Alberto Bacchelli

» et us do a quick round of introductions and let us/me know:
> yOour name,
» what you expected from enrolling in this course,
» what you would ideally like to do after your M.Sc. studies.

Institut fur Informatik
UnlverS|ty of Zurich

Computer Science Department

Delft University of Technology
The Netherlands

FONDS NATIONAL SUISSE
SCHWEIZERISCHER NATIONALFONDS
FONDO NAZIONALE SVIZZERO

Swiss NATIONAL SCIENCE FOUNDATION

...and awesome
regular collaborators

U. Hannover Microsoft Mozilla Google

WHAT is important for SOFTWARE QUALITY and WHY?

WHAT is important for SOFTWARE QUALITY and WHY?

» \When you write software and you care about software quality(*)..
» \What are the aspects that you always try to keep in mind and/or
the behaviors that you try to have?

» Form groups of 2/3 students, discuss the answer to the question above, and come
up with a list of top-3 elements and their rationale.
Let us discuss the results in 5 minutes.

» Do these aspects/lbehaviors change when you know that you are
working in a team?

» et us find 5 elements that matter and their rationale.

yes, but.. how do you know?

(*) e.q., that the software is maintainable and reasonably defect free

Melvin Conway

Any organization that design a system
will produce a design whose structure is
a copy of the organization’s
communication structure.

o@a nu ﬂa
CN o
D [

Compiler Team | Compiler Team Il
Three developers involved Five developers involved

h

™ NN

3-step compiler 5-step compiler

yes, but.. what happens over time?

Melvin Conway

Any organization that designs a system
will produce a design whose structure is
a copy of the organization’s
communication structure.

—

A software system whose structure
closely matches its organization’s
communication structure works “better.”

Identification of Coordination Requirements:
Implications for the Design of
Collaboration and Awareness Tools

Marcelo Cataldo' Patrick A. Wagstrom?

James D. Herbsleb' Kathleen M. Carley'

Institute for Software Research International
2 Department of Engineering and Public Policy
Carnegie Mellon University
Pittsburgh, PA 15213

{mcataldo,pwagstro}@andrew.cmu.edu

ABSTRACT
Task dependencies drive the need to coordinate work activities.
We describe a ique for using i d archi-

val data to compute coordination requirements, i.e., who must
coordinate with whom to get the work done. Analysis of data
from a large software development project revealed that coordina-
tion requirements were highly volatile, and frequently extended
beyond team boundaries. Congruence between coordination re-
quirements and coordination activities shortened development
time. Developers, particularly the most productive ones, changed
their use of electronic communication media over time, achievi

jdh@cs.cmu.edu kathleen.carley@cmu.edu

in the formal and informal organizations. Over time, those infor-
mation conduits develop around the interactions that are most
critical to the organization’s main task [12]. This is particularly
important in product development organizations which organize
themselves around their products’ architectures because the main
components of their products define the organization’s key sub-
tasks [30]. Organizations also develop filters that identify the
most relevant information pertinent to the task at hand [9].

Changes in task dependencies, however, jeopardize the appropri-
ateness of the information flows and filters and can disrupt the

higher congruence. We discuss practical implications of our

technique for the design of collaborative and awareness tools.

Categories and Subject Descriptors

H.5.3 [Information Interfaces and Presentation]: Groups and

Organization Interfaces — i i 1p
perative work, izational design.

General Terms
Management, Performance, Human Factors.

Keywords
e

tools, Task ss Tools, Dy-
namic Network Analysis.

1. INTRODUCTION

It has long been observed that organizations carry out complex
tasks by dividing them into smaller interdependent work units
assigned to groups and coordination arises as a response to those
interdependent activities [21]. Communication channels emerge

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.

Computer Supported Cooperative Work 06, November 4-8, 2006,
Banff, Alberta, Canada.

Copyright 2006 ACM 1-58113-000-0/00/0004...85.00.

s ability to inate effectively. For example,
I & Clark [15] found that minor changes in product
hi can generate ial changes in task dependen-

cies, and can have drastic consequences for the organizations’
ability to coordinate work. If we had effective ways of identifying
detailed task dependencies and tracking their changes over time,
we would be in a much better position to design collaborative and
task awareness tools that could help to align information flow
with task dependencies.

Identifying task dependencies and determining the appropriate
coordination mechanism to address the dependencies is not a
trivial problem. Coordination is a recurrent topic in the organiza-
tional theory literature and, as we will discuss in the next section,
many stylized types of task dependencies and coordination
mechanisms have been proposed over the past several decades.
However, numerous types of work, in particular non-routine
ki i ive activities, are i full of fine-grain
dependencies that might change on a daily or hourly basis. Con-
ventional coordination mechanisms like standard operating proce-
dures or routines would have very limited applicability in these
dynamic contexts. Therefore, designing tools that support rapidly
shifting coordination needs requires a more fine-grained level of
analysis than what the traditional views of coordination provide.

In this paper, we develop a technique to measure task dependen-
cies among people, and the “fit” between these task dependencies
and the coordination activities performed by individuals. We refer
to the fit measure as congruence. Using data from a software de-
velopment project, we found that patterns of task dependencies
among people are in fact quite volatile, confirming our suspicion
that a fine-grained view of dependencies is important. We then
explored the consequences of congruence for the speed and effi-

Coordination & Productivity

Don’t Touch My Code!
Examining the Effects of Ownership on Software Quality

Christian Bird
Microsoft Research
cbird@microsoft.com

Harald Gall
University of Zurich
gall@ifi.uzh.ch

ABSTRACT

Ownership is a key aspect of large-scale software develop-
ment. We examine the relationship between different own-
ership measures and software failures in two large software
projects: Windows Vista and Windows 7. We find that
in all cases, measures of ownership such as the number of
low-expertise developers, and the proportion of ownership
for the top owner have a relationship with both pre-release
faults and post-release failures. We also empirically iden-
tify reasons that low-expertise developers make changes to
components and show that the removal of low-expertise con-
tributions dramatically decreases the performance of contri-
bution based defect prediction. Finally we provide recom-
mendations for source code change policies and utilization
of resources such as code inspections based on our results.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Process metrics

General Terms

Measurement, Management, Human Factors

Keywords
Empirical Software Engineering, Ownership, Expertise, Qual-
ity

1. INTRODUCTION

Many recent studies [6, 9, 26, 29] have shown that hu-
man factors play a significant role in the quality of software
components. Ouwnership is a general term used to describe
whether one person has responsibility for a software com-
ponent, or if there is no one clearly responsible developer.
There is a relationship between the number of people work-
ing on a binary and failures [5,26]. However, to our knowl-
edge, the effect of ownership has not been studied in depth in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEC/FSE’11, September 5-9, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

Nachiappan Nagappan Brendan Murphy
Microsoft Research
nachin@microsoft.com bmurphy@microsoft.com

Microsoft Research

Premkumar Devanbu
University of California, Davis
ptdevanbu@ucdavis.edu

commercial contexts. Based on our observations and discus-
sions with project managers, we suspect that when there is
no clear point of contact and the contributions to a software
component are spread across many developers, there is an
increased chance of communication breakdowns, misaligned
goals, inconsistent interfaces and semantics, all leading to
lower quality.

