbray

Copyrighted Material

40+ different smells
.. and even more

Energy-related code smells

Security-related code smelis

Performance-related code smells

40+ different smells
.. and even more

Quality-related code smells

Negative Im

hact of Bac

Smells

crence on Software Mai 3 and Reengineer

n Empirical Study of the Impact of Two
Antipatterns, Blob and Spaghetti Code,
On Program Comprehensio

Marwen Abbes™”, Foutse Khomh®, Yann-Gaé¢l Guéhéneuc”, Guuliano Anto

. d'Informatique et de Recherche Opératiol
t. of Elec. and Comp. Ei ring, Q1
Team, SOCCER Lab, DGIGL,

Antipatterns are “poor” solutions o recurring
ign problems which are conjectured in the literature to
ject-oriented systems harder to maintain, However,
te quantitative evid ists to support t j
We performed an empirical study to i
of antipatterns does indeed affect the under-

performance of develo
comprehension and uc antiputterns
and of their combina’ ghetti Code. We
mensured the developers' pe
task load index for their effort; (2) the time that they
spent performing their tasks; and, (3) their percentages of
correct answers, Collected data show thy occurrence of
one antipattern does not significantly decrease developers’
perform while the combination of two antipatterns im-
pedes significuntly developers. We conclude that developers
cope with one antipattern but that binutions of
s should be uvoided possibly through detection

classes as
istic of

some metho

de Montréal, Montré
n, Ontario, Ci

Anoth
which is ¢

ated

ing our knowle

understand
we study
Code
ifficult to w
Each expx

m
i paler
Pt

Bad Smells hinder code comprehensibility
Abbes et al. CSMR 201 |

l Negative Impact of Bad Smells

Rajiv . Banker, Snu! i s ¥ Kemerer, and Danit Zweg
SOFTWARE COMPLEXITY
AND MAINTENANCE COSTS

hile the link between the dif-
ficulty in understanding computer software and the cost of maintaining it is appealing, prior
empirical evidence linking software complexity to software maintenance costs is relatively weak
[21]. Many of the attempts to link software complexity to maintainability are based on
experiments involving small pieces of code, or are based on analysis of software written by

students. Such evidence is valuable, but several rescarchers have noted that such results must

lines of Cobol are estimated 10 exist F ¢ nercal sie

worldwide, this also suggests that h osts are high enough

¢ st software & their maintenance represents an in- 10 justify strong efforts on the part of

tenance expenditures [13, 17]. Further- formarion systems) activity of ftware managers o monitor and
, the limited | considerable economic importance. control complexity. This

that has bee 1 : Using a previously developed eco- could also be used 1o assess the cosis

generated either conflicting results or - nomic aodel of software mainte- and benefits of a class of computer-

mple, on the nance as a vehicle [2), this rescarch aided software engineering (CASE)

ware structure |6,

none of the pr
estimates of the act

iy, estimates that could
software maintenance i
make the best of their reso
While resecarch supporting
statistical significance of a

course, a ne

the pra
tudes of the effects of complex
e able to make

This study analyzes the effects of
software complexity on the costs of
Cobol maintenance projects within a
large commercial bank. It has been
estimated that 60 percent of all bus-
ness expenditures on computing are
for maintenance of software written

bl [16]. Since over 540 billhon

complexity on the costs software
maintenance projects in a wraditional
IS environment. The model employs
dridimensional approach o
wing software complexity, and

i controls for Jisonal projece f
wrs under managerial control t
are believed to affect maintenanc
project costs,

he analysss confirms that soft
ware maintenance costs are signify
cantly affecied by software complex
ity, measured in three dimension:
module size, procedure size, ar
branching complexity. The findings
presented here also belp to resolve
the current debate over the func
tional form of the relationship be
tween software complexity and the
cost of software ce. The

y ¥ es actual dol-
lar estimates of the magnitude of thas

ity and soft estimates the impact of soltwar tools known as restructurers

Previous Research
Conceptual Model

Softuvere mamtenance and compleaty
I'his research adopts the ANSIIEEE

ndard 729 definion of mair
nance: modificar of a sofiware
product after delivery w correa
s, 10 improve performance or
wributes, or 1w adapt

product 10 a changed enviromm
[28). Research on the costs of soft-
ware maintenance has much in com
m with rescarch on the costs of
new software development, since
slve the creat o working
1 the efforts of human
juipped with approprs
twols, and techmgues
how s
fundamentally differemt from new
systems development in that the sofi

Bad Smells increase maintenance cos
[Banker et al. Communications of the ACM

1S

Negative Im

hact of Bac

Smells

An exploratory study of the impact of antipatterns
on class change- and fault-proneness

Foutse Khomh - Massimiliano Di Penta -

Yann-Gaél Guéhéneuc - Giuliano Antoniol

Bad Smells increase change- and fault-proneness

[Khomh et al. EMSE 201 2]

aluating the Lifespan of Code Smells using Software Repository Minin

Raiph Peters
Delft University of Technology
The Naherlands

Abstract—An anti-pattern is a commoaly occurring solution
(0 a recurring problem that will typically negatively impact
code quality Code smells are comsidered to be symptoms of
anti-patterns and occur at source code level. The lifespan of
code smells in a software system can be determined by mining
the software repesitory on which the system i stored This
provides imsight into the behaviour of software developers
with regard to resolving code smells and anti-pattems In
a case study, we investigate the lifespan of code smells and
the refactoring behaviour of developers in sven open source
systems. The results of this study indicate that engineers are
aware of code smells, but are not concerned with their
impact, given the low refactoring acth

management of the pro

software over time for v

Lehman [

software system wants to remain suo

the successfulevolution of softw are is becoming increasingly
critical, given the growing dependence on software at all
levels of society and economy [2]

Unfortunately, changes to a are sysem sometimes
introduce inconsisiencies i its design, thereby invalidating
the mal design [2] and causing the structum of the
software to degrade. This structural degradation makes sub-
sequent software evolution harder, thereby standing in the
way of a successful software product

While many ty of mconsisencies can possibly be
introduced into the design of a sysem (e unforeseen
exception caes and conflicting nventions), this
study focuses on a particular type of mconsisency called
an anti-patem. An anti-pagern is defined by Brown et
al [3] as a commonly occurring solution that will always
fenerake . s when it is applied to a
recurring problem. Detection of anti-patterns typically hap-
pens through code smells, which are symptoms of anti
patierns [4]. Exampies include god classes, larpe methods,
long parameter lists and code duplication [5]

In this stady we investigale the lifespan of several c
smells. In order to do so, we follow a software mpository

oach, Le., we extract (implicit) information from
version sysems about how developers work on a

