
Socio-technical Aspects
in Software Systems
Alberto Bacchelli

What brings you here?

‣Let us do a quick round of introductions and let us/me know:
‣your name,
‣what you expected from enrolling in this course,
‣what you would ideally like to do after your M.Sc. studies.

Institut für Informatik
University of Zurich

Switzerland

ZEST: Zurich Empirical Software engineering Team
Computer Science Department

Delft University of Technology
The Netherlands

…and awesome
regular collaborators

CMU Microsoft Mozilla GoogleU. Hannover

WHAT is important for SOFTWARE QUALITY and WHY?

WHAT is important for SOFTWARE QUALITY and WHY?

‣When you write software and you care about software quality(*)..
‣What are the aspects that you always try to keep in mind and/or

the behaviors that you try to have?
‣ Form groups of 2/3 students, discuss the answer to the question above, and come

up with a list of top-3 elements and their rationale.
Let us discuss the results in 5 minutes.

‣Do these aspects/behaviors change when you know that you are
working in a team?
‣ Let us find 5 elements that matter and their rationale.

(*) e.g., that the software is maintainable and reasonably defect free

yes, but.. how do you know?

Melvin Conway

Conway’s Law

Any organization that design a system
will produce a design whose structure is
a copy of the organization’s
communication structure.

Conway’s Law — Anecdotal Evidence: Building a compiler

Compiler Team II  
Five developers involved

Compiler Team I  
Three developers involved

3-step compiler 5-step compiler

yes, but.. what happens over time?

Melvin Conway

Any organization that designs a system
will produce a design whose structure is
a copy of the organization’s
communication structure.

Conway’s Law — A potential corollary

A software system whose structure
closely matches its organization’s
communication structure works “better.”

Conway’s Law — A positivist take: Studies to increase our confidence

Coordination & Productivity

Identification of Coordination Requirements:
Implications for the Design of

Collaboration and Awareness Tools

Marcelo Cataldo1 Patrick A. Wagstrom2 James D. Herbsleb1 Kathleen M. Carley1
1 Institute for Software Research International
2 Department of Engineering and Public Policy

Carnegie Mellon University
Pittsburgh, PA 15213

 {mcataldo,pwagstro}@andrew.cmu.edu jdh@cs.cmu.edu kathleen.carley@cmu.edu

ABSTRACT
Task dependencies drive the need to coordinate work activities.
We describe a technique for using automatically generated archi-
val data to compute coordination requirements, i.e., who must
coordinate with whom to get the work done. Analysis of data
from a large software development project revealed that coordina-
tion requirements were highly volatile, and frequently extended
beyond team boundaries. Congruence between coordination re-
quirements and coordination activities shortened development
time. Developers, particularly the most productive ones, changed
their use of electronic communication media over time, achieving
higher congruence. We discuss practical implications of our
technique for the design of collaborative and awareness tools.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Groups and
Organization Interfaces – collaborative computing, computer-
supported cooperative work, organizational design.

General Terms
Management, Performance, Human Factors.

Keywords
Coordination, Collaboration tools, Task Awareness Tools, Dy-
namic Network Analysis.

1. INTRODUCTION
It has long been observed that organizations carry out complex
tasks by dividing them into smaller interdependent work units
assigned to groups and coordination arises as a response to those
interdependent activities [21]. Communication channels emerge

in the formal and informal organizations. Over time, those infor-
mation conduits develop around the interactions that are most
critical to the organization’s main task [12]. This is particularly
important in product development organizations which organize
themselves around their products’ architectures because the main
components of their products define the organization’s key sub-
tasks [30]. Organizations also develop filters that identify the
most relevant information pertinent to the task at hand [9].

Changes in task dependencies, however, jeopardize the appropri-
ateness of the information flows and filters and can disrupt the
organization’s ability to coordinate effectively. For example,
Henderson & Clark [15] found that minor changes in product
architecture can generate substantial changes in task dependen-
cies, and can have drastic consequences for the organizations’
ability to coordinate work. If we had effective ways of identifying
detailed task dependencies and tracking their changes over time,
we would be in a much better position to design collaborative and
task awareness tools that could help to align information flow
with task dependencies.

Identifying task dependencies and determining the appropriate
coordination mechanism to address the dependencies is not a
trivial problem. Coordination is a recurrent topic in the organiza-
tional theory literature and, as we will discuss in the next section,
many stylized types of task dependencies and coordination
mechanisms have been proposed over the past several decades.
However, numerous types of work, in particular non-routine
knowledge-intensive activities, are potentially full of fine-grain
dependencies that might change on a daily or hourly basis. Con-
ventional coordination mechanisms like standard operating proce-
dures or routines would have very limited applicability in these
dynamic contexts. Therefore, designing tools that support rapidly
shifting coordination needs requires a more fine-grained level of
analysis than what the traditional views of coordination provide.

In this paper, we develop a technique to measure task dependen-
cies among people, and the “fit” between these task dependencies
and the coordination activities performed by individuals. We refer
to the fit measure as congruence. Using data from a software de-
velopment project, we found that patterns of task dependencies
among people are in fact quite volatile, confirming our suspicion
that a fine-grained view of dependencies is important. We then
explored the consequences of congruence for the speed and effi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
Computer Supported Cooperative Work ’06, November 4–8, 2006,
Banff, Alberta, Canada.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

Coordination & Quality

Don’t Touch My Code!

Examining the Effects of Ownership on Software Quality

Christian Bird
Microsoft Research

cbird@microsoft.com

Nachiappan Nagappan
Microsoft Research

nachin@microsoft.com

Brendan Murphy
Microsoft Research

bmurphy@microsoft.com

Harald Gall
University of Zurich

gall@ifi.uzh.ch

Premkumar Devanbu
University of California, Davis

ptdevanbu@ucdavis.edu

ABSTRACT
Ownership is a key aspect of large-scale software develop-
ment. We examine the relationship between di↵erent own-
ership measures and software failures in two large software
projects: Windows Vista and Windows 7. We find that
in all cases, measures of ownership such as the number of
low-expertise developers, and the proportion of ownership
for the top owner have a relationship with both pre-release
faults and post-release failures. We also empirically iden-
tify reasons that low-expertise developers make changes to
components and show that the removal of low-expertise con-
tributions dramatically decreases the performance of contri-
bution based defect prediction. Finally we provide recom-
mendations for source code change policies and utilization
of resources such as code inspections based on our results.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Process metrics

General Terms
Measurement, Management, Human Factors

Keywords
Empirical Software Engineering, Ownership, Expertise, Qual-
ity

1. INTRODUCTION
Many recent studies [6, 9, 26, 29] have shown that hu-

man factors play a significant role in the quality of software
components. Ownership is a general term used to describe
whether one person has responsibility for a software com-
ponent, or if there is no one clearly responsible developer.
There is a relationship between the number of people work-
ing on a binary and failures [5, 26]. However, to our knowl-
edge, the e↵ect of ownership has not been studied in depth in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

commercial contexts. Based on our observations and discus-
sions with project managers, we suspect that when there is
no clear point of contact and the contributions to a software
component are spread across many developers, there is an
increased chance of communication breakdowns, misaligned
goals, inconsistent interfaces and semantics, all leading to
lower quality.

Interestingly, unlike some aspects of software which are
known to be related to defects such as dependency com-
plexity, or size, ownership is something that can be delib-
erately changed by modifying processes and policies. Thus,
the answer to the question: “How much does ownership af-
fect quality?” is important as it is actionable. Managers and
team leads can make better decisions about how to govern
a project by knowing the answer. If ownership has a big
e↵ect, then policies to enforce strong code ownership can be
put into place; managers can also watch out for code which
is contributed by developers who have inadequate relevant
prior experience. If ownership has little e↵ect, then the nor-
mal bottlenecks associated with having one person in charge
of each component can be removed, and available talent re-
assigned at will.

We have observed that many industrial projects encour-
age high levels of code ownership. In this paper, we examine
ownership and software quality. We make the following con-
tributions in this paper:

1. We define and validate measures of ownership that are
related to software quality.

2. We present an in depth quantitative study of the e↵ect
of these measures of ownership on pre-release and post-
release defects for multiple large software projects.

3. We identify reasons that components have many low-
expertise developers contributing to them.

4. We propose recommendations for dealing with the ef-
fects of low ownership.

2. THEORY & RELATED WORK
A number of prior studies have examined the e↵ect of

developer contribution behavior on software quality.
Rahman & Devanbu [30] examined the e↵ects of owner-

ship & experience on quality in several open-source projects,
using a fine-grained approach based on fix-inducing frag-
ments of code, and report findings similar to those of our
paper. However, they operationalize ownership di↵erently,

4

Coordination & Success

Latent Social Structure in Open Source Projects

Christian Bird, David Pattison, Raissa D’Souza,

Vladimir Filkov and Premkumar Devanbu
Dept. of Computer Science, Kemper Hall,

University of California, Davis, CA, USA,

cabird,dspattison,rmdsouza,vfilkov,ptdevanbu@ucdavis.edu

ABSTRACT
Commercial software project managers design project orga-
nizational structure carefully, mindful of available skills, di-
vision of labour, geographical boundaries, etc. These organi-
zational “cathedrals” are to be contrasted with the “bazaar-
like” nature of Open Source Software (OSS) Projects, which
have no pre-designed organizational structure. Any struc-
ture that exists is dynamic, self-organizing, latent, and usu-
ally not explicitly stated. Still, in large, complex, success-
ful, OSS projects, we do expect that subcommunities will
form spontaneously within the developer teams. Studying
these subcommunities, and their behavior can shed light
on how successful OSS projects self-organize. This phe-
nomenon could well hold important lessons for how com-
mercial software teams might be organized. Building on
known well-established techniques for detecting community
structure in complex networks, we extract and study latent
subcommunities from the email social network of several
projects: Apache HTTPD, Python, PostgresSQL, Perl, and
Apache ANT. We then validate them with software devel-
opment activity history. Our results show that subcommu-
nities do indeed spontaneously arise within these projects as
the projects evolve. These subcommunities manifest most
strongly in technical discussions, and are significantly con-
nected with collaboration behaviour.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—program-
ming teams; D.2.8 [Software Engineering]: Metrics—pro-
cess metrics

General Terms
Human Factors, Measurement, Management

Keywords
Open Source Software, social networks, collaboration

This work was supported by a grant from the National Science
Foundation Grant no. NSF-SoD-0613949 and software dona-
tions from SciTools and GrammaTech Corporations.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE 16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

1. INTRODUCTION
Brooks, in his seminal work The Mythical Man-

Month [12], noted the scaling issues that arise in large soft-
ware teams: the number of potential interactions grows
quadratically with team size, thus quadrupling when the
team size is doubled. Clearly, without organization of some
kind, both within the software and the community that de-
velops it, there is a limit to how much projects can be scaled.

In traditional, commercial software projects, the response
to the Brooksian critique of large teams is to divide and con-
quer, by fiat. The system is deliberately divided into smaller
components, and the developer pool grouped into manage-
able teams which are then assigned to those components.
With well-defined interfaces, the teams’ e↵orts are confined
to smaller groups, and the coordination needs are moder-
ated. Software design principles such as separation of con-
cerns [53] play a part in this, as does “Conway’s Law” [16],
which connects artifact structure with organizational struc-
ture.

By contrast, Open Source Software (OSS) projects are
not formally organized, and have no pre-assigned command
and control structure. No one is forced to work on a par-
ticular portion of the project. Team members contribute as
they wish in any number of ways: by submitting bug re-
ports, lending technical knowledge, writing documentation,
improving the source code in various ares of the code base,
etc. It has been observed by Sosa et al. [56] that the fixed
organizational structure found in commercial settings may
lead to misalignment with evolving complex products. Hen-
derson and Clark point out that it may may actually hin-
der innovation [32]. Thus the lack of a rigid organizational
structure may in fact be a boon to OSS projects. However,
the absence of any structure at all may be just as harm-
ful. Henderson and Clark [32] found that “architectural
knowledge tends to become embedded in the structure and
information-processing procedures of established organiza-
tions”. Modularizing artifacts and mapping artifact tasks
onto organizational units is a well known solution to the
problem of complex product development in organizational
management literature [56]. The question then arises, is the
social structure of OSS projects free of such constraints and
actually unorganized and free-for-all? Do they stand in con-
trast to the structured, hierarchical style of traditional com-
mercial software e↵orts? Or, do OSS projects have some
latent1 structure of their own? Are there dynamic, self-
organizing subgroups that spontaneously form and evolve?