Interestingly, unlike some aspects of software which are
known to be related to defects such as dependency com-
plexity, or size, ownership is something that can be delib-
erately changed by modifying processes and policies. Thus,
the answer to the question: “How much does ownership af-
fect quality?” is important as it is actionable. Managers and
team leads can make better decisions about how to govern
a project by knowing the answer. If ownership has a big
effect, then policies to enforce strong code ownership can be
put into place; managers can also watch out for code which
is contributed by developers who have inadequate relevant
prior experience. If ownership has little effect, then the nor-
mal bottlenecks associated with having one person in charge
of each component can be removed, and available talent re-
assigned at will.

We have observed that many industrial projects encour-
age high levels of code ownership. In this paper, we examine
ownership and software quality. We make the following con-
tributions in this paper:

1. We define and validate measures of ownership that are
related to software quality.

2. We present an in depth quantitative study of the effect
of these measures of ownership on pre-release and post-
release defects for multiple large software projects.

I

We identify reasons that components have many low-
expertise developers contributing to them.

Lo

We propose recommendations for dealing with the ef-
fects of low ownership.

2. THEORY & RELATED WORK

A number of prior studies have examined the effect of
developer contribution behavior on software quality.

Rahman & Devanbu [30] examined the effects of owner-
ship & experience on quality in several open-source projects,
using a fine-grained approach based on fix-inducing frag-
ments of code, and report findings similar to those of our
paper. However, they operationalize ownership differently,

Coordination & Quality

Latent Social Structure in Open Source Projects

Christian Bird, David Pattison, Raissa D’'Souza,
Vladimir Filkov and Premkumar Devanbu
Dept. of Computer Science, Kemper Hall,
University of California, Davis, CA, USA,

cabird,dspattison,rmdsouza,vEilkov,ptdevanbuCucdavis. edu

ABSTRACT

Commercial software project managers design project orga-
nizational structure carefully, mindful of available skills, di-
vision of labour, geographical boundaries, etc. These organi-
zational “cathedrals” are to be contrasted with the “bazaar-
like” nature of Open Source Software (OSS) Projects, which
have no pre-designed organizational structure. Any struc-
ture that exists is dynamic, self-organizing, latent, and usu-
ally not explicitly stated. Still, in large, complex, success-
ful, OSS projects, we do expect that subcommunities will
form spontaneously within the developer teams. Studying
these subcommunities, and their behavior can shed light
on how successful OSS projects self-organize. This phe-
nomenon could well hold important lessons for how com-
mercial software teams might be organized. Building on
known well-established techni for detectin,

structure in complex networks, we extract and study latent
subcommunities from the email social network of several
projects: Apache HTTPD, Python, PostgresSQL, Perl, and
Apache ANT. We then validate them with software devel-
opment activity history. Our results show that subcommu-
nities do indeed spontaneously arise within these projects as
the projects evolve. These subcommunities manifest most
strongly in technical discussions, and are significantly con-
nected with collaboration behaviour.

Categories and Subject Descriptors

D.2.9 [Soft Engineering]: M prog
ming teams; D.2.8 [Software Engineering]: Metrics—pro-
cess metrics

General Terms

Human Factors, Measurement, Management

Keywords
Open Source Software, social networks, collaboration

This work was supported by a grant from the National Science
Foundation Grant no. NSF-SoD-0613949 and software dona-
tions from SciTools and GrammaTech Corporations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGSOFT 2008/FSE 16, November 9-15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

1. INTRODUCTION

Brooks, in his seminal work The Mythical Man-
Month [12], noted the scaling issues that arise in large soft-
ware teams: the number of potential interactions grows
quadratically with team size, thus quadrupling when the
team size is doubled. Clearly, without organization of some
kind, both within the software and the community that de-
velops it, there is a limit to how much projects can be scaled.

In traditional, commercial software projects, the response
to the Brooksian critique of large teams is to divide and con-
quer, by fiat. The system is deliberately divided into smaller
components, and the developer pool grouped into manage-
able teams which are then assigned to those components.
‘With well-defined interfaces, the teams’ efforts are confined
to smaller groups, and the coordination needs are moder-
ated. Software design principles such as separation of con-
cerns [53] play a part in this, as does “Conway’s Law” [16],
which connects artifact structure with organizational struc-
ture.

By contrast, Open Source Software (OSS) projects are
not formally organized, and have no pre-assigned command
and control structure. No one is forced to work on a par-
ticular portion of the project. Team members contribute as
they wish in any number of ways: by submitting bug re-
ports, lending technical knowledge, writing documentation,
improving the source code in various ares of the code base,
etc. It has been observed by Sosa et al. [56] that the fixed
organizational structure found in commercial settings may
lead to misalignment with evolving complex products. Hen-
derson and Clark point out that it may may actually hin-
der innovation [32]. Thus the lack of a rigid organizational
structure may in fact be a boon to OSS projects. However,
the absence of any structure at all may be just as harm-
ful. Henderson and Clark [32] found that “architectural
knowledge tends to become embedded in the structure and
information-processing procedures of established organiza-
tions”. Modularizing artifacts and mapping artifact tasks
onto organizational units is a well known solution to the
problem of complex product development in organizational
management literature [56]. The question then arises, is the
social structure of OSS projects free of such constraints and
actually unorganized and free-for-all? Do they stand in con-
trast to the structured, hierarchical style of traditional com-
mercial software efforts? Or, do OSS projects have some
latent! structure of their own? Are there dynamic, self-
organizing subgroups that spontaneously form and evolve?

By latent, we mean not explicitly stated, but observable.

Coordination & Success

Identification of Coordination Requirements:

Implications for the Design of
Collaboration and Awareness Tools

Marcelo Cataldo' Patrick A. Wagstrom?

James D. Herbsleb' Kathleen M. Carley'

Institute for Software Research International
2 Department of Engineering and Public Policy
Carnegie Mellon University
Pittsburgh, PA 15213

{mcataldo,pwagstro}@andrew.cmu.edu

ABSTRACT
Task dependencies drive the need to coordinate work activities.
We describe a ique for using i d archi-

val data to compute coordination requirements, i.e., who must
coordinate with whom to get the work done. Analysis of data
from a large software development project revealed that coordina-
tion requirements were highly volatile, and frequently extended
beyond team boundaries. Congruence between coordination re-
quirements and coordination activities shortened development
time. Developers, particularly the most productive ones, changed
their use of electronic communication media over time, achievi

jdh@cs.cmu.edu kathleen.carley@cmu.edu

in the formal and informal organizations. Over time, those infor-
mation conduits develop around the interactions that are most
critical to the organization’s main task [12]. This is particularly
important in product development organizations which organize
themselves around their products’ architectures because the main
components of their products define the organization’s key sub-
tasks [30]. Organizations also develop filters that identify the
most relevant information pertinent to the task at hand [9].