Andy Zaidman
Delft University of Tec

The Netherlands
Email: a e zaidman@tudeifi.nl

sysem [6]). In particular, for each code smell we delermine
when the infection takes place, ie., when the ©
mtroduced and when the undert: cau® is refactored
Having knowledge of the lifespans of code smells, and
thus which code smells tend to stay in the soarce code for a
ng time, provides insight into the perspective and aware
ers on code smells Our research is
seered by the following msearch questions:
RQ1 ode smells refactored more and
quicker than other smell types?
R relatively more code smells being refactored at an
early or later stage of a sysem’s life cycee?
RQ3 Do some developers refactor more code smells than
others and to what extent?
RQ4 What refactoring rationales for code smells can be
dentified?
The structum this paper is as follows: Section II
provides some background, afier which
details of the implementation of
presents our case study and its results Sec
ik Section VI introduces related work.
Section VII des this paper.
II. BACKGROUND
s section provides theoretical background information
on the subjects related to this study.
A. Code Smells
Them is no widely accepted definition of code smells. In
the introduction, pscribed code smells as symptoms of
a deeper problem, also known as an anti-patern. In fact,
code smells can be considered anti-patems at program
ming level rather than design level. Smells such as large
tasses and methods, poor information hiding and redundant
message passing are mgarded as bad practices by many
softwam engincers. However, there is some subjectivity to
this determi ‘hat developer A wes as a code smell
may be considered by developer B as a valuable so
with acceptable negative side effects. Naturally, this al
depends on the context, the programming language and the
Evelopment met 8Y.
The interpretation most widely used in literature is the one
by Fows He sees a code smell as a structur that needs

Developers are aware of code smells,
but not very concerned about their impact

Peters and Zaidman - CSMR 2012]

Studies triec

explaining their lifes

Innovations Syst Softw Eng
DOI 10.1007/s113

SI: QUATIC 2010

Investigating the evolution of code smells in object-oriented
systems

Alexander Chatzigeorgiou - Anastasios Manakos

ted: 6 April 2013
_ondon 2013

Abstract Software design problems are known and per-
ceived under many different terms, such as code smells,
flaws, non-compliance to design principles, violation of
heuristics, excessive metric values and anti-patterns, signi-
fying the importance of handling them in the construction
and maintenance of software. Once a design problem is iden-
tified, it can be removed by applying an appropriate refa

toring, improving in most cases several aspects of quality
such as maintainability, comprehensibility and reusability.
This paper, taking advantage of recent advances and tools
in the identification of non-trivial code smells, explores the
presence and evolution of such problems by analyzing past
versions of code. Several interesting questions can be investi-
gated such as whether the number of problems increases with
the passage of software generations, whether problems van-
ish by time or only by targeted human intervention, whether
code smells occur in the course of evolution of a module or
exist right from the beginning and whether refactorings tar-
geting at smell removal are frequent. In contrast to previous
studies that investigate the application of refactorings in the
history of a software project, we attempt to analyze the evo-
lution from the point of view of the problems themselves. To
this end, we classify smell evolution patterns distinguishing
deliberate maintenance activities from the removal of design
problems as a side effect of software evolution. Results are
discussed for two open-source systems and four code smells.

Keywords Code smell - Refactoring - Software
repositories - Software history - Evolution

A. Chatzigeorgiou () - A. Manako:
Department of Applied Informatics, University of Macedonia,
Thessaloniki, Greece
e chat@uom.gr
A. Manakos
10932 @uom.gr

Published online: 21 April 2013

1 Introduction

The design of software systems can exhibit several problems
which can be either due to inefficient analysis and design
during the initial construction of the software or more often,
due to software ageing, where software quality degenerates
over time [27]. Declining quality of evolving systems is also
something that is expected according to Lehman’s 7th law
of software evolution [18]. The importance that the software
engineering community places on the detection and resolu-
tion of design problems is evident from the multitude of terms
under which they are known. Some researchers view prob-
lems as non-compliance with design principles [20], viola-
tions of design heuristics [29], excessive metric values, lack
of design patterns [12] or even application of anti-patterns
[3].

According to Fowler [11], design problems appear as
“bad smells” at code or design level and the process of
removing them consists in the application of an appropri-
ate refactoring, i.e. an improvement in software structure
without any modification of its behavior. Refactorings have
been widely acknowledged mainly because of their simplic-
ity which allows the automation of their application. More-
over, despite their simplicity, the cumulative effect of succ
sive refactorings on design quality can be significant. Their
popularity is also evident from the availability of numerous
tools that provide support for the application of refactorings
relieving the designers from the burden of their mechanics
[24].

According to the recommendations proposed by Lehman
and Ramil for software evolution planning [18], quality
should be continuously monitored as systems evolve. This
implies that past versions of a software system should be
analyzed to track changes in evolutionary trends. To this end
organized collections of software repositories offer an ads

In the vast majority of these cases code
smell disappearance was not the result of
targeted refactoring activities but rather a

side effect of adaptive maintenance.

Chatzigeorgiou et al. - QUATIC 2010]

... their evolution

Understanding the Longevity of Code Smells
Preliminary Results of an Explanatory Survey

Roberta Arcoverde Alessandro Garcia Eduardo Figueiredo
Opus Group, PUC-Rio - Brazl Opus Group, PUC-Rio - Brazl UFMG - Brazil

rarcoverde@inf puc-rio_br afgarcia@inf_puc-rio.br figueiredo@dcc.ufmg.br

ABSTRACT
Thare is growing sexpirical svidance that ome (pattaras of) code
smalls wem 1o be, sithar deliberately or mot, igmored. Mors

loagevity of code smslls i software projects. A
slaborated and distribated to developars, 2nd

General Term:

Msasurement, Experimentation, Human Factors.

Keywords

Refactoning smalls, aempirical study.

1. INTRODUCTION

Code smells are symptoms = the source code that potentially
indicats 2 deoper maintamability problem [2]. Small occurrsac
represent structural amomalis often make the program lo:
flaxible, harder o read and to changs. Cods smalls extad svidence
of bad quality code i amy kind of software. Howewer, bod
detocting 22d remo ancmalies we s18e mors Importaz:
when reusable codn

generated appications, propagating the
code amomalics to several derived artifac arder to aveid these
problens, developers should eliminate cods smells befors du,
have besa propagased to other applications. Refactoring)
most commom approach for removing anomalis which refactorings are pmm:ud \u.) which rw&::m: v
considered % be harder to apply, and (iv) how often and when
refactoring tools are used.

m:hmn]o:r Fcc example, cur stady shows
5 wols are zot used is

Developers deliberately postpone
refactorings for different reasons

[Arcoverde et al. - IWRT 201]

longevity. ..

Why!

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL NO.7, JULY 2014

An Empirical Study of Refactoring
Challenges and Benefits at Microsoft

Miryung Kim, Member, IEEE, Thomas Zimmermann, Member, IEEE, and
Nachiappan Nagappan, Member, IEEE

Abstract—It is widely believed that refactoring improves software quality and developer productivity. However, few empirical studies
quantitatively assess refactoring benefits or investigate developers’ perception towards these benefits. This paper presents a field
study of refactoring benefits and challenges at Microsoft through three complementary study methods: a survey, semi-structured
interviews with professional software engineers, and quantitative analysis of version history data. Our survey finds that the refactoring
definition in practice is not confined to a rigorous definition of semantics-preserving code transformations and that developers perceive
that refactoring involves substantial cost and risks. We also report on interviews with a designated refactoring team that has led a multi-
year, centralized effort on refactoring Windows. The quantitative analysis of Windows 7 version history finds the top 5 percent of
preferentially refactored modules experience higher reduction in the number of inter-module dependencies and several complexity
measures but increase size more than the bottom 95 percent. This indicates that measuring the impact of refactoring requires multi-

dimensional assessment

Index Terms—Refactoring, empirical study, software evolution, component dependencies, defects, churn

1 INTRODUCTION

Il’ is widely believed that refactoring improves software
quality and developer productivity by making it easier to
maintain and understand software systems [1]. Many believe
that a lack of refactoring incurs technical debt to be repaid in
the form of increased maintenance cost [2]. For example,
eXtreme programming claims that refactoring saves devel-
opment cost and advocates the rule of refactor mercilessly
throughout the entire project life cycles [3]. On the other
hand, there exists a conventional wisdom that software engi-
neers often avoid refactoring, when they are constrained by
alack of resources (e.g., right before major software releases).
Some also believe that refactoring does not provide immedi-
ate benefit unlike new features or bug fixes [4].