1By latent, we mean not explicitly stated, but observable.

Conway’s Law — A positivist take: Studies to increase our confidence

Coordination & Productivity

Identification of Coordination Requirements:
Implications for the Design of

Collaboration and Awareness Tools

Marcelo Cataldo1 Patrick A. Wagstrom2 James D. Herbsleb1 Kathleen M. Carley1
1 Institute for Software Research International
2 Department of Engineering and Public Policy

Carnegie Mellon University
Pittsburgh, PA 15213

 {mcataldo,pwagstro}@andrew.cmu.edu jdh@cs.cmu.edu kathleen.carley@cmu.edu

ABSTRACT
Task dependencies drive the need to coordinate work activities.
We describe a technique for using automatically generated archi-
val data to compute coordination requirements, i.e., who must
coordinate with whom to get the work done. Analysis of data
from a large software development project revealed that coordina-
tion requirements were highly volatile, and frequently extended
beyond team boundaries. Congruence between coordination re-
quirements and coordination activities shortened development
time. Developers, particularly the most productive ones, changed
their use of electronic communication media over time, achieving
higher congruence. We discuss practical implications of our
technique for the design of collaborative and awareness tools.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Groups and
Organization Interfaces – collaborative computing, computer-
supported cooperative work, organizational design.

General Terms
Management, Performance, Human Factors.

Keywords
Coordination, Collaboration tools, Task Awareness Tools, Dy-
namic Network Analysis.

1. INTRODUCTION
It has long been observed that organizations carry out complex
tasks by dividing them into smaller interdependent work units
assigned to groups and coordination arises as a response to those
interdependent activities [21]. Communication channels emerge

in the formal and informal organizations. Over time, those infor-
mation conduits develop around the interactions that are most
critical to the organization’s main task [12]. This is particularly
important in product development organizations which organize
themselves around their products’ architectures because the main
components of their products define the organization’s key sub-
tasks [30]. Organizations also develop filters that identify the
most relevant information pertinent to the task at hand [9].

Changes in task dependencies, however, jeopardize the appropri-
ateness of the information flows and filters and can disrupt the
organization’s ability to coordinate effectively. For example,
Henderson & Clark [15] found that minor changes in product
architecture can generate substantial changes in task dependen-
cies, and can have drastic consequences for the organizations’
ability to coordinate work. If we had effective ways of identifying
detailed task dependencies and tracking their changes over time,
we would be in a much better position to design collaborative and
task awareness tools that could help to align information flow
with task dependencies.

Identifying task dependencies and determining the appropriate
coordination mechanism to address the dependencies is not a
trivial problem. Coordination is a recurrent topic in the organiza-
tional theory literature and, as we will discuss in the next section,
many stylized types of task dependencies and coordination
mechanisms have been proposed over the past several decades.
However, numerous types of work, in particular non-routine
knowledge-intensive activities, are potentially full of fine-grain
dependencies that might change on a daily or hourly basis. Con-
ventional coordination mechanisms like standard operating proce-
dures or routines would have very limited applicability in these
dynamic contexts. Therefore, designing tools that support rapidly
shifting coordination needs requires a more fine-grained level of
analysis than what the traditional views of coordination provide.

In this paper, we develop a technique to measure task dependen-
cies among people, and the “fit” between these task dependencies
and the coordination activities performed by individuals. We refer
to the fit measure as congruence. Using data from a software de-
velopment project, we found that patterns of task dependencies
among people are in fact quite volatile, confirming our suspicion
that a fine-grained view of dependencies is important. We then
explored the consequences of congruence for the speed and effi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
Computer Supported Cooperative Work ’06, November 4–8, 2006,
Banff, Alberta, Canada.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

Coordination & Quality

Don’t Touch My Code!

Examining the Effects of Ownership on Software Quality

Christian Bird
Microsoft Research

cbird@microsoft.com

Nachiappan Nagappan
Microsoft Research

nachin@microsoft.com

Brendan Murphy
Microsoft Research

bmurphy@microsoft.com

Harald Gall
University of Zurich

gall@ifi.uzh.ch

Premkumar Devanbu
University of California, Davis

ptdevanbu@ucdavis.edu

ABSTRACT
Ownership is a key aspect of large-scale software develop-
ment. We examine the relationship between di↵erent own-
ership measures and software failures in two large software
projects: Windows Vista and Windows 7. We find that
in all cases, measures of ownership such as the number of
low-expertise developers, and the proportion of ownership
for the top owner have a relationship with both pre-release
faults and post-release failures. We also empirically iden-
tify reasons that low-expertise developers make changes to
components and show that the removal of low-expertise con-
tributions dramatically decreases the performance of contri-
bution based defect prediction. Finally we provide recom-
mendations for source code change policies and utilization
of resources such as code inspections based on our results.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Process metrics

General Terms
Measurement, Management, Human Factors

Keywords
Empirical Software Engineering, Ownership, Expertise, Qual-
ity

1. INTRODUCTION
Many recent studies [6, 9, 26, 29] have shown that hu-

man factors play a significant role in the quality of software
components. Ownership is a general term used to describe
whether one person has responsibility for a software com-
ponent, or if there is no one clearly responsible developer.
There is a relationship between the number of people work-
ing on a binary and failures [5, 26]. However, to our knowl-
edge, the e↵ect of ownership has not been studied in depth in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

commercial contexts. Based on our observations and discus-
sions with project managers, we suspect that when there is
no clear point of contact and the contributions to a software
component are spread across many developers, there is an
increased chance of communication breakdowns, misaligned
goals, inconsistent interfaces and semantics, all leading to
lower quality.

Interestingly, unlike some aspects of software which are
known to be related to defects such as dependency com-
plexity, or size, ownership is something that can be delib-
erately changed by modifying processes and policies. Thus,
the answer to the question: “How much does ownership af-
fect quality?” is important as it is actionable. Managers and
team leads can make better decisions about how to govern
a project by knowing the answer. If ownership has a big
e↵ect, then policies to enforce strong code ownership can be
put into place; managers can also watch out for code which
is contributed by developers who have inadequate relevant
prior experience. If ownership has little e↵ect, then the nor-
mal bottlenecks associated with having one person in charge
of each component can be removed, and available talent re-
assigned at will.

We have observed that many industrial projects encour-
age high levels of code ownership. In this paper, we examine
ownership and software quality. We make the following con-
tributions in this paper:

1. We define and validate measures of ownership that are
related to software quality.

2. We present an in depth quantitative study of the e↵ect
of these measures of ownership on pre-release and post-
release defects for multiple large software projects.

3. We identify reasons that components have many low-
expertise developers contributing to them.

4. We propose recommendations for dealing with the ef-
fects of low ownership.

2. THEORY & RELATED WORK
A number of prior studies have examined the e↵ect of

developer contribution behavior on software quality.
Rahman & Devanbu [30] examined the e↵ects of owner-

ship & experience on quality in several open-source projects,
using a fine-grained approach based on fix-inducing frag-
ments of code, and report findings similar to those of our
paper. However, they operationalize ownership di↵erently,

4

Coordination & Success

Latent Social Structure in Open Source Projects

Christian Bird, David Pattison, Raissa D’Souza,

Vladimir Filkov and Premkumar Devanbu
Dept. of Computer Science, Kemper Hall,

University of California, Davis, CA, USA,

cabird,dspattison,rmdsouza,vfilkov,ptdevanbu@ucdavis.edu

ABSTRACT
Commercial software project managers design project orga-
nizational structure carefully, mindful of available skills, di-
vision of labour, geographical boundaries, etc. These organi-
zational “cathedrals” are to be contrasted with the “bazaar-
like” nature of Open Source Software (OSS) Projects, which
have no pre-designed organizational structure. Any struc-
ture that exists is dynamic, self-organizing, latent, and usu-
ally not explicitly stated. Still, in large, complex, success-
ful, OSS projects, we do expect that subcommunities will
form spontaneously within the developer teams. Studying
these subcommunities, and their behavior can shed light
on how successful OSS projects self-organize. This phe-
nomenon could well hold important lessons for how com-
mercial software teams might be organized. Building on
known well-established techniques for detecting community
structure in complex networks, we extract and study latent
subcommunities from the email social network of several
projects: Apache HTTPD, Python, PostgresSQL, Perl, and
Apache ANT. We then validate them with software devel-
opment activity history. Our results show that subcommu-
nities do indeed spontaneously arise within these projects as
the projects evolve. These subcommunities manifest most
strongly in technical discussions, and are significantly con-
nected with collaboration behaviour.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—program-
ming teams; D.2.8 [Software Engineering]: Metrics—pro-
cess metrics

General Terms
Human Factors, Measurement, Management

Keywords
Open Source Software, social networks, collaboration

This work was supported by a grant from the National Science
Foundation Grant no. NSF-SoD-0613949 and software dona-
tions from SciTools and GrammaTech Corporations.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE 16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

1. INTRODUCTION
Brooks, in his seminal work The Mythical Man-

Month [12], noted the scaling issues that arise in large soft-
ware teams: the number of potential interactions grows
quadratically with team size, thus quadrupling when the
team size is doubled. Clearly, without organization of some
kind, both within the software and the community that de-
velops it, there is a limit to how much projects can be scaled.

In traditional, commercial software projects, the response
to the Brooksian critique of large teams is to divide and con-
quer, by fiat. The system is deliberately divided into smaller
components, and the developer pool grouped into manage-
able teams which are then assigned to those components.
With well-defined interfaces, the teams’ e↵orts are confined
to smaller groups, and the coordination needs are moder-
ated. Software design principles such as separation of con-
cerns [53] play a part in this, as does “Conway’s Law” [16],
which connects artifact structure with organizational struc-
ture.

By contrast, Open Source Software (OSS) projects are
not formally organized, and have no pre-assigned command
and control structure. No one is forced to work on a par-
ticular portion of the project. Team members contribute as
they wish in any number of ways: by submitting bug re-
ports, lending technical knowledge, writing documentation,
improving the source code in various ares of the code base,
etc. It has been observed by Sosa et al. [56] that the fixed
organizational structure found in commercial settings may
lead to misalignment with evolving complex products. Hen-
derson and Clark point out that it may may actually hin-
der innovation [32]. Thus the lack of a rigid organizational
structure may in fact be a boon to OSS projects. However,
the absence of any structure at all may be just as harm-
ful. Henderson and Clark [32] found that “architectural
knowledge tends to become embedded in the structure and
information-processing procedures of established organiza-
tions”. Modularizing artifacts and mapping artifact tasks
onto organizational units is a well known solution to the
problem of complex product development in organizational
management literature [56]. The question then arises, is the
social structure of OSS projects free of such constraints and
actually unorganized and free-for-all? Do they stand in con-
trast to the structured, hierarchical style of traditional com-
mercial software e↵orts? Or, do OSS projects have some
latent1 structure of their own? Are there dynamic, self-
organizing subgroups that spontaneously form and evolve?

1By latent, we mean not explicitly stated, but observable.

Don’t Touch My Code! Examining the effects of ownership on software quality

Coordination & Quality

Don’t Touch My Code!