Changes in task dependencies, however, jeopardize the appropri-
ateness of the information flows and filters and can disrupt the

higher congruence. We discuss practical implications of our

technique for the design of collaborative and awareness tools.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Groups and
Organization Interfaces — i i 1p

P perative work, izational design.

General Terms
Management, Performance, Human Factors.

Keywords
e

tools, Task ss Tools, Dy-
namic Network Analysis.

1. INTRODUCTION

It has long been observed that organizations carry out complex
tasks by dividing them into smaller interdependent work units
assigned to groups and coordination arises as a response to those
interdependent activities [21]. Communication channels emerge

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee

Computer Supporied Cooperative Work 06, November 4-8, 2006,
Banff, Alberta, Canada.

Copyright 2006 ACM 1-58113-000-0/00/0004....$5.00.

Coordination & Productivity

s ability to inate effectively. For example,
I & Clark [15] found that minor changes in product
hi can generate ial changes in task dependen-

cies, and can have drastic consequences for the organizations’
ability to coordinate work. If we had effective ways of identifying
detailed task dependencies and tracking their changes over time,
we would be in a much better position to design collaborative and
task awareness tools that could help to align information flow
with task dependencies.

Identifying task dependencies and determining the appropriate
coordination mechanism to address the dependencies is not a
trivial problem. Coordination is a recurrent topic in the organiza-
tional theory literature and, as we will discuss in the next section,
many stylized types of task dependencies and coordination
mechanisms have been proposed over the past several decades.
However, numerous types of work, in particular non-routine
ki i ive activities, are i full of fine-grain
dependencies that might change on a daily or hourly basis. Con-
ventional coordination mechanisms like standard operating proce-
dures or routines would have very limited applicability in these
dynamic contexts. Therefore, designing tools that support rapidly
shifting coordination needs requires a more fine-grained level of
analysis than what the traditional views of coordination provide.

In this paper, we develop a technique to measure task dependen-
cies among people, and the “fit” between these task dependencies
and the coordination activities performed by individuals. We refer
to the fit measure as congruence. Using data from a software de-
velopment project, we found that patterns of task dependencies
among people are in fact quite volatile, confirming our suspicion
that a fine-grained view of dependencies is important. We then
explored the consequences of congruence for the speed and effi-

Don’t Touch My Code!
Examining the Effects of Ownership on Software Quality

Christian Bird
Microsoft Research
cbird@microsoft.com

Harald Gall
University of Zurich
gall@ifi.uzh.ch

ABSTRACT

Ownership is a key aspect of large-scale software develop-
ment. We examine the relationship between different own-
ership measures and software failures in two large software
projects: Windows Vista and Windows 7. We find that
in all cases, measures of ownership such as the number of
low-expertise developers, and the proportion of ownership
for the top owner have a relationship with both pre-release
faults and post-release failures. We also empirically iden-
tify reasons that low-expertise developers make changes to
components and show that the removal of low-expertise con-
tributions dramatically decreases the performance of contri-
bution based defect prediction. Finally we provide recom-
mendations for source code change policies and utilization
of resources such as code inspections based on our results.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Process metrics

General Terms

Measurement, Management, Human Factors

Keywords
Empirical Software Engineering, Ownership, Expertise, Qual-
ity

1. INTRODUCTION

Many recent studies [6, 9, 26, 29] have shown that hu-
man factors play a significant role in the quality of software
components. Ouwnership is a general term used to describe
whether one person has responsibility for a software com-
ponent, or if there is no one clearly responsible developer.
There is a relationship between the number of people work-
ing on a binary and failures [5,26]. However, to our knowl-
edge, the effect of ownership has not been studied in depth in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEC/FSE’11, September 5-9, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

Nachiappan Nagappan Brendan Murphy
Microsoft Research
nachin@microsoft.com bmurphy@microsoft.com

Microsoft Research

Premkumar Devanbu
University of California, Davis
ptdevanbu@ucdavis.edu

commercial contexts. Based on our observations and discus-
sions with project managers, we suspect that when there is
no clear point of contact and the contributions to a software
component are spread across many developers, there is an
increased chance of communication breakdowns, misaligned
goals, inconsistent interfaces and semantics, all leading to
lower quality.

Interestingly, unlike some aspects of software which are
known to be related to defects such as dependency com-
plexity, or size, ownership is something that can be delib-
erately changed by modifying processes and policies. Thus,
the answer to the question: “How much does ownership af-
fect quality?” is important as it is actionable. Managers and
team leads can make better decisions about how to govern
a project by knowing the answer. If ownership has a big
effect, then policies to enforce strong code ownership can be
put into place; managers can also watch out for code which
is contributed by developers who have inadequate relevant
prior experience. If ownership has little effect, then the nor-
mal bottlenecks associated with having one person in charge
of each component can be removed, and available talent re-
assigned at will.

We have observed that many industrial projects encour-
age high levels of code ownership. In this paper, we examine
ownership and software quality. We make the following con-
tributions in this paper:

1. We define and validate measures of ownership that are
related to software quality.

2. We present an in depth quantitative study of the effect
of these measures of ownership on pre-release and post-
release defects for multiple large software projects.

I

We identify reasons that components have many low-
expertise developers contributing to them.

Lo

We propose recommendations for dealing with the ef-
fects of low ownership.

2. THEORY & RELATED WORK

A number of prior studies have examined the effect of
developer contribution behavior on software quality.

Rahman & Devanbu [30] examined the effects of owner-
ship & experience on quality in several open-source projects,
using a fine-grained approach based on fix-inducing frag-
ments of code, and report findings similar to those of our
paper. However, they operationalize ownership differently,

Coordination & Quality

Latent Social Structure in Open Source Projects

Christian Bird, David Pattison, Raissa D’'Souza,
Vladimir Filkov and Premkumar Devanbu
Dept. of Computer Science, Kemper Hall,
University of California, Davis, CA, USA,

cabird,dspattison,rmdsouza,vEilkov,ptdevanbuCucdavis. edu

ABSTRACT

Commercial software project managers design project orga-
nizational structure carefully, mindful of available skills, di-
vision of labour, geographical boundaries, etc. These organi-
zational “cathedrals” are to be contrasted with the “bazaar-
like” nature of Open Source Software (OSS) Projects, which
have no pre-designed organizational structure. Any struc-
ture that exists is dynamic, self-organizing, latent, and usu-
ally not explicitly stated. Still, in large, complex, success-
ful, OSS projects, we do expect that subcommunities will
form spontaneously within the developer teams. Studying
these subcommunities, and their behavior can shed light
on how successful OSS projects self-organize. This phe-
nomenon could well hold important lessons for how com-
mercial software teams might be organized. Building on
known well-established techni for detectin,

structure in complex networks, we extract and study latent
subcommunities from the email social network of several
projects: Apache HTTPD, Python, PostgresSQL, Perl, and
Apache ANT. We then validate them with software devel-
opment activity history. Our results show that subcommu-
nities do indeed spontaneously arise within these projects as
the projects evolve. These subcommunities manifest most
strongly in technical discussions, and are significantly con-
nected with collaboration behaviour.