Recent empirical studies show contradicting evidence on
the benefit of refactoring as well. Ratzinger et al. [5] found
that, if the number of refactorings increases in the preceding
time period, the number of defects decreases. On the other
hand, Wei3gerber and Diehl found that a high ratio of refac-
toring is often followed by an increasing ratio of bug reports
[6], [7] and that incomplete or incorrect refactorings cause
bugs [8]. We also found similar evidence that there exists a
strong correlation between the location and timing of API-
level refactorings and bug fixes [9].

These contradicting findings motivated us to conduct a
field study of refactoring definition, benefits, and challenges

M. Kim is with the Department of Electrical and Computer Engineering at
the University of Texas at tin.

T. Zimmermann and N. Nagappan are with Micro search at
Redmond.

Manuscript received 25 Mar . 2014; accepted 16 Mar,
sion 18 July 2014.
mmended f;
formation on obtaining reprints of this article, please send e-mail to:
cee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2014.2318734

14 |EEE. Personal use is permitted, but repub

in a large software development organization and investigate
whether there is a visible benefit of refactoring a large system.
In this paper, we address the following research questions:
(1) What is the definition of refactoring from developers’ per-
spectives? By refactoring, do developers indeed mean behav-
ior-preserving code transformations that modify a program
structure [1], [10]? (2) What is the developers’ perception
about refactoring benefits and risks, and in which contexts do
developers refactor code? (3) Are there visible refactoring
benefits such as reduction in the number of bugs, reduction
in the average size of code changes after refactoring, and
reduction in the number of component dependencies?

To answer these questions, we conducted a survey with
328 professional software engineers whose check-in com-
ments included a keyword “refactor™. From our survey par-
ticipants, we also came to know about a multi-year
refactoring effort on Windows. Because Windows is one of
the largest, long-surviving software systems within Micro-
soft and a designated team led an intentional effort of sys-
tem-wide refactoring, we interviewed the refactoring team
of Windows. Using the version history, we then assessed
the impact of refactoring on various software metrics such
as defects, inter-module dependencies, size and locality of
code changes, complexity, test coverage, and people and
organization related metrics.

To distinguish the impact of refactoring versus regular
changes, we define the degree of preferential refactoring—
applying refactorings more frequently to a module, relative
to the frequency of regular changes. For example, if a module
is ranked at the fifth in terms of regular commits but ranked
the third in terms of refactoring commits, the rank difference
is 2. This positive number indicates that, refactoring is prefer-
entially applied to the module relative to regular commits.
We use the rank difference measure specified in Section 4.4
instead of the proportion of refactoring commits out of all

n requires IEEE permission.
m

butios
ublications_standards/publicati hts/index.htmi for m

Developers perceive refactoring

Kim et al. -

iInvolves substantial cost and risks

TSE 2014]

WHEN AND WHY

YOUR CODE STARTS .
TO SMELL BAD

Study Design

Blob
Class Data Should Be Private

Complex Class

Functional Decomposition

Spaghetti Code

smells considered from the
catalogues by Frowler and Brown

Class Data Should Be Private

A class exposing Its attributes, violating the
information hiding principle.

Complex Class

A class having high cyclomatic complexity

Functional Decomposition

A class where inheritance and polymorphism
are poorly used, declaring many fields and
implementing few methods

Spaghettl Code

A class without a structure that declares long
methods without parameters

Study Design

.

The Apache Software

Foundation i / - A
CND=0ID
/ °
——eclipse
W

different ecosystems analyzed

Study Design

total analyzed systems

When are code smells
Nntroduced

VWHEN blobs are introduced

Commits required to a class for becoming smell

(I) 2|5 5|0 75 100
| |

Generally, blobs affect a class
since its creation

There are several cases in which a blob Is introduced
1es

VWhy are code smells
introduced

VWHY are code smells introduced

Bug Fixing Enhancement ~ INew Refactoring
Feature

{ Blob

Class Data Should
Be Private

™
—

Complex Class

Functional
Decomposition

(Spaghetti Code

0 25 50 75 100

VWHY are code smells introduced

Class Data Should
Be Private

Functional
Decomposition

| | | | |
0 25 50 75 100

VWHY are code smells introduced

Class Data Should
Be Private
.
Complex Class W
f b]
Functional
Decomposition

Spaghetti Code

J

0 25 50 75 100

“IWe don't see things as they are,
we see things as we are”
Anais Nin

bl WO e O
N e

S
e S 2

STIHYIESon

Class Data Should Be Private B

e —

Argo UML 0.34

Gomplex Glass | Eclinse 3.6.1
Feature Envy B jEdit45.1
God Class - -
Inappropriate Intimacy B
Lazy Class " Original Developers:
Long Method 10
l““gmlz:::::em;?; List | Industrial geveloners
Refused Bequest |
Snaghe“i Code \ | Master's Students
Speculative Generality 1

|
|

STTHVDESION

In your opinion, does this code

component exhibit any design and/or
implementation problem?

|

7 \

|
|
|

In your opinion, does this code

component exhibit any design and/or
implementation problem!?

* It YES, please explain what are, in your
opinion, the problems affecting the code
component.

STUNYDESION

/4 Y

 Smelly Class

In your opinion, does this code

component exhibit any design and/or
implementation problem?

* It YES, please explain what are, in your
opinion, the problems affecting the code
component.

* It YES, please rate the severity of the
design and/or implementation problem
by assigning a score on the following five-

points Likert scale: | (very low), 2 (low),
3 (medium), 4 (high), 5 (very high).