Examining the Effects of Ownership on Software Quality

Christian Bird
Microsoft Research

cbird@microsoft.com

Nachiappan Nagappan
Microsoft Research

nachin@microsoft.com

Brendan Murphy
Microsoft Research

bmurphy@microsoft.com

Harald Gall
University of Zurich

gall@ifi.uzh.ch

Premkumar Devanbu
University of California, Davis

ptdevanbu@ucdavis.edu

ABSTRACT
Ownership is a key aspect of large-scale software develop-
ment. We examine the relationship between di↵erent own-
ership measures and software failures in two large software
projects: Windows Vista and Windows 7. We find that
in all cases, measures of ownership such as the number of
low-expertise developers, and the proportion of ownership
for the top owner have a relationship with both pre-release
faults and post-release failures. We also empirically iden-
tify reasons that low-expertise developers make changes to
components and show that the removal of low-expertise con-
tributions dramatically decreases the performance of contri-
bution based defect prediction. Finally we provide recom-
mendations for source code change policies and utilization
of resources such as code inspections based on our results.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Process metrics

General Terms
Measurement, Management, Human Factors

Keywords
Empirical Software Engineering, Ownership, Expertise, Qual-
ity

1. INTRODUCTION
Many recent studies [6, 9, 26, 29] have shown that hu-

man factors play a significant role in the quality of software
components. Ownership is a general term used to describe
whether one person has responsibility for a software com-
ponent, or if there is no one clearly responsible developer.
There is a relationship between the number of people work-
ing on a binary and failures [5, 26]. However, to our knowl-
edge, the e↵ect of ownership has not been studied in depth in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

commercial contexts. Based on our observations and discus-
sions with project managers, we suspect that when there is
no clear point of contact and the contributions to a software
component are spread across many developers, there is an
increased chance of communication breakdowns, misaligned
goals, inconsistent interfaces and semantics, all leading to
lower quality.

Interestingly, unlike some aspects of software which are
known to be related to defects such as dependency com-
plexity, or size, ownership is something that can be delib-
erately changed by modifying processes and policies. Thus,
the answer to the question: “How much does ownership af-
fect quality?” is important as it is actionable. Managers and
team leads can make better decisions about how to govern
a project by knowing the answer. If ownership has a big
e↵ect, then policies to enforce strong code ownership can be
put into place; managers can also watch out for code which
is contributed by developers who have inadequate relevant
prior experience. If ownership has little e↵ect, then the nor-
mal bottlenecks associated with having one person in charge
of each component can be removed, and available talent re-
assigned at will.

We have observed that many industrial projects encour-
age high levels of code ownership. In this paper, we examine
ownership and software quality. We make the following con-
tributions in this paper:

1. We define and validate measures of ownership that are
related to software quality.

2. We present an in depth quantitative study of the e↵ect
of these measures of ownership on pre-release and post-
release defects for multiple large software projects.

3. We identify reasons that components have many low-
expertise developers contributing to them.

4. We propose recommendations for dealing with the ef-
fects of low ownership.

2. THEORY & RELATED WORK
A number of prior studies have examined the e↵ect of

developer contribution behavior on software quality.
Rahman & Devanbu [30] examined the e↵ects of owner-

ship & experience on quality in several open-source projects,
using a fine-grained approach based on fix-inducing frag-
ments of code, and report findings similar to those of our
paper. However, they operationalize ownership di↵erently,

4

Don’t Touch My Code!

Don’t Touch My Code!

Don’t Touch My Code!

Examining the Effects of Ownership on Software Quality

Christian Bird
Microsoft Research

cbird@microsoft.com

Nachiappan Nagappan
Microsoft Research

nachin@microsoft.com

Brendan Murphy
Microsoft Research

bmurphy@microsoft.com

Harald Gall
University of Zurich

gall@ifi.uzh.ch

Premkumar Devanbu
University of California, Davis

ptdevanbu@ucdavis.edu

ABSTRACT
Ownership is a key aspect of large-scale software develop-
ment. We examine the relationship between di↵erent own-
ership measures and software failures in two large software
projects: Windows Vista and Windows 7. We find that
in all cases, measures of ownership such as the number of
low-expertise developers, and the proportion of ownership
for the top owner have a relationship with both pre-release
faults and post-release failures. We also empirically iden-
tify reasons that low-expertise developers make changes to
components and show that the removal of low-expertise con-
tributions dramatically decreases the performance of contri-
bution based defect prediction. Finally we provide recom-
mendations for source code change policies and utilization
of resources such as code inspections based on our results.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Process metrics

General Terms
Measurement, Management, Human Factors

Keywords
Empirical Software Engineering, Ownership, Expertise, Qual-
ity

1. INTRODUCTION
Many recent studies [6, 9, 26, 29] have shown that hu-

man factors play a significant role in the quality of software
components. Ownership is a general term used to describe
whether one person has responsibility for a software com-
ponent, or if there is no one clearly responsible developer.
There is a relationship between the number of people work-
ing on a binary and failures [5, 26]. However, to our knowl-
edge, the e↵ect of ownership has not been studied in depth in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

commercial contexts. Based on our observations and discus-
sions with project managers, we suspect that when there is
no clear point of contact and the contributions to a software
component are spread across many developers, there is an
increased chance of communication breakdowns, misaligned
goals, inconsistent interfaces and semantics, all leading to
lower quality.

Interestingly, unlike some aspects of software which are
known to be related to defects such as dependency com-
plexity, or size, ownership is something that can be delib-
erately changed by modifying processes and policies. Thus,
the answer to the question: “How much does ownership af-
fect quality?” is important as it is actionable. Managers and
team leads can make better decisions about how to govern
a project by knowing the answer. If ownership has a big
e↵ect, then policies to enforce strong code ownership can be
put into place; managers can also watch out for code which
is contributed by developers who have inadequate relevant
prior experience. If ownership has little e↵ect, then the nor-
mal bottlenecks associated with having one person in charge
of each component can be removed, and available talent re-
assigned at will.

We have observed that many industrial projects encour-
age high levels of code ownership. In this paper, we examine
ownership and software quality. We make the following con-
tributions in this paper:

1. We define and validate measures of ownership that are
related to software quality.

2. We present an in depth quantitative study of the e↵ect
of these measures of ownership on pre-release and post-
release defects for multiple large software projects.

3. We identify reasons that components have many low-
expertise developers contributing to them.

4. We propose recommendations for dealing with the ef-
fects of low ownership.

2. THEORY & RELATED WORK
A number of prior studies have examined the e↵ect of

developer contribution behavior on software quality.
Rahman & Devanbu [30] examined the e↵ects of owner-

ship & experience on quality in several open-source projects,
using a fine-grained approach based on fix-inducing frag-
ments of code, and report findings similar to those of our
paper. However, they operationalize ownership di↵erently,

4

Don’t Touch My Code! — Research goal

‣How much does ownership affect quality?

‣How to define and validate measures of ownership that are related
to software quality?

‣How to operationalize software quality?

‣How to define effect of ownership metrics on software defects in
quantitative terms?

Don’t Touch My Code! — Operationalizing ownership

‣Software Component: A unit of development that has some core
functionality

‣Contributor: Someone who has made commits/software changes
to a component

‣Proportion of Ownership: Ratio of number of commits that the
contributor has made relative to the total number of commits for that
component

‣Minor Contributor: Ownership is below 5%

‣Major Contributor: Ownership is at or above 5%

Don’t Touch My Code! — Considered metrics by software component

‣Minor: Number of minor contributors

‣Major: Number of major contributors

‣Total: Total number of contributors

‣Ownership: Proportion of ownership for the contributor with the
highest proportion of ownership.

Don’t Touch My Code! — Data sources

‣Subject systems: Windows Vista and Windows 7

‣Subject components: Executable files (.exe), shared libraries(.dll)
and drivers (.sys), and their changes recorded in the VCS (changed
components, change author, time of change, log message).

Don’t Touch My Code! — Example metrics for a software component

3

Ownership of A.dll by Developers

(a) A.dll

3

Ownership of B.dll by Developers

(b) B.dll

Figure 2: Ownership graphs for two binaries in Windows

of experience used by Mockus and Weiss also used the num-
ber of changes. However, prior literature [14] has shown high
correlation (above 0.9) between number of changes and num-
ber of lines contributed and we have found similar results in
Windows, indicating that our results would not change sig-
nificantly. With these terms defined, we now introduce our
metrics.

• Minor – number of minor contributors

• Major – number of major contributors

• Total – total number of contributors

• Ownership – proportion of ownership for the contrib-
utor with the highest proportion of ownership

Figure 1 shows the proportion of commits for each of the
developers that contributed to abocomp.dll in Windows, in
decreasing order. This library had a total of 918 commits
made during the development cycle. The top contributing
engineer made 379 commits, roughly 41%. Five engineers
made at least 5% of the commits (at least 46 commits).
Twelve engineers made less than 5% of the commits (less
than 46 commits). Finally, there were a total of seventeen
engineers that made commits to the binary. Thus, our met-
rics for abocomp.dll are:

Metric Value

Minor 12
Major 5
Total 17
Ownership 0.41

4. HYPOTHESES
We begin with the observation that a developer with lower

expertise is more likely to introduce bugs into the code. A
developer who has made a small proportion of the commits
to a binary likely has less expertise and is more likely to
make an error. We expect that as the number of develop-
ers working on a component increases, the component may
become “fragmented” and the di�culty of vetting and coor-
dinating all these minor contributions becomes an obstacle
to good quality. Thus if Minor is high, quality su↵ers.

Hypothesis 1 - Software components with many minor con-
tributors will have more failures than software components
that have fewer.

We also look at the proportion of ownership for the highest
contributing developer for each component (Ownership). If
Ownership is high, that indicates that there is one devel-
oper who “owns” the component and has a high level of ex-
pertise. This person can also act as a single point of contact
for others who need to use the component, need changes to
it, or just have questions about it. We theorize that when
such a person exists, the software quality is higher resulting
in fewer failures.

Hypothesis 2 - Software components with a high level of
ownership will have fewer failures than components with
lower top ownership levels.

If the number of minor contributors negatively a↵ects soft-
ware quality, the next question to ask is, “Why do some
binaries have so many minor contributors?” We have ob-
served both at Microsoft and also within OSS projects such
as Python and Postgres, that during the process of mainte-
nance, feature addition, or bug fixing, owners of one compo-
nent often need to modify other components that the first
relies on or is relied upon by. As a simple example, a devel-
oper tasked with fixing media playback in Internet Explorer
may need to make changes to the media playback interface li-
brary even though the developer is not the designated owner
and has limited experience with this component. This leads
to our hypothesis.

Hypothesis 3 - Minor contributors to components will be
Major contributors to other components that are related
through dependency relationships

Finally, if low-expertise contributions do have a large im-
pact on software quality, then we expect that defect predic-
tion techniques will be a↵ected by their inclusion or removal.
We therefore replicate prior defect prediction techniques and
compare results when using all data, data derived only from
changes by minor contributors and, and data derived only
from changes to major contributors. We expect that when
data from minor contributors is removed, the quality of the
defect prediction will su↵er.

Metric Value

Minor 4

Major 4

Total 8

Ownership 49%

Don’t Touch My Code! — Example metrics for a software component

3

Ownership of A.dll by Developers

(a) A.dll

3

Ownership of B.dll by Developers

(b) B.dll

Figure 2: Ownership graphs for two binaries in Windows

of experience used by Mockus and Weiss also used the num-
ber of changes. However, prior literature [14] has shown high
correlation (above 0.9) between number of changes and num-
ber of lines contributed and we have found similar results in
Windows, indicating that our results would not change sig-
nificantly. With these terms defined, we now introduce our
metrics.

• Minor – number of minor contributors

• Major – number of major contributors

• Total – total number of contributors

• Ownership – proportion of ownership for the contrib-
utor with the highest proportion of ownership

Figure 1 shows the proportion of commits for each of the
developers that contributed to abocomp.dll in Windows, in
decreasing order. This library had a total of 918 commits
made during the development cycle. The top contributing
engineer made 379 commits, roughly 41%. Five engineers
made at least 5% of the commits (at least 46 commits).
Twelve engineers made less than 5% of the commits (less
than 46 commits). Finally, there were a total of seventeen
engineers that made commits to the binary. Thus, our met-
rics for abocomp.dll are:

Metric Value

Minor 12
Major 5
Total 17
Ownership 0.41

4. HYPOTHESES
We begin with the observation that a developer with lower

expertise is more likely to introduce bugs into the code. A
developer who has made a small proportion of the commits
to a binary likely has less expertise and is more likely to
make an error. We expect that as the number of develop-
ers working on a component increases, the component may
become “fragmented” and the di�culty of vetting and coor-
dinating all these minor contributions becomes an obstacle
to good quality. Thus if Minor is high, quality su↵ers.

Hypothesis 1 - Software components with many minor con-
tributors will have more failures than software components
that have fewer.