Categories and Subject Descriptors

D.2.9 [Soft Engineering]: M prog
ming teams; D.2.8 [Software Engineering]: Metrics—pro-
cess metrics

General Terms

Human Factors, Measurement, Management

Keywords
Open Source Software, social networks, collaboration

This work was supported by a grant from the National Science
Foundation Grant no. NSF-SoD-0613949 and software dona-
tions from SciTools and GrammaTech Corporations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGSOFT 2008/FSE 16, November 9-15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

1. INTRODUCTION

Brooks, in his seminal work The Mythical Man-
Month [12], noted the scaling issues that arise in large soft-
ware teams: the number of potential interactions grows
quadratically with team size, thus quadrupling when the
team size is doubled. Clearly, without organization of some
kind, both within the software and the community that de-
velops it, there is a limit to how much projects can be scaled.

In traditional, commercial software projects, the response
to the Brooksian critique of large teams is to divide and con-
quer, by fiat. The system is deliberately divided into smaller
components, and the developer pool grouped into manage-
able teams which are then assigned to those components.
‘With well-defined interfaces, the teams’ efforts are confined
to smaller groups, and the coordination needs are moder-
ated. Software design principles such as separation of con-
cerns [53] play a part in this, as does “Conway’s Law” [16],
which connects artifact structure with organizational struc-
ture.

By contrast, Open Source Software (OSS) projects are
not formally organized, and have no pre-assigned command
and control structure. No one is forced to work on a par-
ticular portion of the project. Team members contribute as
they wish in any number of ways: by submitting bug re-
ports, lending technical knowledge, writing documentation,
improving the source code in various ares of the code base,
etc. It has been observed by Sosa et al. [56] that the fixed
organizational structure found in commercial settings may
lead to misalignment with evolving complex products. Hen-
derson and Clark point out that it may may actually hin-
der innovation [32]. Thus the lack of a rigid organizational
structure may in fact be a boon to OSS projects. However,
the absence of any structure at all may be just as harm-
ful. Henderson and Clark [32] found that “architectural
knowledge tends to become embedded in the structure and
information-processing procedures of established organiza-
tions”. Modularizing artifacts and mapping artifact tasks
onto organizational units is a well known solution to the
problem of complex product development in organizational
management literature [56]. The question then arises, is the
social structure of OSS projects free of such constraints and
actually unorganized and free-for-all? Do they stand in con-
trast to the structured, hierarchical style of traditional com-
mercial software efforts? Or, do OSS projects have some
latent! structure of their own? Are there dynamic, self-
organizing subgroups that spontaneously form and evolve?

By latent, we mean not explicitly stated, but observable.

Coordination & Success

Don’t Touch My Code!
Examining the Effects of Ownership on Software Quality

Christian Bird
Microsoft Research
cbird@microsoft.com

Harald Gall
University of Zurich
gall@ifi.uzh.ch

ABSTRACT

Ownership is a key aspect of large-scale software develop-
ment. We examine the relationship between different own-
ership measures and software failures in two large software
projects: Windows Vista and Windows 7. We find that
in all cases, measures of ownership such as the number of
low-expertise developers, and the proportion of ownership
for the top owner have a relationship with both pre-release
faults and post-release failures. We also empirically iden-
tify reasons that low-expertise developers make changes to
components and show that the removal of low-expertise con-
tributions dramatically decreases the performance of contri-
bution based defect prediction. Finally we provide recom-
mendations for source code change policies and utilization
of resources such as code inspections based on our results.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Process metrics

General Terms

Measurement, Management, Human Factors

Keywords
Empirical Software Engineering, Ownership, Expertise, Qual-
ity

1. INTRODUCTION

Many recent studies [6, 9, 26, 29] have shown that hu-
man factors play a significant role in the quality of software
components. Ouwnership is a general term used to describe
whether one person has responsibility for a software com-
ponent, or if there is no one clearly responsible developer.
There is a relationship between the number of people work-
ing on a binary and failures [5,26]. However, to our knowl-
edge, the effect of ownership has not been studied in depth in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEC/FSE’11, September 5-9, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

Nachiappan Nagappan
Microsoft Research
nachin@microsoft.com

Brendan Murphy
Microsoft Research
bmurphy@microsoft.com

Premkumar Devanbu
University of California, Davis
ptdevanbu@ucdavis.edu

commercial contexts. Based on our observations and discus-
sions with project managers, we suspect that when there is
no clear point of contact and the contributions to a software
component are spread across many developers, there is an
increased chance of communication breakdowns, misaligned
goals, inconsistent interfaces and semantics, all leading to
lower quality.

Interestingly, unlike some aspects of software which are
known to be related to defects such as dependency com-
plexity, or size, ownership is something that can be delib-
erately changed by modifying processes and policies. Thus,
the answer to the question: “How much does ownership af-
fect quality?” is important as it is actionable. Managers and
team leads can make better decisions about how to govern
a project by knowing the answer. If ownership has a big
effect, then policies to enforce strong code ownership can be
put into place; managers can also watch out for code which
is contributed by developers who have inadequate relevant
prior experience. If ownership has little effect, then the nor-
mal bottlenecks associated with having one person in charge
of each component can be removed, and available talent re-
assigned at will.

We have observed that many industrial projects encour-
age high levels of code ownership. In this paper, we examine
ownership and software quality. We make the following con-
tributions in this paper:

1. We define and validate measures of ownership that are
related to software quality.

2. We present an in depth quantitative study of the effect
of these measures of ownership on pre-release and post-
release defects for multiple large software projects.

I

We identify reasons that components have many low-
expertise developers contributing to them.

'

. We propose recommendations for dealing with the ef-
fects of low ownership.

2. THEORY & RELATED WORK

A number of prior studies have examined the effect of
developer contribution behavior on software quality.

Rahman & Devanbu [30] examined the effects of owner-
ship & experience on quality in several open-source projects,
using a fine-grained approach based on fix-inducing frag-
ments of code, and report findings similar to those of our
paper. However, they operationalize ownership differently,

Coordination & Quality

Don’t Touch My Code!