Jted to long/complex code, while

on the intensity of the problem
[Palomba et 3l - ICSME 2014]

s are able to perceive smells rel

Developer
ved depending

ceveral instances are perce

— — I—
R el PR o Ll e

) -

A\ Tl B

hy
. -y

e OO Java - ant_intermediate/src/org/apache/tools /ant/taskdefs/optional/IContract.java - Eclipse - /Users/fabiopalomba/Documents /workspacelndigo e
- ;;{'vi tpi /:i g1 4“ v ‘l:f v = v I CQ Quick Access) ‘ 12} ‘ ajjava
— —
// Set the classpath that is needed for regular Javac compilation
Path base(lasspath = createClasspath();
ler = getProject().getProperty("build.compiler");
sspa per classpathHelper = new ClasspathHelper(compiler);
spathHelper.mog

// Cr the

Path beforel
5 afterInstrumentationClasspath.append(new N
56 afterInstrumentationClasspath.append(new b
56 afterInstrumentationClasspath.append(new N
568 afterInstrumentationClasspath.append(new N
569 \
570 Create the classpath required to automatically compile the repository
571 Pa \\E?ositoryCIQSSpath = ((Path) base(lasspath.clone());
/e N
573 rcposit6;\\\<fspath append(new Path(getProject(), instrumentDir.getAbsolutePath()));
574 reposttoryCla‘~~-th append(new Path(getProject(), srcDir.getAbsolutePath()));
575 reposxtoryClasspa\; -;pend(new Path(getProject(), repositoryDir.getAbsolutePath()));
576 reposxtory(lasspath app Path(getProject(), buildDir.getAbsolutePath()));
k:'r 3
578 // Create the classpath requirdgtor iContract itself
579 Path iContractClasspath = ((Path) Bgllasspath.clone());
580 N
581 iContractClasspath.append(new Path(getProject stem getProperty("java.home") + File.separator + ".." + File.separator + "1ib" + File.separato "tools.jar"));
582 iContract(lasspath.append(new Path(getProject(), s getAbsolutePath()));
583 iContract(lasspath.append(new Path(getProject(), repositorRg ﬁgetAbsolutePoth())).
584 iContractClasspath.append(new Path(getProject(), instrumentDir.Ow -JsolutePoth())),
585 iContractClasspath.append(new Path(getProject(), buildDir.getAbsolutePomsRg
586
587 // Create a forked java process
588 Java iContract = (Java) getProject().createTask("java");
590 iContract.setTaskName(getTaskName());

Writable Smart Insert 563:13 : do @@ BOI s ot

Refactoring operations are generally focused on code
components for which quality metrics do not suggest there
might be need for refactoring operations

The relation between code smells and refactoring Is stronger

O of refactoring operations are
performed on code entities
O affected by code smells.

However, often refactoring fails in removing code smells!

/76

of the performed operations
actually remove the code
smells from the affected class.

d
O
=0
O
<
Z
8
(&
\©
o
-
O
+-
)
<
D
O
2

|

[TLTITT LTI

More Automation is Needed!

Detectors able to Take into Account the Findings on

Code Smell Introduction!

More Automation is Needed!

Detectors able to Take into Account the Findings on e
Code Smell Introduction! e i

.
LTI

Detectors able to Produce Suggestions Closer to the
Developers’ Perception of Design Problems!

) e ——

VWhere to refactor

GO.)SIL’ code smell detection

Scholar ,f.fz 5eC

o >

‘‘‘‘‘
Xy
\ | “
Yy

proaches and tools have
n structural analysis

To detect code smells, several ap
been propose

d most of them relying O

R 1 i il

Metric-based code smell detection

HEI@)M WMC CRE

Metric-based code smell detection

HEI@)M WMC CRE

20 IEEE TRANSACTIONS ON SOFTWASE ENGINEERING, VOL 38, NO. 1, JANUARY/FEBRUARY 2010

DECOR: A Method for the Specification

Text-hased descriptions of smells

and Detection of Code and Design Smells]

| Domain Analysis
Naouel Moha, Yann-Gaél Guehéneuc, Laurence Duchien, and Anne-Frangoise Le Meur .L\k
\ ,

Abstract—Code anc cesign smells are poor soluticns to récurring implementation and design problems. They may hinder the

avolution of a sysiem by making it harg for software engineers to camry out changes. We propase three contributions 1o the research

fiald related to code and design smells: 1) DECOR, a method that embodies and cefines all the steps necessary for the speacification

and cetection of code and design smells, 2) DETEX, a detection technigue that instantiates this methed, anc 3) an empirical validation

In terms of precision and recall of DETEX. The originality of DETEX stems from the abdity for software enginears to specify smels at a

high level of abstraction using & consistent vocabulary and domain-specific language for automatically generating detection algorthms.,

Using DETEX, we specify four well-known design smelis: the antipatierns Blob, Functional Decomposition, Spaghetii Code, and Swiss “ﬂ ca I' “ I a r Taxn “ n m
Army Knile, and their 15 underlying coce smells, and we automatically gererate their detection algorithrns. We apply and validate the ¥y

detaction algortihms In tarms of precision and recall on XEACES v2.7.0, and discuss the precision of these algonthms on 11 opan-

Source Systems.

Index Terms—Antpattarns, cesign smels, code smalls, spacification, metamedeling, detection, Java,

+

1 INTRODUCTION !

- - -
|
OFTWARE systems need to evolve continually to cope with by classes without structure that declare long methods ‘\\ s n ec I'I catl 0 n
ever-changing requirements and environments. How- 1

without parameters. The names of the classes and methods
ever, opposite to design patterns [1], code and design smells may suggest procedural programming. Spaghetti Code K

—"poor” solutions to recurring implementation and design does not exploit object-oriented mechanisms, such as

problems—may hinder their evolution by making it hard polymorphism and inheritance, and prevents their use.

for software engineers to carry out changes. We use the term “smells” to denote both code and design
Code and design smells include low-level or local gmells. This use does not exclude that, in a particular context,

problems such as code smells (2], which are usually 3 gmell can be the best way to actually design or implement a

symptoms of more global design smells such as anti- jogon For example, parsers generated automatically by

{)lauerm [1]] Code smells ?fed indicators ‘131' 5."'}':“5";’“'5’[;’; parser generators are often Spaghetti Code, ie., very large n“le cards
he possible presence of design smells. Fowler e with v ., cuch clacses
presented 22 code smells, structures in the source code classes with very long methods. Yet, although such classes

that suggest the possibility of refactorings. Duplicated “smell,” software engineers must manually evaluate thelr

code, long methods, large classes, and long parameter lists P"”;t]s“egﬁme i':""“;;“‘”‘“"g* ot th.e[clc?n:;t. the cos
are just a few symptoms of design smells and opportu- ESCES0N OF SNASES CAN USRNSSR SRCHOR tun cost

nities for refactorings of subsequent activities in the development and mainte-
One example of a design smell is the Spaghetti Code nance phases [4]. However, detection in large systems is a

antipattern,’ which is characteristic of procedural thinking Very time and resource-consuming and error-prone activity P - ' ' -
in object-oriented programming. Spaghetti Code is revealed [5] because smells cut across classes and methods and their |

descriptions leave much room for interpretation. \, — —
This smell, Fxe those presented later on, is really in between Several approaches, as detailed in Section 2, have been I I I
|}
\k

implementation and design. proposed to specify and detect smells. However, they have
three limitations. First, the authors do not explain the - —

© N Mok is with the Triskell Team, [RISA—Université de Rennes 1, Roowe 300alysis leading to the specifications of smells and the
F233, INRIA Renmes-Bretagne Atlantique Campus de Besuliew, 35042 underlying detection framework. Second, the translation of

Rernes cedex, France. E-mati: mohs@irisafr. =~ .. the specifications into detection algorithms is often black
o Y.-G. Guéheneuc is with the Département de Génie Informatigue et Genie box. which) licati Finally, th hors d

Logiciel, Ecole Polytechnique de Maontrésl, C.P. 6079, succursale Centre X, which prevents rep fca“m' rinally, the authors 0 not

Ville Montréal, QC, H3C 3A7, Canads. present the results of their detection on a representative set

E-mail: yenn-gael guchemeuc@polymtl.oa. f smells and svs s w comparison o - -
o L. Duchien and A-F. Le Mewr are with INRIA, Lille-Nood Ewrope, Parc or § mih. a;_xd f‘ ys tems :‘)j a“‘ouJ comparis a‘,“" l\g‘

Scéentifique de la Haule Borne 40, svenue Halley-B4), A, Park Plaza 59650 3PProaches. 5o lar, reported results concern proprietary

Villemeuve d'Ascq, Framce systems and a reduced number of smells.