We also look at the proportion of ownership for the highest
contributing developer for each component (Ownership). If
Ownership is high, that indicates that there is one devel-
oper who “owns” the component and has a high level of ex-
pertise. This person can also act as a single point of contact
for others who need to use the component, need changes to
it, or just have questions about it. We theorize that when
such a person exists, the software quality is higher resulting
in fewer failures.

Hypothesis 2 - Software components with a high level of
ownership will have fewer failures than components with
lower top ownership levels.

If the number of minor contributors negatively a↵ects soft-
ware quality, the next question to ask is, “Why do some
binaries have so many minor contributors?” We have ob-
served both at Microsoft and also within OSS projects such
as Python and Postgres, that during the process of mainte-
nance, feature addition, or bug fixing, owners of one compo-
nent often need to modify other components that the first
relies on or is relied upon by. As a simple example, a devel-
oper tasked with fixing media playback in Internet Explorer
may need to make changes to the media playback interface li-
brary even though the developer is not the designated owner
and has limited experience with this component. This leads
to our hypothesis.

Hypothesis 3 - Minor contributors to components will be
Major contributors to other components that are related
through dependency relationships

Finally, if low-expertise contributions do have a large im-
pact on software quality, then we expect that defect predic-
tion techniques will be a↵ected by their inclusion or removal.
We therefore replicate prior defect prediction techniques and
compare results when using all data, data derived only from
changes by minor contributors and, and data derived only
from changes to major contributors. We expect that when
data from minor contributors is removed, the quality of the
defect prediction will su↵er.

Metric Value

Minor 74

Major 4

Total 78

Ownership 22%

Don’t Touch My Code! — Operationalizing software quality

‣Software Quality: Software defects!

Don’t Touch My Code! — Data sources

‣Subject systems: Windows Vista and Windows 7

‣Subject components: Executable files (.exe), shared libraries(.dll)
and drivers (.sys), and their changes recorded in the VCS (changed
components, change author, time of change, log message).

‣Subject defects: Pre-release defects and post-release failures

Don’t Touch My Code! — Two hypotheses

‣Hypothesis 1
Software components with many minor contributors will
have _____ failures than software components that have
fewer.

‣Hypothesis 2
Software components with a high level of ownership will
have _____ failures than components with lower top
ownership levels.

more or less?
based on Conway: Fill the blanks!

Don’t Touch My Code! — Two hypotheses

‣Hypothesis 1
Software components with many minor contributors will
have more failures than software components that have
fewer.

‣Hypothesis 2
Software components with a high level of ownership will
have fewer failures than components with lower top
ownership levels.

Don’t Touch My Code! — Data analysis

‣Correlation analysis:
‣ Is there any relationship between ownership and software quality?
‣How strong is the relationship?

‣Regression analysis:
‣ Is there any effect of ownership variables on failures?
‣ Is ownership important when controlling for other factors?

Don’t Touch My Code! — Results: Correlation Analysis

Windows Vista Windows 7

Category Metric
Pre-release Post-release Pre-release Post-release
Failures Failures Failures Failures

Ownership
Metrics

Total 0.84 0.70 0.92 0.24
Minor 0.86 0.70 0.93 0.25
Major 0.26 0.29 -0.40 -0.14
Ownership -0.49 -0.49 -0.29 -0.02

“Classic”
Metrics

Size 0.75 0.69 0.70 0.26
Churn 0.72 0.69 0.71 0.26
Complexity 0.70 0.53 0.56 0.37

Table 1: Bivariate Spearman correlation of ownership and code metrics with pre- and post-release failures in Windows Vista
and Windows 7. All correlations are statistically significant except for that of Ownership and post-release failures in Windows
7.

Hypothesis 4 - Removal of minor contribution information
from defect prediction techniques will decrease performance
dramatically.

5. DATA COLLECTION AND ANALYSIS
This data presents an opportunity to investigate hypothe-

ses regarding code ownership. In this study, we examine
Windows Vista and Windows 7.

Windows Vista and Windows 7 is developed entirely by
Microsoft, who have processes and policies that favor strong
code ownership. Windows Vista and 7 were developed by
2,000+ software developers and is composed of thousands
of individual executable files (.exe), shared libraries (.dll),
and drivers (.sys), which we collectively refer to as binaries.
We track the development history from the release of Win-
dows Server 2003 to the release of Windows 7 and include
pre-release defects as well as post-release failures in Vista
and 7 as software quality indicators.

We require several types of data. The most important
data are the commit histories and software failures. Soft-
ware repositories record the contents of every change made
to a piece of software, along with the change author, the
time of change, and an associated log message that may be
indicative of the type of change (e.g. introducing a feature,
or fixing a bug). We collected the number of changes made
by each developer to each source file and used a mapping of
source files to binaries in order to determine the number of
changes made by each developer to each binary. Although
the source code management system uses branches heavily,
we only recorded changes from developers that were edits to
the source code. Branching operations (e.g. branching and
merging) were not counted as changes.

We also gathered both pre-release and post-release soft-
ware failures for all three projects. We gathered the failures
recorded prior to release and in the first six months after re-
lease. Because of the information contained in the failures,
we can automatically trace them back to the binaries that
caused them, but cannot reliably trace them to the source
files that caused the failures. We only count failures that
the development team deemed important enough to fix.

Finally, we gathered source code metrics including vari-
ous size, complexity, and churn metrics. This information
is gathered from both the source code repositories and the
build process.

5.1 Analysis Techniques
We use a number of methods to examine the relationship

between ownership and software quality.
We began with a correlation analysis of both pre- and

post-release failures with each of the ownership metrics as
well as a number of other metrics such as test coverage, com-
plexity, size, dependencies, and churn (shown in Table 1).
The results indicated that pre- and post-release defects in
had strong relationships with Minor, Total, and Owner-

ship. In fact, Minor had a higher correlation with both pre-
and post-release defects in Vista and pre-release defects in
Windows 7 than any other metric that Microsoft collects!.
Post-release failures for Windows 7 present a di�culty for
analysis as at the time of this analysis many binaries had no
post-release failures reported. Thus the correlation values
between metrics and and post-release failures are noticeably
lower than the other failure categories (although all except
the correlation with Ownership are still statistically signif-
icant).
However, we also observed some relationship between code

attributes and ownership metrics. For example, Figure 2
shows data for two anonymized binaries in Windows with
vastly di↵erent ownership profiles. Unsurprisingly, the bi-
nary depicted in Figure 2-b (B.dll) has more failures than
the binary in Figure 2-a (A.dll), eight times as many pre-
release failures and twice as many post-release failures. How-
ever, B.dll is also a larger binary and experienced far more
churn during the development cycle. Thus it is not clear
whether the increase in failures is attributable to more mi-
nor contributors or other measures such as size, complexity,
and churn, which are known to be related to defects [25,28]
and are likely related to the number of minor contributors.
Prior research has shown that when characteristics such as
size are not considered, they may a↵ect the validity of other
software metrics [13].
To overcome this problem, we used multiple linear regres-

sion. Linear regression, is primarily used in two di↵erent
ways. First, it can be used to make predictions about an
outcome based on prior data (for instance predicting how
many failures a software component may have based on char-
acteristics of the components). We stress that while our re-
gression analysis does use failures as the dependent variable
in our models, the purpose of this paper is not to predict
failures.
Second, linear regression enables us to examine the e↵ect

Don’t Touch My Code! — Results: Correlation Analysis of Controlling Factors

Windows Vista Windows 7

Category Metric
Pre-release Post-release Pre-release Post-release
Failures Failures Failures Failures

Ownership
Metrics

Total 0.84 0.70 0.92 0.24
Minor 0.86 0.70 0.93 0.25
Major 0.26 0.29 -0.40 -0.14
Ownership -0.49 -0.49 -0.29 -0.02

“Classic”
Metrics

Size 0.75 0.69 0.70 0.26
Churn 0.72 0.69 0.71 0.26
Complexity 0.70 0.53 0.56 0.37

Table 1: Bivariate Spearman correlation of ownership and code metrics with pre- and post-release failures in Windows Vista
and Windows 7. All correlations are statistically significant except for that of Ownership and post-release failures in Windows
7.

Hypothesis 4 - Removal of minor contribution information
from defect prediction techniques will decrease performance
dramatically.

5. DATA COLLECTION AND ANALYSIS
This data presents an opportunity to investigate hypothe-

ses regarding code ownership. In this study, we examine
Windows Vista and Windows 7.

Windows Vista and Windows 7 is developed entirely by
Microsoft, who have processes and policies that favor strong
code ownership. Windows Vista and 7 were developed by
2,000+ software developers and is composed of thousands
of individual executable files (.exe), shared libraries (.dll),
and drivers (.sys), which we collectively refer to as binaries.
We track the development history from the release of Win-
dows Server 2003 to the release of Windows 7 and include
pre-release defects as well as post-release failures in Vista
and 7 as software quality indicators.

We require several types of data. The most important
data are the commit histories and software failures. Soft-
ware repositories record the contents of every change made
to a piece of software, along with the change author, the
time of change, and an associated log message that may be
indicative of the type of change (e.g. introducing a feature,
or fixing a bug). We collected the number of changes made
by each developer to each source file and used a mapping of
source files to binaries in order to determine the number of
changes made by each developer to each binary. Although
the source code management system uses branches heavily,
we only recorded changes from developers that were edits to
the source code. Branching operations (e.g. branching and
merging) were not counted as changes.

We also gathered both pre-release and post-release soft-
ware failures for all three projects. We gathered the failures
recorded prior to release and in the first six months after re-
lease. Because of the information contained in the failures,
we can automatically trace them back to the binaries that
caused them, but cannot reliably trace them to the source
files that caused the failures. We only count failures that
the development team deemed important enough to fix.

Finally, we gathered source code metrics including vari-
ous size, complexity, and churn metrics. This information
is gathered from both the source code repositories and the
build process.

5.1 Analysis Techniques
We use a number of methods to examine the relationship

between ownership and software quality.
We began with a correlation analysis of both pre- and

post-release failures with each of the ownership metrics as
well as a number of other metrics such as test coverage, com-
plexity, size, dependencies, and churn (shown in Table 1).
The results indicated that pre- and post-release defects in
had strong relationships with Minor, Total, and Owner-

ship. In fact, Minor had a higher correlation with both pre-
and post-release defects in Vista and pre-release defects in
Windows 7 than any other metric that Microsoft collects!.
Post-release failures for Windows 7 present a di�culty for
analysis as at the time of this analysis many binaries had no
post-release failures reported. Thus the correlation values
between metrics and and post-release failures are noticeably
lower than the other failure categories (although all except
the correlation with Ownership are still statistically signif-
icant).
However, we also observed some relationship between code

attributes and ownership metrics. For example, Figure 2
shows data for two anonymized binaries in Windows with
vastly di↵erent ownership profiles. Unsurprisingly, the bi-
nary depicted in Figure 2-b (B.dll) has more failures than
the binary in Figure 2-a (A.dll), eight times as many pre-
release failures and twice as many post-release failures. How-
ever, B.dll is also a larger binary and experienced far more
churn during the development cycle. Thus it is not clear
whether the increase in failures is attributable to more mi-
nor contributors or other measures such as size, complexity,
and churn, which are known to be related to defects [25,28]
and are likely related to the number of minor contributors.
Prior research has shown that when characteristics such as
size are not considered, they may a↵ect the validity of other
software metrics [13].
To overcome this problem, we used multiple linear regres-

sion. Linear regression, is primarily used in two di↵erent
ways. First, it can be used to make predictions about an
outcome based on prior data (for instance predicting how
many failures a software component may have based on char-
acteristics of the components). We stress that while our re-
gression analysis does use failures as the dependent variable
in our models, the purpose of this paper is not to predict
failures.
Second, linear regression enables us to examine the e↵ect

Don’t Touch My Code! — Results: Regression Analysis

Windows Vista Windows 7

Category Metric
Pre-release Post-release Pre-release Post-release
Failures Failures Failures Failures

Ownership
Metrics

Total 0.84 0.70 0.92 0.24
Minor 0.86 0.70 0.93 0.25
Major 0.26 0.29 -0.40 -0.14
Ownership -0.49 -0.49 -0.29 -0.02

“Classic”
Metrics

Size 0.75 0.69 0.70 0.26
Churn 0.72 0.69 0.71 0.26
Complexity 0.70 0.53 0.56 0.37

Table 1: Bivariate Spearman correlation of ownership and code metrics with pre- and post-release failures in Windows Vista
and Windows 7. All correlations are statistically significant except for that of Ownership and post-release failures in Windows
7.