,‘ -] ‘
S i
; <

e

Don’t Touch My Code!

Don’t Touch My Code!
Examining the Effects of Ownership on Software Quality

Christian Bird

Microsoft Research
cbhird@microsoft.com

Harald Gall
University of Zurich

gall@ifi.uzh.ch

ABSTRACT

Ownership is a key aspect of large-scale software develop-
ment. We examine the relationship between different own-
ership measures and software failures in two large software
projects: Windows Vista and Windows 7. We find that
in all cases, measures of ownership such as the number of
low-expertise developers, and the proportion of ownership
for the top owner have a relationship with both pre-release
faults and post-release failures. We also empirically iden-
tify reasons that low-expertise developers make changes to
components and show that the removal of low-expertise con-
tributions dramatically decreases the performance of contri-
bution based defect prediction. Finally we provide recom-
mendations for source code change policies and utilization
of resources such as code inspections based on our results.

Nachiappan Nagappan
Microsoft Research
nachin@microsoft.com

Brendan Murphy
Microsoft Research
bmurphy@microsoft.com

Premkumar Devanbu
University of California, Davis

ptdevanbu@ucdavis.edu

commercial contexts. Based on our observations and discus-
sions with project managers, we suspect that when there is
no clear point of contact and the contributions to a software
component are spread across many developers, there is an
increased chance of communication breakdowns, misaligned
goals, inconsistent interfaces and semantics, all leading to
lower quality.

Interestingly, unlike some aspects of software which are
known to be related to defects such as dependency com-
plexity, or size, ownership is something that can be delib-
erately changed by modifying processes and policies. Thus,
the answer to the question: “How much does ownership af-
fect quality?” is important as it is actionable. Managers and
team leads can make better decisions about how to govern
a project by knowing the answer. If ownership has a big
effect, then policies to enforce strong code ownership can be

Don’t Touch My Code! — Research goal

»How much does ownership affect quality”?

» How to define and validate measures of ownership that are related
to software quality”?

» How to operationalize software guality”?

» How to define effect of ownership metrics on software defects in
guantitative terms?

Don’t Touch My Code! — Operationalizing ownership

» Software Component: A unit of development that has some core
functionality

» Contributor: Someone who has made commits/software changes
to a component

» Proportion of Ownership: Ratio of number of commits that the
contributor has made relative to the total number of commits for that

component

» Minor Contributor: Ownership is below 5%

» Major Contributor: Ownership is at or above 5%

Don’t Touch My Code! — Considered metrics by software component

» Minor: Number of minor contributors

» Major: Number of major contributors

» Total: Total number of contributors

»Ownership: Proportion of ownership for the contributor with the
highest proportion of ownership.

Don’t Touch My Code! — Data sources

» Subject systems: Windows Vista and Windows 7

» Subject components: Executable files (.exe), shared libraries(.dll)
and drivers (.sys), and their changes recorded in the VCS (changed
components, change author, time of change, log message).

Don’t Touch My Code! — Example metrics for a software component

Ownership of A.dll by Developers

O Top contributor makes 49% of commits (OWNERSHIP)

4 major contributors (MAJOR)

Percent of Commits

4 minor contributors (MINOR)
8 total contributors (TOTAL)

Ownership

Developer

Don’t Touch My Code! — Example metrics for a software component

Ownership of B.dll by Developers

o Top contributor makes 22% of commits (OWNERSHIP)

[2)
=
=
£
O
O
Y—
(@)
=
()
o
—
)
o

4 major contributors (MAJOR)
74 minor contributors (MINOR)

Ownership

Developer

Don’t Touch My Code! — Operationalizing software quality

» Software Quality: Software defects!

Don’t Touch My Code! — Data sources

» Subject systems: Windows Vista and Windows 7

» Subject components: Executable files (.exe), shared libraries(.dll)

and drivers (.sys), and their changes recorded in the VCS (changed
components, change author, time of change, log message).

» Subject defects: Pre-release defects and post-release failures

Don’t Touch My Code! — Two hypotheses

»Hypothesis 1
Software components with many minor contributors will
have failures than software components that have
fewer.

»Hypothesis 2
Software components with a high level of ownership will
have failures than components with lower top
ownership levels.

more or less?

based on GConway: Fill the blanks!

Don’t Touch My Code! — Two hypotheses

»Hypothesis 1
Software components with many minor contributors will
have more failures than software components that have
fewer.

»Hypothesis 2
Software components with a high level of ownership will
have fewer failures than components with lower top
ownership levels.

Don’t Touch My Code! — Data analysis

» Correlation analysis:
» |s there any relationship between ownership and software quality”?

» How strong is the relationship?

» Begression analysis:
» |s there any effect of ownership variables on failures?

» s ownership important when controlling for other factors?

T USED 10 THINK THEN T TOOK A | | SOUNDS LKE THE
CORRELATION IMPUED| | STATISTICS CuAass. | | CLASS HELPED.
CAUSATION.)

Don’t Touch My Code! — Results: Correlation Analysis

Windows Vista Windows 7
Pre-release Post-release Pre-release Post-release
Failures Failures Failures Failures

 TorAL 0.84 0.70 0.92 0.24
Ownership \1vor 0.86 0.70 0.93 0.25
Metrics n1a50R 0.26 0.29 -0.40 0.14

OWNERSHIP -0.49 -0.49 -0.29 -0.02

Category Metric

Don’t Touch My Code! — Results: Correlation Analysis of Controlling Factors

Windows Vista Windows 7
Pre-release Post-release Pre-release Post-release

Category Metric Failures Failures Failures Failures

Ownership
Metrics

“Classic”
Metrics

TOTAL
MINOR
MAJOR
OWNERSHIP

Size
Churn
Complexity

0.84
0.86
0.26
-0.49

0.75
0.72
0.70

0.70
0.70
0.29
-0.49

0.69
0.69
0.53

0.92
0.93
-0.40
-0.29

0.70
0.71
0.956

0.24
0.25
-0.14
-0.02

0.26
0.26
0.37

Don’t Touch My Code! — Results: Regression Analysis

Windows Vista Windows 7
Pre-release Post-release Pre-release Post-release
Failures Failures Failures Failures

 TorAL 0.84 0.70 0.92 0.24
Ownership \1vor 0.86 0.70 0.93 0.25
Metrics n1a50R 0.26 0.29 -0.40 0.14

OWNERSHIP -0.49 -0.49 -0.29 -0.02

Category Metric

Clasgier | SiZ8 0.75 0.69 0.70 0.26
I assIc™ Churn 0.72 0.69 0.71 0.26
etrics Cumplexity 0.70 0.53 0.56 0.37

Windows Vista Windows 7
Model Pre-release Post-release Pre-release Post-release
Failures Failures Failures Failures

Base (code metrics) 26% 29% 24% 18%
Base + TOTAL 40%* (+14%) 35%* (+6%) 68%* (+35%) 21%* (+3%)
Base + MINOR 46%* (420%) 41%*(+12%) 70%* (+46%) 21%* (+3%)
Base + MINOR + MAJOR 4183%* (+2%) 43%* (+2%) T1%* (+1%) 22% (+1%)
Base + MINOR + MAJOR + OWNERSHIP 50%"(+2%) 44%*(+1%) 72%* (+1%) 22% (+0%)

Don’t Touch My Code! — Comparing two components

Ownership of A.dll by Developers

Top contributor makes 49% of commits (OWNERSHIP)

4 major contributors (MAJOR)

Percent of Commits

4 minor contributors (MINOR)

8 total contributors (TOTAL)

Developer

Percent of Commits

Ownership of B.dll by Developers

Top contributor makes 22% of commits (OWNERSHIP)

4 major contributors (MAJOR)
74 minor contributors (MINOR)

Developer

which of these two components
IS more likely to have defects?