E-mail; [Laurerce, Duckien, Anne-Francosse. Le_Meur)8inria fr We present three contributions to overcome these
Manwscript received 27 Aug, 2008; revised & May 2005; acorpted 19 M2y limitations. First, we propose DEtection & CORrection”
WY 1, 4 L) ”ny . .

209; puiished ontine 31 July 2009, (DECOR), a method that describes all the steps necessary

Recommended for acceptarce by M, Harmaen

For information on obtaining reprints of this article, please send e-mail lo: for the Sl:’eCiﬁC‘llion and detection of code and def'ign
tellcompueter.org, and reference [EEECS Log Number TSE-20N8-08-0255 O a e a
Digital Object Mentifier mo, 10.1109/7SE.2009,50, 2. Correction is future work L}

CONE-2580105.00 © 2010 IEEE Putisted by he IEEE Corrputer Sccany

)

.
r

50R

The Blob
controller ¢

(also called God class) corresponds to a large I
ass that depends on data stored in surrounding

data classes. A large class declares many fields and methods |

with a low co

nesion. A controller class monopolizes most of the

processing done by a system, takes most of the decisions, and
closely directs the processing of other classes. Controller
classes can be identified using suspicious names such as
Process, Control, Manage, System, and so on. A data class

contains only

data and performs no processing on these data.

It is composed of highly cohesive fields and accessors.

[Moha et al. TSE 2010]

JEGUI

‘ Y LEXIC CLASSNAME {Manager,
| @Ernlc LCOM VERY HIGB-— Low Cohesion /-‘ Controller Class (Process, Control, etc.))
\
‘ @
\ —
\ METRIC NMD+NAD i ™~ Method LEXIC METHODNAME {Manager,
(VERY_HIGH) rgeClass @ Controller Met Process, Control, etc.})

| e METRIC NMNOPARA
ONE
| (nacc very_HicH)~—(DataClass (VERY_HIGH D
— Blob
associated 1o (METRIC LOC METHOD

MANY VERY_HIGH)

@Ernlc NINTERF VERY _HIGB

STRUC
USE GLOBAL _VARIABL

LEXIC CLASSNAME {Make, Create, (
C Exec, Computfe, gtg} rea) /
UseGlobalVariable

mpositio

Spaghetti
Code

assoclatey to
MANY

(METRIC NPRIVFIELD HIGH><— Field Private
Class One
(METRIC NMD VERY LO@«—

@Emlc DIT)

STRUC
NO_POLYMORPHISM

No Polymorphism) =

[Moha et al. TSE 2010]

DECOR

RULE_CARD : Blob {

RULE : Blob {ASSOC: associated FROM : mainClass ONE TO : DataClass MANY};
RULE : MainClass {UNION LargeClass, LowCohesion, ControllerClass};

RIRER Ao Class {(METRIC : NMD + NAD,VERY_HIGH, 203 1

RERER e Cohesion { (METRIC ;: LCOMS5,VERY_HIGH', 20) 15
REESREentolierClass { UNION (SEMANTIC : METRODNAME,

{Process, Control , Ctrl , Command , Cmd, Proc, Ul, Manage, Drive})

NG CIEASSNAME, { Process, Control, Ctrl, Command', Crnd e el
Manage, Drive , System, Subsystem }) } ;

R atal ass {(STRUCT: METHOD_ ACCESSOR, 907%)} ;

}, [Moha et al. TSE 2010]

20 IEEE TRANSACTIONS ON SOFTWASE ENGINEERING, VOL 38, NO. 1, JANUARY/FEBRUARY 2010

DECOR: A Method for the Specification
and Detection of Code and Design Smells

Naouel Moha, Yann-Gaél Guéhéneuc, Laurence Duchien, and Anne-Frangoise Le Meur

Abstract—Code and design smealls are poor solutions 1o recurring implementation and design problems. They may hinder the
avolution of a sysiem by making it harg for software anginears to cary out changes. We propase three contributions 1o the research
fiald refated to code and design smells: 1) DECOR, a method that embodies and delfines all the steps necessary for the spacification
and cetection of code and design smells, 2) DETEX, a detection technigue that instantiates this methed, anc 3) an empirical validation
In terms of precision and recall of DETEX. The onginality of DETEX stems from the abdity for software engireers to specfy smels at a
high level of abstraction using & consistent vocabulary and domain-specific language for automatically generating detection algorthms.,
Using DETEX, we specify four well-known dasign smels: the antipatierns Blob, Functional Decomposition, Spaghetil Code, and Swiss
Army Knife, and their 15 underlying code smells, and we automalically gererate their datection algorithens. We apply and vaidate the
detaction algorthms In terms of precision and recall on XERCES v2.7.0, and discuss the precision of these algonthms on 11 opan-

Source Systems.

Index Terms—Anipatterns, cesign smals, code smalls, spacitication, metamodeling, datection, Java,

1 INTRODUCTION

OFTWARE systems need to evolve continually to cope with

ever-changing requirements and environments. How-
ever, opposite to design patterns [1], code and design smells
—"poor” solutions to recurring implementation and design
problems—may hinder their evolution by making it hard
for software engineers to carry out changes.

Cede and design smells include low-level or local
problems such as code smells [2], which are usually
symptoms of more global design smells such as anti-
patterns [3]. Code smells are indicators or symptoms of
the possible presence of design smells. Fowler [2]
presented 22 code smells, structures in the source code
that suggest the possibility of refactorings. Duplicated
code, long methods, large classes, and long parameter lists
are just a few symptoms of design smells and opportu-
nities for refactorings.

One example of a design smell is the Spaghetti Cede
antipattern,’ which is characteristic of procedural thinking
in object-oriented programming. Spaghetti Code is revealed

This smell, e those presented later on, is really in between
implementation and design.

o N. Mcha 15 with the Triskell Team, IRISA—Universite de Renmes 1, Room

Sceentifique de la Haule Borne 40, svenue Halley-B8, A,
Wemeuve d'Ascg, France
~mail; [Lauremce, Duckien, Anne-Francodse e Meur) 8Binria.fr

; revised 8 May 2009; acoepied 19 May

tarce by M, Harman
on o obtaiming reprints of this article, please send e-mail o

by classes without structure that declare long methods
without parameters. The names of the classes and methods
may suggest procedural programming. Spaghetti Code
does not exploit object-oriented mechanisms, such as
polymorphism and inheritance, and prevents their use.