Hypothesis 4 - Removal of minor contribution information
from defect prediction techniques will decrease performance
dramatically.

5. DATA COLLECTION AND ANALYSIS
This data presents an opportunity to investigate hypothe-

ses regarding code ownership. In this study, we examine
Windows Vista and Windows 7.

Windows Vista and Windows 7 is developed entirely by
Microsoft, who have processes and policies that favor strong
code ownership. Windows Vista and 7 were developed by
2,000+ software developers and is composed of thousands
of individual executable files (.exe), shared libraries (.dll),
and drivers (.sys), which we collectively refer to as binaries.
We track the development history from the release of Win-
dows Server 2003 to the release of Windows 7 and include
pre-release defects as well as post-release failures in Vista
and 7 as software quality indicators.

We require several types of data. The most important
data are the commit histories and software failures. Soft-
ware repositories record the contents of every change made
to a piece of software, along with the change author, the
time of change, and an associated log message that may be
indicative of the type of change (e.g. introducing a feature,
or fixing a bug). We collected the number of changes made
by each developer to each source file and used a mapping of
source files to binaries in order to determine the number of
changes made by each developer to each binary. Although
the source code management system uses branches heavily,
we only recorded changes from developers that were edits to
the source code. Branching operations (e.g. branching and
merging) were not counted as changes.

We also gathered both pre-release and post-release soft-
ware failures for all three projects. We gathered the failures
recorded prior to release and in the first six months after re-
lease. Because of the information contained in the failures,
we can automatically trace them back to the binaries that
caused them, but cannot reliably trace them to the source
files that caused the failures. We only count failures that
the development team deemed important enough to fix.

Finally, we gathered source code metrics including vari-
ous size, complexity, and churn metrics. This information
is gathered from both the source code repositories and the
build process.

5.1 Analysis Techniques
We use a number of methods to examine the relationship

between ownership and software quality.
We began with a correlation analysis of both pre- and

post-release failures with each of the ownership metrics as
well as a number of other metrics such as test coverage, com-
plexity, size, dependencies, and churn (shown in Table 1).
The results indicated that pre- and post-release defects in
had strong relationships with Minor, Total, and Owner-

ship. In fact, Minor had a higher correlation with both pre-
and post-release defects in Vista and pre-release defects in
Windows 7 than any other metric that Microsoft collects!.
Post-release failures for Windows 7 present a di�culty for
analysis as at the time of this analysis many binaries had no
post-release failures reported. Thus the correlation values
between metrics and and post-release failures are noticeably
lower than the other failure categories (although all except
the correlation with Ownership are still statistically signif-
icant).
However, we also observed some relationship between code

attributes and ownership metrics. For example, Figure 2
shows data for two anonymized binaries in Windows with
vastly di↵erent ownership profiles. Unsurprisingly, the bi-
nary depicted in Figure 2-b (B.dll) has more failures than
the binary in Figure 2-a (A.dll), eight times as many pre-
release failures and twice as many post-release failures. How-
ever, B.dll is also a larger binary and experienced far more
churn during the development cycle. Thus it is not clear
whether the increase in failures is attributable to more mi-
nor contributors or other measures such as size, complexity,
and churn, which are known to be related to defects [25,28]
and are likely related to the number of minor contributors.
Prior research has shown that when characteristics such as
size are not considered, they may a↵ect the validity of other
software metrics [13].
To overcome this problem, we used multiple linear regres-

sion. Linear regression, is primarily used in two di↵erent
ways. First, it can be used to make predictions about an
outcome based on prior data (for instance predicting how
many failures a software component may have based on char-
acteristics of the components). We stress that while our re-
gression analysis does use failures as the dependent variable
in our models, the purpose of this paper is not to predict
failures.
Second, linear regression enables us to examine the e↵ect

Windows Vista Windows 7
Model Pre-release Post-release Pre-release Post-release

Failures Failures Failures Failures

Base (code metrics) 26% 29% 24% 18%
Base + Total 40%⇤(+14%) 35%⇤(+6%) 68%⇤ (+35%) 21%⇤ (+3%)
Base + Minor 46%⇤(+20%) 41%⇤(+12%) 70%⇤ (+46%) 21%⇤ (+3%)
Base + Minor + Major 48%⇤(+2%) 43%⇤(+2%) 71%⇤ (+1%) 22% (+1%)
Base + Minor + Major + Ownership 50%⇤(+2%) 44%⇤(+1%) 72%⇤ (+1%) 22% (+0%)

Table 2: Variance in failures for the base model which includes standard metrics of complexity, size, and churn, as well as the
models with Minor and Ownership added. An asterisk⇤ denotes that a model showed statistically significant improvement
when the additional variable was added.

of one or more variables on an outcome when controlling for
other variables. We use it for this purpose in an e↵ort to
examine the relationship of our ownership measures when
controlling for source code characteristics such as size, com-
plexity, and churn.

A linear regression model for failures indicates which vari-
ables have an e↵ect on failures, how large the e↵ect is, in
what direction (i.e. if failures go up when a metric goes
up or when it goes down), and how much of the variance
in the number of failures is explained by the metrics. We
compare the amount of variance in failures explained by a
model that includes the ownership metrics to a model that
does not include them. There are many measures of churn,
complexity, and size. However, to avoid multi-collinearity
and over-fitting, we include only one of each measure in the
model; We choose the measure which results in the best
base model. This gives an indication of how much own-
ership actually a↵ects software failures. We examined the
improvement in amount of variance in failures explained by
the metrics (commonly referred to as the adjusted R2) and
examine improved goodness of fit using F-tests to determine
if the addition of an ownership metric improves the model
by a statistically significant degree [12].

Linear regression models can be reliably interpreted if cer-
tain assumptions hold. Two key assumptions are that the
residuals are normally distributed, and not correlated with
any of the independent variables. In our analysis, we found
that the distribution of failures was almost always heavily
right skewed, which led to a similar skew in the residuals.
When we transformed the dependent variable to be the log
of the number of failures, the skew diminished, and the resid-
uals fit the normality assumption. This data transformation
was applied to all dependent variables except for post-release
failures in Vista, where linear regression assumptions were
met by the raw data.

6. RESULTS
We now present the results of our analysis of Windows

Vista and Windows 7. Table 2 illustrates the results of
our analysis. We denote with an asterisk⇤, cases where a
goodness-of-fit F-test indicated that the addition of a vari-
able improved the model by a statistically significant degree.
The value in parentheses indicates the percent increase in
variance explained over the model without the added vari-
able. For example, in Table 2 the Base+Minor +Major

model in Vista explains 48% of the variance in pre-release
failures which is 2% more than the Base+Minor model

which explains 46%. the Base+Minor model explains 20%
more of the variance in pre-release failures than the Base
model. Adding an independent variable to a model can never
decrease the variance explained, so we use the adjusted R2

measure which penalizes models that have additional vari-
ables.
We built five statistical models of failures for pre- and

post-release defects in Windows Vista and Windows 7 (sum-
marized in Table 2). The first model contains only the clas-
sical source code metrics: size, complexity, and churn. We
refer to this as the base model. This model showed that
churn, size, and complexity all have a statistically signifi-
cant e↵ect on both pre and post-release failures. In addi-
tion, these metrics are able to explain 26% of the variance
in pre-release failures and 29% of the variance in post-release
failures in Vista and 24% and 28% in Windows 7.
In the second model, we added Total to the classic vari-

ables. This examines the e↵ect of team size on defects and
does not include any measures of the proportion of contribu-
tions made by individual members. All models exhibitted a
statistically significant improvement in variance explained.
Next, we added Minor to the set of predictor variables

in the base model. This was done to determine if the total
number of developers has a di↵erent e↵ect on quality than
the number of minor contributors. The statistics showed
that Minor is positively related to both pre and post-release
failures to a statistically significant degree. The addition of
Minor increased the proportion of variance in pre-release
failures to 46% and post-release failures to 41%. The gains
shown by Minor were stronger than those shown by Total

for both types of failures to a statistically significant degree,
in all cases except for post-release failures in Windows 7,
indicating that Minor has a larger e↵ect on failures.
The addition of Major and Ownership showed smaller

gains, but were often still statistically significant. We found
similar results regardless of the order that these variables
were added to the models. Ownership was found to have
a negative relationship with failures to a statistically signifi-
cant degree and Major had a positive relationship, but was
much smaller than Minor. Minor still showed more of an
e↵ect than Ownership and Major even when it was added
last (not shown). The final models account for up to 72% of
variance in failures. In all cases, ownership had a stronger
relationship with pre-release failures than post-release fail-
ures and the models in general were less explanatory. This
may indicate that there are already measures being taken
(e.g. increased testing, more stringent quality controls, etc.)

Don’t Touch My Code! — Comparing two components

3

Ownership of A.dll by Developers

(a) A.dll

3

Ownership of B.dll by Developers

(b) B.dll

Figure 2: Ownership graphs for two binaries in Windows

of experience used by Mockus and Weiss also used the num-
ber of changes. However, prior literature [14] has shown high
correlation (above 0.9) between number of changes and num-
ber of lines contributed and we have found similar results in
Windows, indicating that our results would not change sig-
nificantly. With these terms defined, we now introduce our
metrics.

• Minor – number of minor contributors

• Major – number of major contributors

• Total – total number of contributors

• Ownership – proportion of ownership for the contrib-
utor with the highest proportion of ownership

Figure 1 shows the proportion of commits for each of the
developers that contributed to abocomp.dll in Windows, in
decreasing order. This library had a total of 918 commits
made during the development cycle. The top contributing
engineer made 379 commits, roughly 41%. Five engineers
made at least 5% of the commits (at least 46 commits).
Twelve engineers made less than 5% of the commits (less
than 46 commits). Finally, there were a total of seventeen
engineers that made commits to the binary. Thus, our met-
rics for abocomp.dll are:

Metric Value

Minor 12
Major 5
Total 17
Ownership 0.41

4. HYPOTHESES
We begin with the observation that a developer with lower

expertise is more likely to introduce bugs into the code. A
developer who has made a small proportion of the commits
to a binary likely has less expertise and is more likely to
make an error. We expect that as the number of develop-
ers working on a component increases, the component may
become “fragmented” and the di�culty of vetting and coor-
dinating all these minor contributions becomes an obstacle
to good quality. Thus if Minor is high, quality su↵ers.

Hypothesis 1 - Software components with many minor con-
tributors will have more failures than software components
that have fewer.

We also look at the proportion of ownership for the highest
contributing developer for each component (Ownership). If
Ownership is high, that indicates that there is one devel-
oper who “owns” the component and has a high level of ex-
pertise. This person can also act as a single point of contact
for others who need to use the component, need changes to
it, or just have questions about it. We theorize that when
such a person exists, the software quality is higher resulting
in fewer failures.

Hypothesis 2 - Software components with a high level of
ownership will have fewer failures than components with
lower top ownership levels.

If the number of minor contributors negatively a↵ects soft-
ware quality, the next question to ask is, “Why do some
binaries have so many minor contributors?” We have ob-
served both at Microsoft and also within OSS projects such
as Python and Postgres, that during the process of mainte-
nance, feature addition, or bug fixing, owners of one compo-
nent often need to modify other components that the first
relies on or is relied upon by. As a simple example, a devel-
oper tasked with fixing media playback in Internet Explorer
may need to make changes to the media playback interface li-
brary even though the developer is not the designated owner
and has limited experience with this component. This leads
to our hypothesis.

Hypothesis 3 - Minor contributors to components will be
Major contributors to other components that are related
through dependency relationships

Finally, if low-expertise contributions do have a large im-
pact on software quality, then we expect that defect predic-
tion techniques will be a↵ected by their inclusion or removal.
We therefore replicate prior defect prediction techniques and
compare results when using all data, data derived only from
changes by minor contributors and, and data derived only
from changes to major contributors. We expect that when
data from minor contributors is removed, the quality of the
defect prediction will su↵er.

which of these two components
is more likely to have defects?