Identification of Coordination Requirements:
Implications for the Design of

Don’t Touch My Code!
Examining the Effects of Ownership on Software Quality

Latent Social Structure in Open Source Projects

Collaboration and Awareness Tools

Marcelo Cataldo' Patrick A. Wagstrom?

James D. Herbsleb' Kathleen M. Carley'

Institute for Software Research International
2 Department of Engineering and Public Policy
Carnegie Mellon University
Pittsburgh, PA 15213

{mcataldo,pwagstro}@andrew.cmu.edu

ABSTRACT
Task dependencies drive the need to coordinate work activities.
We describe a ique for using i d archi-

val data to compute coordination requirements, i.e., who must
coordinate with whom to get the work done. Analysis of data
from a large software development project revealed that coordina-
tion requirements were highly volatile, and frequently extended
beyond team boundaries. Congruence between coordination re-
quirements and coordination activities shortened development
time. Developers, particularly the most productive ones, changed

jdh@cs.cmu.edu kathleen.carley@cmu.edu

in the formal and informal organizations. Over time, those infor-
mation conduits develop around the interactions that are most
critical to the organization’s main task [12]. This is particularly
important in product development organizations which organize
themselves around their products’ architectures because the main
components of their products define the organization’s key sub-
tasks [30]. Organizations also develop filters that identify the
most relevant information pertinent to the task at hand [9].

Changes in task dependencies, however, jeopardize the appropri-
ateness of the information flows and filters and can disrupt the

their use of electronic communication media over time,
higher congruence. We discuss practical implications of our

technique for the design of collaborative and awareness tools.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Groups and
Organization Interfaces — i i 1p

P perative work, izational design.

General Terms
Management, Performance, Human Factors.

Keywords
e

tools, Task ss Tools, Dy-
namic Network Analysis.

1. INTRODUCTION

It has long been observed that organizations carry out complex
tasks by dividing them into smaller interdependent work units
assigned to groups and coordination arises as a response to those
interdependent activities [21]. Communication channels emerge

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee

Computer Supporied Cooperative Work 06, November 4-8, 2006,
Banff, Alberta, Canada.

Copyright 2006 ACM 1-58113-000-0/00/0004....$5.00.

s ability to inate effectively. For example,
I & Clark [15] found that minor changes in product
hi can generate ial changes in task dependen-

cies, and can have drastic consequences for the organizations’
ability to coordinate work. If we had effective ways of identifying
detailed task dependencies and tracking their changes over time,
we would be in a much better position to design collaborative and
task awareness tools that could help to align information flow
with task dependencies.

Identifying task dependencies and determining the appropriate
coordination mechanism to address the dependencies is not a
trivial problem. Coordination is a recurrent topic in the organiza-
tional theory literature and, as we will discuss in the next section,
many stylized types of task dependencies and coordination
mechanisms have been proposed over the past several decades.
However, numerous types of work, in particular non-routine
ki i ive activities, are i full of fine-grain
dependencies that might change on a daily or hourly basis. Con-
ventional coordination mechanisms like standard operating proce-
dures or routines would have very limited applicability in these
dynamic contexts. Therefore, designing tools that support rapidly
shifting coordination needs requires a more fine-grained level of
analysis than what the traditional views of coordination provide.

In this paper, we develop a technique to measure task dependen-
cies among people, and the “fit” between these task dependencies
and the coordination activities performed by individuals. We refer
to the fit measure as congruence. Using data from a software de-
velopment project, we found that patterns of task dependencies
among people are in fact quite volatile, confirming our suspicion
that a fine-grained view of dependencies is important. We then
explored the consequences of congruence for the speed and effi-

Coordination & Productivity

Christian Bird
Microsoft Research
cbird@microsoft.com

Harald Gall
University of Zurich
gall@ifi.uzh.ch

ABSTRACT

Ownership is a key aspect of large-scale software develop-
ment. We examine the relationship between different own-
ership measures and software failures in two large software
projects: Windows Vista and Windows 7. We find that
in all cases, measures of ownership such as the number of
low-expertise developers, and the proportion of ownership
for the top owner have a relationship with both pre-release
faults and post-release failures. We also empirically iden-
tify reasons that low-expertise developers make changes to
components and show that the removal of low-expertise con-
tributions dramatically decreases the performance of contri-
bution based defect prediction. Finally we provide recom-
mendations for source code change policies and utilization
of resources such as code inspections based on our results.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Process metrics

General Terms

Measurement, Management, Human Factors

Keywords
Empirical Software Engineering, Ownership, Expertise, Qual-
ity

1. INTRODUCTION

Many recent studies [6, 9, 26, 29] have shown that hu-
man factors play a significant role in the quality of software
components. Ouwnership is a general term used to describe
whether one person has responsibility for a software com-
ponent, or if there is no one clearly responsible developer.
There is a relationship between the number of people work-
ing on a binary and failures [5,26]. However, to our knowl-
edge, the effect of ownership has not been studied in depth in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEC/FSE’11, September 5-9, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

Nachiappan Naga|
Microsoft Researcl 3
nachin@microsoft.com bmurphy@microsoft.com

Coordination & Quality

ppan Brendan Murphy
h Microsoft Research
Premkumar Devanbu
University of California, Davis
ptdevanbu@ucdavis.edu

commercial contexts. Based on our observations and discus-
sions with project managers, we suspect that when there is
no clear point of contact and the contributions to a software
component are spread across many developers, there is an
increased chance of communication breakdowns, misaligned
goals, inconsistent interfaces and semantics, all leading to
lower quality.