We use the term “smells” to denote both code and design
smells. This use dees not exclude that, in a particular context,
a smell can be the best way to actually design or implement a
system. For example, parsers generated automatically by
parser generators are often Spaghetti Cede, ie., very large
classes with very long methods. Yet, although such classes
“smell,” software engineers must manually evaluate their
possible negative impact according to the context.

The detection of smells can substantially reduce the cost
of subsequent activities in the development and mainte-
nance phases [4]. However, detection in large systems is a
very time and resource-consuming and error-prone activity
[5] because smells cut across classes and methods and their
descriptions leave much room for interpretation.

Several approaches, as detailed in Section 2, have been
proposed to specify and detect smells. However, they have
three limitations. First, the authors do not explain the
analysis leading to the specifications of smells and the
underlying detection framework. Second, the translation of
the specifications into detection algorithms is often black
box, which prevents replication. Finally, the authors do not
present the results of their detection on a representative set
of smells and systems to allow comparison among
approaches. So far, reported results concern proprietary
systems and a reduced number of smells.

We present three contributions to overcome these
limitations. First, we propose DEtection & CORvrection”
{DECOR), a method that describes all the steps necessary
for the specification and detection of code and design

2. Correction is future work

Detect instances of four code
smelis (i.e., Blob, Functional
Decomposition, Spaghetti Gode,
and Swiss Army Knifelon 9
software systems

Average Recall: 100%
Average Precision: 60.9%

[Moha et al. TSE 2010]

But some smells are
intrinsically characterized hy
how code evolves over time

e,

-

-

v

v

/L

FATAN I EITEITNTE

Every time you make a subclass of one ¢

class, you also have to make a subclass
of another

A B
method1() method1()
method?2()

B I =y |

LATAICIR RIS

Every time you make a subclass of one ¢

class, you also have to make a subclass

of another
DR Tt “‘"—"_'d
A B
method1() method1()
method?2()
== A | ==y A]
C D
method1() method1()
method3()

LAIAICIRNNCHIANTE

Every time you make a subclass of one *
class, you also have to make a subclass §

of another
L eee— e —————RO
A B
method1() method1()
method?2()
C | E ' D ' F
method1() method1() method1/() method1/()
method3() method2() methodd()

WOV

Historical Information,
for Smell deTection

Extracting Ghange History Information

apache / ant ® Watch~ 33 *star 222 YFork 213

<> Code Pull requests 8 Projects 0 Insights

Branch: master »

Commits on Nov 20, 2018

A typo ac46ffl

Gintas Grigelionis committed 11 days ago

Fix javadoc 360890F

Gintas Grigelionis committed 12 days ago

Commits on Nov 19, 2018

Make DataType and Reference generic 57895 fd

Gintas Grigelionis committed 12 days ago

Remove unused imports bd82d18

Gintas Grigelionis committed 13 days ago

Refactor getZipEntryStream 2c2cdb0

Gintas Grigelionis committed 13 days ago

Commits on Nov 18, 2018

Avoid leaks in AntAnalyzer aff7eef

Gintas Grigelionis committed 14 days ago

Extracting Ghange History Information

apache / ant ® Watch~ 33 *star 222 YFork 213

<> Code Pull requests 8 Projects 0 Insights
Branch: master v

Commits on Nov 20, 2018

A typo ac46ffl
Gintas Grigelionis committed 11 days ago

Fix javadoc 360890F

Gintas Grigelionis committed 12 days ago

Commits on Nov 19, 2018

Make DataType and Reference generic

Gintas Grigelionis committed 12 days ago

Remove unused imports bd82d18

Gintas Grigelionis committed 13 days ago

Refactor getZipEntryStream 2c2cdb0

Gintas Grigelionis committed 13 days ago

Commits on Nov 18, 2018

Avoid leaks in AntAnalyzer aff7eef
Gintas Grigelionis committed 14 days ago

Extracting Ghange History Information

Make DataType and Reference generic

P master

Gintas Grigelionis committed 12 days ago
Showing 57 changed files with 379 additions and 261 deletions.

6 mEmEEm src/etc/testcases/taskdefs/tar.xml
=2

<untar src="${output}/testll.tar.bz2" dest="${output}/untar"
compression="bzip2"/>

</target>

<target name="feather">
<tar destfile="${output}/asf-logo.gif.tar"

1 parent bd82d18 commit 57895fd06465933703cdb955

<untar src="${output}/testll.tar.bz2" dest="${output}/untar"
compression="bzip2"/>

</target>

<target name="testTarFilesetWithReference">
<fileset id="xml.fileset" dir="." includes="x.xml"/>
<tar destfile="${output}/testtar.tar">
<tarfileset prefix="pre" refid="xml.fileset"/>
</tar>

</target>

<target name="feather">
<tar destfile="${output}/asf-logo.gif.tar"

Extracting Ghange History Information

git log
—

log download

Extracting Ghange History Information

glt log

‘ files modified rr

log download

Extracting Ghange History Information

git log — files modified
q q

log download

ﬂ commit |
. h commit i+1 ‘ ‘
I code analyzer

GChange History Extractor

log download code analyzer

Association rule discovery Analysis of change
to capture co-changes frequency of some specific
between entities entities

r\es

Cl

) 3 4GS

Changes occurring in snapshots

F\es

A A
C C
C) 3 4GS

Changes occurring in snapshots

divergent change

Code Smells Detector
blob

detection accuracy

detection accuracy

detection accuracy

20 open source
systems

HIST and
the CA techniques
are highly compiementary

Structural and Historical Analysis are
only a part of the whole story

JToward a New Dimension of
Code Smell Detection

The textual content of source
code can provide useful hints for smell detection

/* Insert a new user in the system.

% @param pUser: the user to insert.x/

public void insert(User pUser){

connect = DBConnection.getConnection();

String sql = "INSERT INTO USER"
+ "(login, first_name, last_name, password"

+ ",email,cell,id_parent) " + "VALUES ("

+ pUser.getLogin() + ","

+ pUser.getFirstName() + ","

+ pUser.getLastName() + "," — :

+ pUser.getPassword() + "," /* Delete an user from the system.