Conway’s Law — A positivist take: Studies to increase our confidence

Coordination & Productivity

Identification of Coordination Requirements:
Implications for the Design of

Collaboration and Awareness Tools

Marcelo Cataldo1 Patrick A. Wagstrom2 James D. Herbsleb1 Kathleen M. Carley1
1 Institute for Software Research International
2 Department of Engineering and Public Policy

Carnegie Mellon University
Pittsburgh, PA 15213

 {mcataldo,pwagstro}@andrew.cmu.edu jdh@cs.cmu.edu kathleen.carley@cmu.edu

ABSTRACT
Task dependencies drive the need to coordinate work activities.
We describe a technique for using automatically generated archi-
val data to compute coordination requirements, i.e., who must
coordinate with whom to get the work done. Analysis of data
from a large software development project revealed that coordina-
tion requirements were highly volatile, and frequently extended
beyond team boundaries. Congruence between coordination re-
quirements and coordination activities shortened development
time. Developers, particularly the most productive ones, changed
their use of electronic communication media over time, achieving
higher congruence. We discuss practical implications of our
technique for the design of collaborative and awareness tools.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Groups and
Organization Interfaces – collaborative computing, computer-
supported cooperative work, organizational design.

General Terms
Management, Performance, Human Factors.

Keywords
Coordination, Collaboration tools, Task Awareness Tools, Dy-
namic Network Analysis.

1. INTRODUCTION
It has long been observed that organizations carry out complex
tasks by dividing them into smaller interdependent work units
assigned to groups and coordination arises as a response to those
interdependent activities [21]. Communication channels emerge

in the formal and informal organizations. Over time, those infor-
mation conduits develop around the interactions that are most
critical to the organization’s main task [12]. This is particularly
important in product development organizations which organize
themselves around their products’ architectures because the main
components of their products define the organization’s key sub-
tasks [30]. Organizations also develop filters that identify the
most relevant information pertinent to the task at hand [9].

Changes in task dependencies, however, jeopardize the appropri-
ateness of the information flows and filters and can disrupt the
organization’s ability to coordinate effectively. For example,
Henderson & Clark [15] found that minor changes in product
architecture can generate substantial changes in task dependen-
cies, and can have drastic consequences for the organizations’
ability to coordinate work. If we had effective ways of identifying
detailed task dependencies and tracking their changes over time,
we would be in a much better position to design collaborative and
task awareness tools that could help to align information flow
with task dependencies.

Identifying task dependencies and determining the appropriate
coordination mechanism to address the dependencies is not a
trivial problem. Coordination is a recurrent topic in the organiza-
tional theory literature and, as we will discuss in the next section,
many stylized types of task dependencies and coordination
mechanisms have been proposed over the past several decades.
However, numerous types of work, in particular non-routine
knowledge-intensive activities, are potentially full of fine-grain
dependencies that might change on a daily or hourly basis. Con-
ventional coordination mechanisms like standard operating proce-
dures or routines would have very limited applicability in these
dynamic contexts. Therefore, designing tools that support rapidly
shifting coordination needs requires a more fine-grained level of
analysis than what the traditional views of coordination provide.

In this paper, we develop a technique to measure task dependen-
cies among people, and the “fit” between these task dependencies
and the coordination activities performed by individuals. We refer
to the fit measure as congruence. Using data from a software de-
velopment project, we found that patterns of task dependencies
among people are in fact quite volatile, confirming our suspicion
that a fine-grained view of dependencies is important. We then
explored the consequences of congruence for the speed and effi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
Computer Supported Cooperative Work ’06, November 4–8, 2006,
Banff, Alberta, Canada.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

Coordination & Quality

Don’t Touch My Code!

Examining the Effects of Ownership on Software Quality

Christian Bird
Microsoft Research

cbird@microsoft.com

Nachiappan Nagappan
Microsoft Research

nachin@microsoft.com

Brendan Murphy
Microsoft Research

bmurphy@microsoft.com

Harald Gall
University of Zurich

gall@ifi.uzh.ch

Premkumar Devanbu
University of California, Davis

ptdevanbu@ucdavis.edu

ABSTRACT
Ownership is a key aspect of large-scale software develop-
ment. We examine the relationship between di↵erent own-
ership measures and software failures in two large software
projects: Windows Vista and Windows 7. We find that
in all cases, measures of ownership such as the number of
low-expertise developers, and the proportion of ownership
for the top owner have a relationship with both pre-release
faults and post-release failures. We also empirically iden-
tify reasons that low-expertise developers make changes to
components and show that the removal of low-expertise con-
tributions dramatically decreases the performance of contri-
bution based defect prediction. Finally we provide recom-
mendations for source code change policies and utilization
of resources such as code inspections based on our results.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Process metrics

General Terms
Measurement, Management, Human Factors

Keywords
Empirical Software Engineering, Ownership, Expertise, Qual-
ity

1. INTRODUCTION
Many recent studies [6, 9, 26, 29] have shown that hu-

man factors play a significant role in the quality of software
components. Ownership is a general term used to describe
whether one person has responsibility for a software com-
ponent, or if there is no one clearly responsible developer.
There is a relationship between the number of people work-
ing on a binary and failures [5, 26]. However, to our knowl-
edge, the e↵ect of ownership has not been studied in depth in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

commercial contexts. Based on our observations and discus-
sions with project managers, we suspect that when there is
no clear point of contact and the contributions to a software
component are spread across many developers, there is an
increased chance of communication breakdowns, misaligned
goals, inconsistent interfaces and semantics, all leading to
lower quality.

Interestingly, unlike some aspects of software which are
known to be related to defects such as dependency com-
plexity, or size, ownership is something that can be delib-
erately changed by modifying processes and policies. Thus,
the answer to the question: “How much does ownership af-
fect quality?” is important as it is actionable. Managers and
team leads can make better decisions about how to govern
a project by knowing the answer. If ownership has a big
e↵ect, then policies to enforce strong code ownership can be
put into place; managers can also watch out for code which
is contributed by developers who have inadequate relevant
prior experience. If ownership has little e↵ect, then the nor-
mal bottlenecks associated with having one person in charge
of each component can be removed, and available talent re-
assigned at will.

We have observed that many industrial projects encour-
age high levels of code ownership. In this paper, we examine
ownership and software quality. We make the following con-
tributions in this paper:

1. We define and validate measures of ownership that are
related to software quality.

2. We present an in depth quantitative study of the e↵ect
of these measures of ownership on pre-release and post-
release defects for multiple large software projects.

3. We identify reasons that components have many low-
expertise developers contributing to them.

4. We propose recommendations for dealing with the ef-
fects of low ownership.

2. THEORY & RELATED WORK
A number of prior studies have examined the e↵ect of

developer contribution behavior on software quality.
Rahman & Devanbu [30] examined the e↵ects of owner-

ship & experience on quality in several open-source projects,
using a fine-grained approach based on fix-inducing frag-
ments of code, and report findings similar to those of our
paper. However, they operationalize ownership di↵erently,

4

Coordination & Success

Latent Social Structure in Open Source Projects

Christian Bird, David Pattison, Raissa D’Souza,

Vladimir Filkov and Premkumar Devanbu
Dept. of Computer Science, Kemper Hall,

University of California, Davis, CA, USA,

cabird,dspattison,rmdsouza,vfilkov,ptdevanbu@ucdavis.edu

ABSTRACT
Commercial software project managers design project orga-
nizational structure carefully, mindful of available skills, di-
vision of labour, geographical boundaries, etc. These organi-
zational “cathedrals” are to be contrasted with the “bazaar-
like” nature of Open Source Software (OSS) Projects, which
have no pre-designed organizational structure. Any struc-
ture that exists is dynamic, self-organizing, latent, and usu-
ally not explicitly stated. Still, in large, complex, success-
ful, OSS projects, we do expect that subcommunities will
form spontaneously within the developer teams. Studying
these subcommunities, and their behavior can shed light
on how successful OSS projects self-organize. This phe-
nomenon could well hold important lessons for how com-
mercial software teams might be organized. Building on
known well-established techniques for detecting community
structure in complex networks, we extract and study latent
subcommunities from the email social network of several
projects: Apache HTTPD, Python, PostgresSQL, Perl, and
Apache ANT. We then validate them with software devel-
opment activity history. Our results show that subcommu-
nities do indeed spontaneously arise within these projects as
the projects evolve. These subcommunities manifest most
strongly in technical discussions, and are significantly con-
nected with collaboration behaviour.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—program-
ming teams; D.2.8 [Software Engineering]: Metrics—pro-
cess metrics

General Terms
Human Factors, Measurement, Management

Keywords
Open Source Software, social networks, collaboration

This work was supported by a grant from the National Science
Foundation Grant no. NSF-SoD-0613949 and software dona-
tions from SciTools and GrammaTech Corporations.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE 16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

1. INTRODUCTION
Brooks, in his seminal work The Mythical Man-

Month [12], noted the scaling issues that arise in large soft-
ware teams: the number of potential interactions grows
quadratically with team size, thus quadrupling when the
team size is doubled. Clearly, without organization of some
kind, both within the software and the community that de-
velops it, there is a limit to how much projects can be scaled.

In traditional, commercial software projects, the response
to the Brooksian critique of large teams is to divide and con-
quer, by fiat. The system is deliberately divided into smaller
components, and the developer pool grouped into manage-
able teams which are then assigned to those components.
With well-defined interfaces, the teams’ e↵orts are confined
to smaller groups, and the coordination needs are moder-
ated. Software design principles such as separation of con-
cerns [53] play a part in this, as does “Conway’s Law” [16],
which connects artifact structure with organizational struc-
ture.

By contrast, Open Source Software (OSS) projects are
not formally organized, and have no pre-assigned command
and control structure. No one is forced to work on a par-
ticular portion of the project. Team members contribute as
they wish in any number of ways: by submitting bug re-
ports, lending technical knowledge, writing documentation,
improving the source code in various ares of the code base,
etc. It has been observed by Sosa et al. [56] that the fixed
organizational structure found in commercial settings may
lead to misalignment with evolving complex products. Hen-
derson and Clark point out that it may may actually hin-
der innovation [32]. Thus the lack of a rigid organizational
structure may in fact be a boon to OSS projects. However,
the absence of any structure at all may be just as harm-
ful. Henderson and Clark [32] found that “architectural
knowledge tends to become embedded in the structure and
information-processing procedures of established organiza-
tions”. Modularizing artifacts and mapping artifact tasks
onto organizational units is a well known solution to the
problem of complex product development in organizational
management literature [56]. The question then arises, is the
social structure of OSS projects free of such constraints and
actually unorganized and free-for-all? Do they stand in con-
trast to the structured, hierarchical style of traditional com-
mercial software e↵orts? Or, do OSS projects have some
latent1 structure of their own? Are there dynamic, self-
organizing subgroups that spontaneously form and evolve?

1By latent, we mean not explicitly stated, but observable.

Conway’s Law — A positivist take: Studies to increase our confidence

Coordination & Success

Latent Social Structure in Open Source Projects

Christian Bird, David Pattison, Raissa D’Souza,

Vladimir Filkov and Premkumar Devanbu
Dept. of Computer Science, Kemper Hall,

University of California, Davis, CA, USA,

cabird,dspattison,rmdsouza,vfilkov,ptdevanbu@ucdavis.edu

ABSTRACT
Commercial software project managers design project orga-
nizational structure carefully, mindful of available skills, di-
vision of labour, geographical boundaries, etc. These organi-
zational “cathedrals” are to be contrasted with the “bazaar-
like” nature of Open Source Software (OSS) Projects, which
have no pre-designed organizational structure. Any struc-
ture that exists is dynamic, self-organizing, latent, and usu-
ally not explicitly stated. Still, in large, complex, success-
ful, OSS projects, we do expect that subcommunities will
form spontaneously within the developer teams. Studying
these subcommunities, and their behavior can shed light
on how successful OSS projects self-organize. This phe-
nomenon could well hold important lessons for how com-
mercial software teams might be organized. Building on
known well-established techniques for detecting community
structure in complex networks, we extract and study latent
subcommunities from the email social network of several
projects: Apache HTTPD, Python, PostgresSQL, Perl, and
Apache ANT. We then validate them with software devel-
opment activity history. Our results show that subcommu-
nities do indeed spontaneously arise within these projects as
the projects evolve. These subcommunities manifest most
strongly in technical discussions, and are significantly con-
nected with collaboration behaviour.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—program-
ming teams; D.2.8 [Software Engineering]: Metrics—pro-
cess metrics

General Terms
Human Factors, Measurement, Management

Keywords
Open Source Software, social networks, collaboration

This work was supported by a grant from the National Science
Foundation Grant no. NSF-SoD-0613949 and software dona-
tions from SciTools and GrammaTech Corporations.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE 16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

1. INTRODUCTION
Brooks, in his seminal work The Mythical Man-

Month [12], noted the scaling issues that arise in large soft-
ware teams: the number of potential interactions grows
quadratically with team size, thus quadrupling when the
team size is doubled. Clearly, without organization of some
kind, both within the software and the community that de-
velops it, there is a limit to how much projects can be scaled.