Interestingly, unlike some aspects of software which are
known to be related to defects such as dependency com-
plexity, or size, ownership is something that can be delib-
erately changed by modifying processes and policies. Thus,
the answer to the question: “How much does ownership af-
fect quality?” is important as it is actionable. Managers and
team leads can make better decisions about how to govern
a project by knowing the answer. If ownership has a big
effect, then policies to enforce strong code ownership can be
put into place; managers can also watch out for code which
is contributed by developers who have inadequate relevant
prior experience. If ownership has little effect, then the nor-
mal bottlenecks associated with having one person in charge
of each component can be removed, and available talent re-
assigned at will.

We have observed that many industrial projects encour-
age high levels of code ownership. In this paper, we examine
ownership and software quality. We make the following con-
tributions in this paper:

1. We define and validate measures of ownership that are
related to software quality.

2. We present an in depth quantitative study of the effect
of these measures of ownership on pre-release and post-
release defects for multiple large software projects.

w

. We identify reasons that components have many low-
expertise developers contributing to them.

Lo

We propose recommendations for dealing with the ef-
fects of low ownership.

2. THEORY & RELATED WORK

A number of prior studies have examined the effect of
developer contribution behavior on software quality.

Rahman & Devanbu [30] examined the effects of owner-
ship & experience on quality in several open-source projects,
using a fine-grained approach based on fix-inducing frag-
ments of code, and report findings similar to those of our
paper. However, they operationalize ownership differently,

Christian Bird, David Pattison, Raissa D’'Souza,
Vladimir Filkov and Premkumar Devanbu
Dept. of Computer Science, Kemper Hall,
University of California, Davis, CA, USA,

cabird,dspattison,rmdsouza,vEilkov,ptdevanbuCucdavis. edu

ABSTRACT

Commercial software project managers design project orga-
nizational structure carefully, mindful of available skills, di-
vision of labour, geographical boundaries, etc. These organi-
zational “cathedrals” are to be contrasted with the “bazaar-
like” nature of Open Source Software (OSS) Projects, which
have no pre-designed organizational structure. Any struc-
ture that exists is dynamic, self-organizing, latent, and usu-
ally not explicitly stated. Still, in large, complex, success-
ful, OSS projects, we do expect that subcommunities will
form spontaneously within the developer teams. Studying
these subcommunities, and their behavior can shed light
on how successful OSS projects self-organize. This phe-
nomenon could well hold important lessons for how com-
mercial software teams might be organized. Building on
known well-established techni for detectin,

structure in complex networks, we extract and study latent
subcommunities from the email social network of several
projects: Apache HTTPD, Python, PostgresSQL, Perl, and
Apache ANT. We then validate them with software devel-
opment activity history. Our results show that subcommu-
nities do indeed spontaneously arise within these projects as
the projects evolve. These subcommunities manifest most
strongly in technical discussions, and are significantly con-
nected with collaboration behaviour.

Categories and Subject Descriptors

D.2.9 [Soft Engineering]: M prog
ming teams; D.2.8 [Software Engineering]: Metrics—pro-
cess metrics

General Terms

Human Factors, Measurement, Management

Keywords
Open Source Software, social networks, collaboration

This work was supported by a grant from the National Science
Foundation Grant no. NSF-SoD-0613949 and software dona-
tions from SciTools and GrammaTech Corporations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGSOFT 2008/FSE 16, November 9-15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

1. INTRODUCTION

Brooks, in his seminal work The Mythical Man-
Month [12], noted the scaling issues that arise in large soft-
ware teams: the number of potential interactions grows
quadratically with team size, thus quadrupling when the
team size is doubled. Clearly, without organization of some
kind, both within the software and the community that de-
velops it, there is a limit to how much projects can be scaled.

In traditional, commercial software projects, the response
to the Brooksian critique of large teams is to divide and con-
quer, by fiat. The system is deliberately divided into smaller
components, and the developer pool grouped into manage-
able teams which are then assigned to those components.
‘With well-defined interfaces, the teams’ efforts are confined
to smaller groups, and the coordination needs are moder-
ated. Software design principles such as separation of con-
cerns [53] play a part in this, as does “Conway’s Law” [16],
which connects artifact structure with organizational struc-
ture.

By contrast, Open Source Software (OSS) projects are
not formally organized, and have no pre-assigned command
and control structure. No one is forced to work on a par-
ticular portion of the project. Team members contribute as
they wish in any number of ways: by submitting bug re-
ports, lending technical knowledge, writing documentation,
improving the source code in various ares of the code base,
etc. It has been observed by Sosa et al. [56] that the fixed
organizational structure found in commercial settings may
lead to misalignment with evolving complex products. Hen-
derson and Clark point out that it may may actually hin-
der innovation [32]. Thus the lack of a rigid organizational
structure may in fact be a boon to OSS projects. However,
the absence of any structure at all may be just as harm-
ful. Henderson and Clark [32] found that “architectural
knowledge tends to become embedded in the structure and
information-processing procedures of established organiza-
tions”. Modularizing artifacts and mapping artifact tasks
onto organizational units is a well known solution to the
problem of complex product development in organizational
management literature [56]. The question then arises, is the
social structure of OSS projects free of such constraints and
actually unorganized and free-for-all? Do they stand in con-
trast to the structured, hierarchical style of traditional com-
mercial software efforts? Or, do OSS projects have some
latent! structure of their own? Are there dynamic, self-
organizing subgroups that spontaneously form and evolve?

By latent, we mean not explicitly stated, but observable.

Coordination & Success

Latent Social Structure in Open Source Projects

Christian Bird, David Pattison, Raissa D’'Souza,
Vladimir Filkov and Premkumar Devanbu
Dept. of Computer Science, Kemper Hall,
University of California, Davis, CA, USA,

cabird,dspattison,rmdsouza,vEilkov,ptdevanbuCucdavis. edu

ABSTRACT

Commercial software project managers design project orga-
nizational structure carefully, mindful of available skills, di-
vision of labour, geographical boundaries, etc. These organi-
zational “cathedrals” are to be contrasted with the “bazaar-
like” nature of Open Source Software (OSS) Projects, which
have no pre-designed organizational structure. Any struc-
ture that exists is dynamic, self-organizing, latent, and usu-
ally not explicitly stated. Still, in large, complex, success-
ful, OSS projects, we do expect that subcommunities will
form spontaneously within the developer teams. Studying
these subcommunities, and their behavior can shed light
on how successful OSS projects self-organize. This phe-
nomenon could well hold important lessons for how com-
mercial software teams might be organized. Building on
known well-established techni for detectin,

structure in complex networks, we extract and study latent
subcommunities from the email social network of several
projects: Apache HTTPD, Python, PostgresSQL, Perl, and
Apache ANT. We then validate them with software devel-
opment activity history. Our results show that subcommu-
nities do indeed spontaneously arise within these projects as
the projects evolve. These subcommunities manifest most
strongly in technical di ions, and are signi ly con-
nected with collaboration behaviour.