+ pUser.getEMail() + "," .k @param pUser: the user to delete.x/
+ pUser.getCell() + "," 'public void delete(User pUser) {

+

pUser.getIdParent() + ")";
connect = DBConnection.getConnection();
executeOperation(connect, sql);
} String sql = "DELETE FROM USER "
e + "WHERE 1d_user ="
+ pUser.getId();

executeOperation(connect, sql);

}

—— —

Indeed, source code vocabulary can be an useful
additional source of information

| Insert - new user system
pUser user insert
insert User pUser

connect DBConnection Connection

INSERT USER
login, first name, last name, password
email,cell, id parent

pUser Login
pUser FirstName
pUser LastName — :
pUser Password | Delete user system
pUser EMail | pUser user delete
pUser Cell | delete User pUser
pUser IdParent
connect DBConnection Connection
DELETE USER
e id user

pUser Id

~xtracting and Normalizing lext

private Connection connect = DBConnection.getConnection();

~xtracting and Normalizing lext

private Connection connect = DBConnection.getConnection();

@ Separating Composed |dentifiers

private Connection connect = DB Connection.get Connection();

~xtracting and Normalizing lext

private Connection connect = DBConnection.getConnection();

@ Separating Composed |dentifiers

private Connection connect = DB Connection.get Connection();

@ Lower Case Reduction

private connection connect = db connection.get connection();

~xtracting and Normalizing lext

private Connection connect = DBConnection.getConnection();

@ Separating Composed |dentifiers

private Connection connect = DB Connection.get Connection();

@ Lower Case Reduction

private connection connect = db connection.get connection();

Removing Special Characters, programming
keywords, and common English terms

connection connect = db connection get connection

~xtracting and Normalizing lext

private Connection connect = DBConnection.getConnection();

@ Separating Composed |dentifiers

private Connection connect = DB Connection.get Connection();

@ Lower Case Reduction

private connection connect = db connection.get connection();

Removing Special Characters, programming
keywords, and common English terms

connection connect = db connection get connection

@ Stemming

connect connect = db connect get connect

lextual Analysis for \
Code smell detectiOn

VWe believe that code affected by a sme
contains unrelated textual content

This is an example text with references to different documents.
This is one reference. This is an example text with references to
different documents. Two very similar refere; 1,[2] This 15 an
example text with references to different uments.This is an
example text with references to differen uments.Another
example. Another example.

This is an example text with referencds to different documents.
Another example. This is an exampleftext with references to
different documents.

This is an example text with referenges to different documents.
Another example. This is an example text with references to
different documents. Another example. This is an example text
with references to different docu ts.Another example. Another
example. Another example. This is an example text with
references to different documents.Another example.

Another example. This is an example text with references to
different documents.This is an exgmple text with references to
different documents. Another exarpple. This is an example text
with references to different documgents.Another example. Another
example. This is an example text With references to different
[—gocuments [3]. Another exampleThis is an example text with
references to different documents

Another example. This is an examjple text with references to
different documents.Another example. This is another reference.
Another example. This is an exanjple text with references to
different documents.Another example. This is an example text
with references to different docunpents. Example. This is an
example text with references to different documents.

\ 4 v
Doc A Doc B Doc C

E related | | stronglyj

related

Code
Component

Text Preprocessing

f Stemming)
' Term separation §

Stop word removal

textual component IR normalization
Srdirlalien process

ave.
smelliness |level

Smell Detector

dissimilarity block
computation extractor

lo de

‘ect smells, we need a threshold over the

proba

oility distribution

Smelliness Probability

As cut point, we select the median of the
~on-null values of the smelliness

TACO can identify 5 different code smells
characterized by promiscuous responsibilities

€O ca

@ aracten

t 5 different code smells

bromiscuous responsibilities

Feature Envy

Misplaced Class

Detecting Long Method instances

| insert User pUser

e e =

' | connect DBConnection Connection

INSERT USER
login, first name, last name, password
email,cell, id parent

pUser Login
pUser FirstName
pUser LastName
pUser Password
| pUser EMail
| pUser Cell
. pUser IdParent
DELETE USER
id user
pUser Id

X.Whang, L. Pollock, K. Shanker

“Automatic Segmentation of Method Code Into Meaningful Blocks: Design and Evaluation”™
JSIER JACHI S

Detecting Long Method instances

| insert User pUser

e e =

' | connect DBConnection Connection

INSERT USER
login, first name, last name, password
email,cell, id parent

pUser Login
pUser FirstName
pUser LastName
pUser Password

| pUser EMail

| pUser Cell

. pUser IdParent

DELETE
id user
pUser Id

X.Whang, L. Pollock, K. Shanker

“Automatic Segmentation of Method Code Into Meaningful Blocks: Design and Evaluation”™
JSIER JACHI S

Detecting Long Method instances

| insert User pUser

e e =

' | connect DBConnection Connection

INSERT USER .
login, first name, last name, password Method Cohesion
email,cell, id parent :

O Computation
pUser FirstName
pUser LastName
pUser Password
» pUser EMail
| pUser Cell
. pUser IdParent

"‘

DELETE
id user
pUser Id

X.Whang, L. Pollock, K. Shanker

“Automatic Segmentation of Method Code Into Meaningful Blocks: Design and Evaluation”™
JSIER JACHI S

Detecting Long Method instances

| insert User pUser

e e =

e

' | connect DBConnection Connection

INSERT USER
login, first name, last name, password
email,cell, id parent

Method Cohesion

Computation

pUser Login
pUser FirstName
pUser LastName
pUser Password
» pUser EMail .
l pUser - Cell Long Method Probability
. pUser.getidParentl) *_ Computation

DELETE
id user
pUser Id

X.Whang, L. Pollock, K. Shanker

“Automatic Segmentation of Method Code Into Meaningful Blocks: Design and Evaluation”™
JSIER JACHI S

Detecting Feature

-nvy Instances

Detecting Feature Envy Instances

;T - ’

| Xtracting the class Cdosest having the highest
| textual similarity with M | ’]‘

— —_— = e p————
= e ———— =

| Cclosest | ~mw£m3ww

methodl () | B
methodZ () e G

methodN()

Detecting Feature

- — — — = — — — _ =
———— = =

Cclosest

method | ()
method2()

methodN ()

-nvy Instances

s~

method | ()
method2()

methodN()

TACO - EBvaluating its performance

100
75 79 8 |
0 e 55 _
- 43
43
25 \ I \ I ,
. Blob it
M

B ACO
B Alternative Structural Technique

TACO - Evaluating its performance

+22%

on average In terms of F-Measure

TACO - Evaluating its performance

Method: tindTypesAndPackages()
Class: CompletionEngine - Eclipse Core

Goal: Discover the classes and the packages of a given project

TACO - Evaluating its performance

Method: tindTypesAndPackages()
Class: CompletionEngine - Eclipse Core

Goal: Discover the classes and the packages of a given project

65

Ines of code

TACO - Evaluating its performance

Method: tindTypesAndPackages()
Class: CompletionEngine - Eclipse Core

Goal: Discover the classes and the packages of a given project

A Structural Approach cannot
detect the smell

Ines of code

TACO - Evaluating its performance

Method: tindTypesAndPackages()
Class: CompletionEngine - Eclipse Core

Goal: Discover the classes and the packages of a given project

A Structural Approach cannot
detect the smell

‘/ TACO, instead, Is able to detect a |
Long Method instance |

ines of code - I

TACO - EBvaluating complementarity
with structural approaches

e

50

25

B Overlap
B Alternative Structural Technique
B TACO

Toward a combination of
code smell detection
techniques?

Code anc

Understanc

Test Smells

INg and

Detecting [hem

Smells In Test Code

Refactoring Test Code

Arie van Deursen Leon Moonen

CwWI
The Netherlands
http:/iwww.cwi.nl/~{arie,leon}/
{arie,leon}@cwi.nl

ABSTRACT

Two key aspects of extreme programming (XP) are unit
testing and merciless refactoring. Given the fact that the
ideal test code / production code ratio approaches 1:1, it is
not surprising that unit tests are being refactored. We found
that refactoring test code is different from refactoring pro-
duction code in two ways: (1) there is a distinct set of bad
smells involved, and (2) improving test code involves ad-
ditional test-specific refactorings. To share our experiences
with other XP practitioners, we describe a set of bad smells
that indicate trouble in test code, and a collection of test
refactorings to remove these smells.