In traditional, commercial software projects, the response
to the Brooksian critique of large teams is to divide and con-
quer, by fiat. The system is deliberately divided into smaller
components, and the developer pool grouped into manage-
able teams which are then assigned to those components.
With well-defined interfaces, the teams’ e↵orts are confined
to smaller groups, and the coordination needs are moder-
ated. Software design principles such as separation of con-
cerns [53] play a part in this, as does “Conway’s Law” [16],
which connects artifact structure with organizational struc-
ture.

By contrast, Open Source Software (OSS) projects are
not formally organized, and have no pre-assigned command
and control structure. No one is forced to work on a par-
ticular portion of the project. Team members contribute as
they wish in any number of ways: by submitting bug re-
ports, lending technical knowledge, writing documentation,
improving the source code in various ares of the code base,
etc. It has been observed by Sosa et al. [56] that the fixed
organizational structure found in commercial settings may
lead to misalignment with evolving complex products. Hen-
derson and Clark point out that it may may actually hin-
der innovation [32]. Thus the lack of a rigid organizational
structure may in fact be a boon to OSS projects. However,
the absence of any structure at all may be just as harm-
ful. Henderson and Clark [32] found that “architectural
knowledge tends to become embedded in the structure and
information-processing procedures of established organiza-
tions”. Modularizing artifacts and mapping artifact tasks
onto organizational units is a well known solution to the
problem of complex product development in organizational
management literature [56]. The question then arises, is the
social structure of OSS projects free of such constraints and
actually unorganized and free-for-all? Do they stand in con-
trast to the structured, hierarchical style of traditional com-
mercial software e↵orts? Or, do OSS projects have some
latent1 structure of their own? Are there dynamic, self-
organizing subgroups that spontaneously form and evolve?

1By latent, we mean not explicitly stated, but observable.

Latent social structure in OSS projects

Latent social structure in OSS projects

Latent Social Structure in Open Source Projects

Christian Bird, David Pattison, Raissa D’Souza,

Vladimir Filkov and Premkumar Devanbu
Dept. of Computer Science, Kemper Hall,

University of California, Davis, CA, USA,

cabird,dspattison,rmdsouza,vfilkov,ptdevanbu@ucdavis.edu

ABSTRACT
Commercial software project managers design project orga-
nizational structure carefully, mindful of available skills, di-
vision of labour, geographical boundaries, etc. These organi-
zational “cathedrals” are to be contrasted with the “bazaar-
like” nature of Open Source Software (OSS) Projects, which
have no pre-designed organizational structure. Any struc-
ture that exists is dynamic, self-organizing, latent, and usu-
ally not explicitly stated. Still, in large, complex, success-
ful, OSS projects, we do expect that subcommunities will
form spontaneously within the developer teams. Studying
these subcommunities, and their behavior can shed light
on how successful OSS projects self-organize. This phe-
nomenon could well hold important lessons for how com-
mercial software teams might be organized. Building on
known well-established techniques for detecting community
structure in complex networks, we extract and study latent
subcommunities from the email social network of several
projects: Apache HTTPD, Python, PostgresSQL, Perl, and
Apache ANT. We then validate them with software devel-
opment activity history. Our results show that subcommu-
nities do indeed spontaneously arise within these projects as
the projects evolve. These subcommunities manifest most
strongly in technical discussions, and are significantly con-
nected with collaboration behaviour.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—program-
ming teams; D.2.8 [Software Engineering]: Metrics—pro-
cess metrics

General Terms
Human Factors, Measurement, Management

Keywords
Open Source Software, social networks, collaboration

This work was supported by a grant from the National Science
Foundation Grant no. NSF-SoD-0613949 and software dona-
tions from SciTools and GrammaTech Corporations.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE 16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

1. INTRODUCTION
Brooks, in his seminal work The Mythical Man-

Month [12], noted the scaling issues that arise in large soft-
ware teams: the number of potential interactions grows
quadratically with team size, thus quadrupling when the
team size is doubled. Clearly, without organization of some
kind, both within the software and the community that de-
velops it, there is a limit to how much projects can be scaled.

In traditional, commercial software projects, the response
to the Brooksian critique of large teams is to divide and con-
quer, by fiat. The system is deliberately divided into smaller
components, and the developer pool grouped into manage-
able teams which are then assigned to those components.
With well-defined interfaces, the teams’ e↵orts are confined
to smaller groups, and the coordination needs are moder-
ated. Software design principles such as separation of con-
cerns [53] play a part in this, as does “Conway’s Law” [16],
which connects artifact structure with organizational struc-
ture.

By contrast, Open Source Software (OSS) projects are
not formally organized, and have no pre-assigned command
and control structure. No one is forced to work on a par-
ticular portion of the project. Team members contribute as
they wish in any number of ways: by submitting bug re-
ports, lending technical knowledge, writing documentation,
improving the source code in various ares of the code base,
etc. It has been observed by Sosa et al. [56] that the fixed
organizational structure found in commercial settings may
lead to misalignment with evolving complex products. Hen-
derson and Clark point out that it may may actually hin-
der innovation [32]. Thus the lack of a rigid organizational
structure may in fact be a boon to OSS projects. However,
the absence of any structure at all may be just as harm-
ful. Henderson and Clark [32] found that “architectural
knowledge tends to become embedded in the structure and
information-processing procedures of established organiza-
tions”. Modularizing artifacts and mapping artifact tasks
onto organizational units is a well known solution to the
problem of complex product development in organizational
management literature [56]. The question then arises, is the
social structure of OSS projects free of such constraints and
actually unorganized and free-for-all? Do they stand in con-
trast to the structured, hierarchical style of traditional com-
mercial software e↵orts? Or, do OSS projects have some
latent1 structure of their own? Are there dynamic, self-
organizing subgroups that spontaneously form and evolve?

1By latent, we mean not explicitly stated, but observable.

Latent social structure in OSS projects — Research goal

‣Is there a community structure in OSS projects? How
clearly can you define subcommunities within the
network?

‣Given that the discussions are either project or process
related, is the subcommunity structure influenced by the
group's discussion goals?

‣Do members of a subcommunity work on the same areas
of code?

‣Do members of a subcommunity have a common focus?

Latent social structure in OSS projects — Operationalizing structures

‣Social Structure: Discussion in the development mailing list.
Nodes: developers; Edges: exchanged messages.

‣Technical Structure: Changes to files in the code base of the
project.

Latent social structure in OSS projects — Data sources

‣Subject systems:
‣Well-organized, hierarchical structure (Apache, Ant)
‣ Informal, community driven structure (PostgreSQL)
‣Monarchist, with project leader (Python, Perl)

‣Subject artifacts: Source code files (changed files, change author,
time of change, log message) and email messages.

Latent social structure in OSS projects — Three hypotheses

‣Hypothesis 1
Subcommunities of participants will form in the email social networks of large
OSS projects and the levels of modularity will be statistically significant.
‣Hypothesis 2

Social Networks constructed from product-related discussions will be ____
modular than those relating to non-product related discussions or all
discussions.
‣Hypothesis 3

Pairs of developers within the same subcommunity will have ____ files in
common than pairs of developers from different subcommunities.

more or less?
based on Conway: Fill the blanks!

Latent social structure in OSS projects — Three hypotheses

‣Hypothesis 1
Subcommunities of participants will form in the email social networks of large
OSS projects and the levels of modularity will be statistically significant.
‣Hypothesis 2

Social Networks constructed from product-related discussions will be more
modular than those relating to non-product related discussions or all
discussions.
‣Hypothesis 3

Pairs of developers within the same subcommunity will have more files in
common than pairs of developers from different subcommunities.

Latent social structure in OSS projects — Three hypotheses

‣Hypothesis 1
Subcommunities of participants will form in the email social networks of large
OSS projects and the levels of modularity will be statistically significant.

3. Measure Community Structure

Modification from Newman and Girvan

How do you identify communities within the network?

Q = 0.493

Latent social structure in OSS projects — Three hypotheses

‣Hypothesis 1
Subcommunities of participants will form in the email social networks of large
OSS projects and the levels of modularity will be statistically significant.

5.1 Community Structure Exists
We found strong levels of community structure in all of the

projects studied. The value of the modularity measure Q, as
defined in 4.3, ranges from 0.4 to 0.8. The range of values for
di�erent projects, over the studied period, is shown in Fig-
ure 2. To concretize this scalar value, we show in Figure 3
an example of a network with a community structure value
of 0.76 that is taken from the Perl project for the months of
April to June of 2007. This example was chosen because of
its relatively small size in relation to the other time periods
and projects studied5. In Figure 3, an edge represents one
or more messages between participants; edge weights, albeit
used by the algorithm, are not depicted graphically. Sev-
eral distinct subcommunities can be seen; typically the edges
within subcommunities represent frequent communications.
Newman has found that in naturally occurring networks,
modularity values of 0.3 and above indicate strong commu-
nity structure [51]. As can be seen in Figure 5 we found
values in this range both before and after filtering messages.

●

Ant Apache Perl Postgres Python

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Boxplots of Modularity in Projects

project

m
o
d
u
la
ri
ty

Figure 2: Boxplots of the strength of community structure

for the various projects studied.

Significance of Observed Modularity: The question, arises,
are these values of modularity statistically significant? Do
the empirically observed modularity values reflect something
special and real about how people associate and communi-
cate on the observed email social networks, or are they just
values that would arise in any random network where the
same people were equally active, but had di�erent associ-
ations? If the latter is true, that would suggest that who

people talk to doesn’t matter, only how much they talk.
Our claim, however, is that subcommunities form because
people deliberately choose who they communicate with.

A comparison of modularity values of the random net-
works with the same degree distributions with those from
the actual networks can reject the null hypothesis at far
below the .001 level. An example of a modularity distribu-
tion for Ant from April to June of 2006 is shown in Figure
4. The point on the right indicates the observed network
and the curve shown is the distribution of modularity val-
ues obtained from random networks with the same degree
distribution. Therefore we reject the null hypothesis that
the observed modularity values would occur in a bazaar-like
social network where individuals were just as socially ac-

5Graphs of the networks for each time period of each project
can be viewed at http://janus.cs.ucdavis.edu/~cabird/
cs-graphs.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1

0

Ant, April to June of 2006

Modularity

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

●

Figure 4: The distribution of modularity values for 100,000

random graphs with the same degree distribution as the ob-

served network. The point represents the actual observed

value.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Date

M
o

d
u

la
ri
ty

Modularity of PostgreSQL over time

1998−01 2000−01 2002−01 2004−01 2006−01

Product Topics
Process Topics

Figure 5: The di�erence in strength of community struc-

ture in the PostgreSQL project over time when filtering on

messages that include product-related terms.

tive as in the observed network. Therefore we conclude that
Hypothesis 1 is confirmed.

5.2 Effect of Product and Process Topics
While we identified strong community structure in the so-

cial networks prior to the filtering steps, more clearly delin-
eated subcommunities emerge when constraining the com-
munication that we use in our analysis to messages directly
mentioning product topics, viz., emails that specifically name
actual code artifacts.