Keywords
Refactoring, unit testing, extreme programming.

1 INTRODUCTION

“If there is a technique at the heart of extreme program-
ming (XP), it is unit testing” [1]. As part of their program-
ming activity, XP developers write and maintain (white
box) unit tests continually. These tests are automated,
written in the same programming language as the produc-
tion code, considered an explicit part of the code, and put
under revision control.

The XP process encourages writing a test class for every
class in the system. Methods in these test classes are used
to verify complicated functionality and unusual circum-
stances. Moreover, they are used to document code by ex-
plicitly indicating what the expected results of a method
should be for typical cases. Last but not least, tests are
added upon receiving a bug report to check for the bug and
to check the bug fix [2]. A typical test for a particular
method includes: (1) code to set up the fixture (the data
used for testing), (2) the call of the method, (3) a compari-
son of the actual results with the expected values, and (4)
code to tear down the fixture. Writing tests is usually sup-
ported by frameworks such as JUnit [3].

The test code / production code ratio may vary from project
to project, but is ideally considered to approach a ratio of
1:1. In our project we currently have a 2:3 ratio, although

Alex van den Bergh Gerard Kok

Software Improvement Group
The Netherlands
http://www.software-improvers.com/
{alex,gerard}@software-improvers.com

others have reported a lower ratio’. One of the corner
stones of XP is that having many tests available helps the
developers to overcome their fear for change: the tests will
provide immediate feedback if the system gets broken at a
critical place. The downside of having many tests, how-
ever, is that changes in functionality will typically involve
changes in the test code as well. The more test code we get,
the more important it becomes that this test code is as eas-
ily modifiable as the production code.

The key XP practice to keep code flexible is “refactor mer-
cilessly”: transforming the code in order to bring it in the
simplest possible state. To support this, a catalog of “code
smells” and a wide range of refactorings is available, vary-
ing from simple modifications up to ways to introduce de-
sign patterns systematically in existing code [5].

When trying to apply refactorings to the test code of our
project we discovered that refactoring test code is different
from refactoring production code. Test code has a distinct
set of smells, dealing with the ways in which test cases are
organized, how they are implemented, and how they inter-
act with each other. Moreover, improving test code in-
volves a mixture of refactorings from [5] specialized to test
code improvements, as well as a set of additional refactor-
ings, involving the modification of test classes, ways of
grouping test cases, and so on.

The goal of this paper is to share our experience in im-
proving our test code with other XP practitioners. To that
end, we describe a set of test smells indicating trouble in
test code, and a collection of test refactorings explaining
how to overcome some of these problems through a simple
program modification.

This paper assumes some familiarity with the xUnit frame-
work [3] and refactorings as described by Fowler [S]. We
will refer to refactorings described in this book using Name

! This project started a year ago and involves the development of a prod-
uct called DocGen [4]. Development is done by a small team of five peo-
ple using XP techniques. Code is written in Java and we use the JUnit
framework for unit testing.

“lest Smells represent a set of @
oor design solutions to write tests ~

[Van Deursen et al. - XP 2001]

test smells related to the way
developers write test fixtures
and test cases

Smells In Test Code

{ public void test12 () throws Throwable { |

f STerm jSTermO = new JSTerm();
{ iSTermO.make Variable () ;

;'Sf_ermO.add((ObJect) 7);

" jSTermO.matches(jSTermO);
{ assertEquals (false, jSTerm0.1sGround ());

assertEquals(true, ;STermO.1sVariable()); i
)

Smells In Test Code

{ public void test12 () throws Throwable { |

f JSTerm jSTermO = new JSTerm();
{ iSTermO.make Variable () ;

|jSTerm0.add((Object) ™),
| 1S Term0):;

1ISTerm(O.matches

assertEquals(true, ;STermO.1sVariable());
)

The test method checks the production method 1sGround()

Smells In Test Code

{ public void test12 () throws Throwable { |

f JSTerm jSTermO = new JSTerm();
{ iSTermO.make Variable () ;

;'Sf_ermO.add((ObJect) 7);

" jSTermO.matches(jSTermO);
} assertEquals (false JSTerm() 18Ground ());

But also the production method isVariable()

Smells In Test Code

{ public void test12 () throws Throwable { |

f JSTerm jSTermO = new JSTerm();
{ iSTermO.make Variable () ;

;'Sf_ermO.add((ObJect) 7);

" JSTerm0.matches(jSTermO);
s assertEquals (false, JSTerm0.1sGround ());

assertEquals(true, ;STermO.1sVariable());
)

This Is an Eager lest, namely a test which checks more than
one method of the class to be tested, making difficult
the comprehension of the actual test target,

Smells In Test Code

A test case Is affected by a Resource Optimism when
't makes assumptions about the state or the existence
of external resources, providing a non-deterministic
result that depend on the state of the resources.

An Assertion Roulette comes from having a number of
assertions In a test method that have no explanation.

I an assertion falls, the identification of

the assert that falled can be difficult.

Smells In Test Code

Tests affected by test smells are more change- and fault-
prone than tests not participating in design flaws and affect
the reliability of production code

n 547% of the cases, test code flakiness can be induced by
the presence of some design flaw In test code

Detecting test smells using heuristics

| public void test12 () throws Throwable { |

f STerm j;STermO = new JSTerm();
{]STerm0O.make Variable () ;

| jSTerm0.add((Object) ™);

’T JSTerm0.matches(jSTermO);
s assertEquals (false, JSTerm0.1sGround ());

assertEquals(true, ;STermO.1sVariable()); i
) ‘

Test smell detected if the number of
method calls > 3

Code
Component

Text Preprocessing

f Stemming)
' Term separation §

Stop word removal

textual component IR normalization
Srdirlalien process

ave.
smelliness |level

Smell Detector

dissimilarity block
computation extractor

TASTE: Detecting test smells using the textual
component of test code

test method m

TASTE: Detecting test smells using the textual
component of test code

production class A

test method m public void x() {

/[some content

A.x() }

A.y() public void y() {
// some other content
Y

TASTE: Detecting test smells using the textual

component of test code

test method m’

/[some content

/l some other content

production class A

public void x() {

}

public void y() {
Y

TASTE: Detecting test smells using the textual

component of test code

test method m’

/[some content

/l some other content

i IR normalization |

TASTE: Detecting test smells using the textual

component of test code

test method m’

/[some content

/l some other content

| IR normalization |

TASTE: Detecting test smells using the textual

component of test code

test method m’

/[some content

/l some other content

| IR normalization |

TASTE: Detecting test smells using the textual

component of test code

test method m’

/[some content

/l some other content

| IR normalization |

PeT(t) > 0.5

Code anc

Understanc

Test Smells

INg and

Detecting [hem

Fabio Palomba

Assistant Professor
University of Salerno (ltaly)
https://fpalomba.github.io

https://fpalomba.github.io