As an example, figure 5 shows the modularity found in
the PostgreSQL project over time when using the process

messages on the developer mailing list and when using the
product messages (i.e., those that mention source code arti-
facts directly).

Table 2 shows the average increase in modularity when
we include only the product topic emails. We examined the
di�erences between the filtered and unfiltered values using
one-tailed paired Wilcoxon tests.

To asses the statistical significance of the results, since we
are testing multiple hypotheses (5 in this case), the individ-
ual p-values during testing were adjusted using Benjamini-

Latent social structure in OSS projects — Three hypotheses

‣Hypothesis 1
Subcommunities of participants will form in the email social networks of large
OSS projects and the levels of modularity will be statistically significant.

✔

✔

‣Hypothesis 2
Social Networks constructed from product-related discussions will be more
modular than those relating to non-product related discussions or all
discussions.

Latent social structure in OSS projects — Three hypotheses

‣Hypothesis 1
Subcommunities of participants will form in the email social networks of large
OSS projects and the levels of modularity will be statistically significant.
‣Hypothesis 2

Social Networks constructed from product-related discussions will be more
modular than those relating to non-product related discussions or all
discussions.

✔

✔

✔

‣Hypothesis 3
Pairs of developers within the same subcommunity will have more files in
common than pairs of developers from different subcommunities.

Conway’s Law — A positivist take: Studies to increase our confidence

Coordination & Productivity

Identification of Coordination Requirements:
Implications for the Design of

Collaboration and Awareness Tools

Marcelo Cataldo1 Patrick A. Wagstrom2 James D. Herbsleb1 Kathleen M. Carley1
1 Institute for Software Research International
2 Department of Engineering and Public Policy

Carnegie Mellon University
Pittsburgh, PA 15213

 {mcataldo,pwagstro}@andrew.cmu.edu jdh@cs.cmu.edu kathleen.carley@cmu.edu

ABSTRACT
Task dependencies drive the need to coordinate work activities.
We describe a technique for using automatically generated archi-
val data to compute coordination requirements, i.e., who must
coordinate with whom to get the work done. Analysis of data
from a large software development project revealed that coordina-
tion requirements were highly volatile, and frequently extended
beyond team boundaries. Congruence between coordination re-
quirements and coordination activities shortened development
time. Developers, particularly the most productive ones, changed
their use of electronic communication media over time, achieving
higher congruence. We discuss practical implications of our
technique for the design of collaborative and awareness tools.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Groups and
Organization Interfaces – collaborative computing, computer-
supported cooperative work, organizational design.

General Terms
Management, Performance, Human Factors.

Keywords
Coordination, Collaboration tools, Task Awareness Tools, Dy-
namic Network Analysis.

1. INTRODUCTION
It has long been observed that organizations carry out complex
tasks by dividing them into smaller interdependent work units
assigned to groups and coordination arises as a response to those
interdependent activities [21]. Communication channels emerge

in the formal and informal organizations. Over time, those infor-
mation conduits develop around the interactions that are most
critical to the organization’s main task [12]. This is particularly
important in product development organizations which organize
themselves around their products’ architectures because the main
components of their products define the organization’s key sub-
tasks [30]. Organizations also develop filters that identify the
most relevant information pertinent to the task at hand [9].

Changes in task dependencies, however, jeopardize the appropri-
ateness of the information flows and filters and can disrupt the
organization’s ability to coordinate effectively. For example,
Henderson & Clark [15] found that minor changes in product
architecture can generate substantial changes in task dependen-
cies, and can have drastic consequences for the organizations’
ability to coordinate work. If we had effective ways of identifying
detailed task dependencies and tracking their changes over time,
we would be in a much better position to design collaborative and
task awareness tools that could help to align information flow
with task dependencies.

Identifying task dependencies and determining the appropriate
coordination mechanism to address the dependencies is not a
trivial problem. Coordination is a recurrent topic in the organiza-
tional theory literature and, as we will discuss in the next section,
many stylized types of task dependencies and coordination
mechanisms have been proposed over the past several decades.
However, numerous types of work, in particular non-routine
knowledge-intensive activities, are potentially full of fine-grain
dependencies that might change on a daily or hourly basis. Con-
ventional coordination mechanisms like standard operating proce-
dures or routines would have very limited applicability in these
dynamic contexts. Therefore, designing tools that support rapidly
shifting coordination needs requires a more fine-grained level of
analysis than what the traditional views of coordination provide.

In this paper, we develop a technique to measure task dependen-
cies among people, and the “fit” between these task dependencies
and the coordination activities performed by individuals. We refer
to the fit measure as congruence. Using data from a software de-
velopment project, we found that patterns of task dependencies
among people are in fact quite volatile, confirming our suspicion
that a fine-grained view of dependencies is important. We then
explored the consequences of congruence for the speed and effi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
Computer Supported Cooperative Work ’06, November 4–8, 2006,
Banff, Alberta, Canada.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

Coordination & Quality

Don’t Touch My Code!

Examining the Effects of Ownership on Software Quality

Christian Bird
Microsoft Research

cbird@microsoft.com

Nachiappan Nagappan
Microsoft Research

nachin@microsoft.com

Brendan Murphy
Microsoft Research

bmurphy@microsoft.com

Harald Gall
University of Zurich

gall@ifi.uzh.ch

Premkumar Devanbu
University of California, Davis

ptdevanbu@ucdavis.edu

ABSTRACT
Ownership is a key aspect of large-scale software develop-
ment. We examine the relationship between di↵erent own-
ership measures and software failures in two large software
projects: Windows Vista and Windows 7. We find that
in all cases, measures of ownership such as the number of
low-expertise developers, and the proportion of ownership
for the top owner have a relationship with both pre-release
faults and post-release failures. We also empirically iden-
tify reasons that low-expertise developers make changes to
components and show that the removal of low-expertise con-
tributions dramatically decreases the performance of contri-
bution based defect prediction. Finally we provide recom-
mendations for source code change policies and utilization
of resources such as code inspections based on our results.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Process metrics

General Terms
Measurement, Management, Human Factors

Keywords
Empirical Software Engineering, Ownership, Expertise, Qual-
ity

1. INTRODUCTION
Many recent studies [6, 9, 26, 29] have shown that hu-

man factors play a significant role in the quality of software
components. Ownership is a general term used to describe
whether one person has responsibility for a software com-
ponent, or if there is no one clearly responsible developer.
There is a relationship between the number of people work-
ing on a binary and failures [5, 26]. However, to our knowl-
edge, the e↵ect of ownership has not been studied in depth in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

commercial contexts. Based on our observations and discus-
sions with project managers, we suspect that when there is
no clear point of contact and the contributions to a software
component are spread across many developers, there is an
increased chance of communication breakdowns, misaligned
goals, inconsistent interfaces and semantics, all leading to
lower quality.

Interestingly, unlike some aspects of software which are
known to be related to defects such as dependency com-
plexity, or size, ownership is something that can be delib-
erately changed by modifying processes and policies. Thus,
the answer to the question: “How much does ownership af-
fect quality?” is important as it is actionable. Managers and
team leads can make better decisions about how to govern
a project by knowing the answer. If ownership has a big
e↵ect, then policies to enforce strong code ownership can be
put into place; managers can also watch out for code which
is contributed by developers who have inadequate relevant
prior experience. If ownership has little e↵ect, then the nor-
mal bottlenecks associated with having one person in charge
of each component can be removed, and available talent re-
assigned at will.

We have observed that many industrial projects encour-
age high levels of code ownership. In this paper, we examine
ownership and software quality. We make the following con-
tributions in this paper:

1. We define and validate measures of ownership that are
related to software quality.

2. We present an in depth quantitative study of the e↵ect
of these measures of ownership on pre-release and post-
release defects for multiple large software projects.

3. We identify reasons that components have many low-
expertise developers contributing to them.

4. We propose recommendations for dealing with the ef-
fects of low ownership.

2. THEORY & RELATED WORK
A number of prior studies have examined the e↵ect of

developer contribution behavior on software quality.
Rahman & Devanbu [30] examined the e↵ects of owner-

ship & experience on quality in several open-source projects,
using a fine-grained approach based on fix-inducing frag-
ments of code, and report findings similar to those of our
paper. However, they operationalize ownership di↵erently,

4

Coordination & Success

Latent Social Structure in Open Source Projects

Christian Bird, David Pattison, Raissa D’Souza,

Vladimir Filkov and Premkumar Devanbu
Dept. of Computer Science, Kemper Hall,

University of California, Davis, CA, USA,

cabird,dspattison,rmdsouza,vfilkov,ptdevanbu@ucdavis.edu

ABSTRACT
Commercial software project managers design project orga-
nizational structure carefully, mindful of available skills, di-
vision of labour, geographical boundaries, etc. These organi-
zational “cathedrals” are to be contrasted with the “bazaar-
like” nature of Open Source Software (OSS) Projects, which
have no pre-designed organizational structure. Any struc-
ture that exists is dynamic, self-organizing, latent, and usu-
ally not explicitly stated. Still, in large, complex, success-
ful, OSS projects, we do expect that subcommunities will
form spontaneously within the developer teams. Studying
these subcommunities, and their behavior can shed light
on how successful OSS projects self-organize. This phe-
nomenon could well hold important lessons for how com-
mercial software teams might be organized. Building on
known well-established techniques for detecting community
structure in complex networks, we extract and study latent
subcommunities from the email social network of several
projects: Apache HTTPD, Python, PostgresSQL, Perl, and
Apache ANT. We then validate them with software devel-
opment activity history. Our results show that subcommu-
nities do indeed spontaneously arise within these projects as
the projects evolve. These subcommunities manifest most
strongly in technical discussions, and are significantly con-
nected with collaboration behaviour.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—program-
ming teams; D.2.8 [Software Engineering]: Metrics—pro-
cess metrics

General Terms
Human Factors, Measurement, Management

Keywords
Open Source Software, social networks, collaboration

This work was supported by a grant from the National Science
Foundation Grant no. NSF-SoD-0613949 and software dona-
tions from SciTools and GrammaTech Corporations.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE 16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

1. INTRODUCTION
Brooks, in his seminal work The Mythical Man-

Month [12], noted the scaling issues that arise in large soft-
ware teams: the number of potential interactions grows
quadratically with team size, thus quadrupling when the
team size is doubled. Clearly, without organization of some
kind, both within the software and the community that de-
velops it, there is a limit to how much projects can be scaled.

In traditional, commercial software projects, the response
to the Brooksian critique of large teams is to divide and con-
quer, by fiat. The system is deliberately divided into smaller
components, and the developer pool grouped into manage-
able teams which are then assigned to those components.
With well-defined interfaces, the teams’ e↵orts are confined
to smaller groups, and the coordination needs are moder-
ated. Software design principles such as separation of con-
cerns [53] play a part in this, as does “Conway’s Law” [16],
which connects artifact structure with organizational struc-
ture.

By contrast, Open Source Software (OSS) projects are
not formally organized, and have no pre-assigned command
and control structure. No one is forced to work on a par-
ticular portion of the project. Team members contribute as
they wish in any number of ways: by submitting bug re-
ports, lending technical knowledge, writing documentation,
improving the source code in various ares of the code base,
etc. It has been observed by Sosa et al. [56] that the fixed
organizational structure found in commercial settings may
lead to misalignment with evolving complex products. Hen-
derson and Clark point out that it may may actually hin-
der innovation [32]. Thus the lack of a rigid organizational
structure may in fact be a boon to OSS projects. However,
the absence of any structure at all may be just as harm-
ful. Henderson and Clark [32] found that “architectural
knowledge tends to become embedded in the structure and
information-processing procedures of established organiza-
tions”. Modularizing artifacts and mapping artifact tasks
onto organizational units is a well known solution to the
problem of complex product development in organizational
management literature [56]. The question then arises, is the
social structure of OSS projects free of such constraints and
actually unorganized and free-for-all? Do they stand in con-
trast to the structured, hierarchical style of traditional com-
mercial software e↵orts? Or, do OSS projects have some
latent1 structure of their own? Are there dynamic, self-
organizing subgroups that spontaneously form and evolve?

1By latent, we mean not explicitly stated, but observable.

Socio-technical Aspects in Software Systems — A take on Conway’s Law