Categories and Subject Descriptors

D29 | Engineering]: M prog
ming teams; D.2.8 [Software Engineering]: Metrics—pro-
cess metrics

General Terms
Human Factors, Measurement, Management

Keywords
Open Source Software, social networks, collaboration

This work was supported by a grant from the National Science
Foundation Grant no. NSF-SoD-0613949 and software dona-
tions from SciTools and GrammaTech Corporations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGSOFT 2008/FSE 16, November 9-15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

1. INTRODUCTION

Brooks, in his seminal work The Mythical Man-
Month [12], noted the scaling issues that arise in large soft-
ware teams: the number of potential interactions grows
quadratically with team size, thus quadrupling when the
team size is doubled. Clearly, without organization of some
kind, both within the software and the community that de-
velops it, there is a limit to how much projects can be scaled.

In traditional, commercial software projects, the response
to the Brooksian critique of large teams is to divide and con-
quer, by fiat. The system is deliberately divided into smaller
components, and the developer pool grouped into manage-
able teams which are then assigned to those components.
‘With well-defined interfaces, the teams’ efforts are confined
to smaller groups, and the coordination needs are moder-
ated. Software design principles such as separation of con-
cerns [53] play a part in this, as does “Conway’s Law” [16],
which connects artifact structure with organizational struc-
ture.

By contrast, Open Source Software (OSS) projects are
not formally organized, and have no pre-assigned command
and control structure. No one is forced to work on a par-
ticular portion of the project. Team members contribute as
they wish in any number of ways: by submitting bug re-
ports, lending technical knowledge, writing documentation,
improving the source code in various ares of the code base,
etc. It has been observed by Sosa et al. [56] that the fixed
organizational structure found in commercial settings may
lead to misalignment with evolving complex products. Hen-
derson and Clark point out that it may may actually hin-
der innovation [32]. Thus the lack of a rigid organizational
structure may in fact be a boon to OSS projects. However,
the absence of any structure at all may be just as harm-
ful. Henderson and Clark [32] found that “architectural
knowledge tends to become embedded in the structure and
information-processing procedures of established organiza-
tions”. Modularizing artifacts and mapping artifact tasks
onto organizational units is a well known solution to the
problem of complex product development in organizational
management, literature [56]. The question then arises, is the
social structure of OSS projects free of such constraints and
actually unorganized and free-for-all? Do they stand in con-
trast to the structured, hierarchical style of traditional com-
mercial software efforts? Or, do OSS projects have some
latent! structure of their own? Are there dynamic, self-
organizing subgroups that spontaneously form and evolve?

By latent, we mean not explicitly stated, but observable.

Coordination & Success

.
DURAR S
.

o’,n
IR
v

»

)

o

L |
..nw -4
=
o
A
.

A

A 5

in 0SS projects

Latent social structure

Latent social structure in 0SS projects

Latent Social Structure in Open Source Projects

Christian Bird, David Pattison, Raissa D'Souza,
Vladimir Filkov and Premkumar Devanbu
Dept. of Computer Science, Kemper Hall,
University of California, Davis, CA, USA,

cabird,dspattison,rmdsouza,vfilkov,ptdevanbu@ucdavis.edu

ABSTRACT

Commercial software project managers design project orga-
nizational structure carefully, mindful of available skills, di-
vision of labour, geographical boundaries, etc. These organi-
zational “cathedrals” are to be contrasted with the “bazaar-
like” nature of Open Source Software (OSS) Projects, which
have no pre-designed organizational structure. Any struc-
ture that exists is dynamic, self-organizing, latent, and usu-
ally not explicitly stated. Still, in large, complex, success-
ful, OSS projects, we do expect that subcommunities will
form spontaneously within the developer teams. Studying
these subcommunities, and their behavior can shed light
on how successful OSS projects self-organize. This phe-
nomenon could well hold important lessons for how com-
mercial software teams might be organized. Building on
known well-established techniques for detecting community
structure in complex networks, we extract and study latent
subcommunities from the email social network of several

1. INTRODUCTION

Brooks, in his seminal work The Muythical Man-
Month [12], noted the scaling issues that arise in large soft-
ware teams: the number of potential interactions grows
quadratically with team size, thus quadrupling when the
team size is doubled. Clearly, without organization of some
kind, both within the software and the community that de-
velops it, there is a limit to how much projects can be scaled.

In traditional, commercial software projects, the response
to the Brooksian critique of large teams is to divide and con-
quer, by fiat. The system is deliberately divided into smaller
components, and the developer pool grouped into manage-
able teams which are then assigned to those components.
With well-defined interfaces, the teams’ efforts are confined
to smaller groups, and the coordination needs are moder-
ated. Software design principles such as separation of con-
cerns [53] play a part in this, as does “Conway’s Law” [16],
which connects artifact structure with organizational struc-

Latent social structure in 0SS projects — Research goal

»[s there a community structure iIn OSS projects”? How
clearly can you define subcommunities within the

network”?

» Given that the di

related, Is the su

sScussions are either project or process
bcommunity structure influenced by the

group's discussi

on goals?

»Do members of a subcommunity work on the same areas

of code?

»Do members of a subcommunity have a common focus”?

Latent social structure in 0SS projects — Operationalizing structures

» Social Structure: Discussion in the development mailing list.
Nodes: developers; Edges: exchanged messages.

» Technical Structure: Changes to files in the code base of the
project.

Latent social structure in 0SS projects — Data sources

» Subject systems:
» Well-organized, hierarchical structure (Apache, Ant)
» Informal, community driven structure (PostgreSQL)

» Monarchist, with project leader (Python, Perl)

» Subject artifacts: Source code files (changed files, change author,
time of change, log message) and email messages.

Latent social structure in 0SS projects — Three hypotheses

»Hypothesis 1

Subcommunities of participants will form in the email social networks of large
OSS projects and the levels of modularity will be statistically significant.

»Hypothesis 2

Social Networks constructed from product-related discussions will be
modular than those relating to non-product related discussions or all
discussions.

»Hypothesis 3

Pairs of developers within the same subcommunity will have files in
common than pairs of developers from different subcommunities.

more or less?

based on GConway: Fill the blanks!

Latent social structure in 0SS projects — Three hypotheses

»Hypothesis 1

Subcommunities of participants will form in the email social networks of large
OSS projects and the levels of modularity will be statistically significant.

»Hypothesis 2

Social Networks constructed from product-related discussions will be more
modular than those relating to non-product related discussions or all
discussions.

»Hypothesis 3

Pairs of developers within the same subcommunity will have more files in
common than pairs of developers from different subcommunities.

Latent social structure in 0SS projects — Three hypotheses

»Hypothesis 1

Subcommunities of participants will form in the email social networks of large
OSS projects and the levels of modularity will be statistically significant.

Latent social structure in 0SS projects — Three hypotheses

»Hypothesis 1

Subcommunities of participants will form in the email social networks of large
OSS projects and the levels of modularity will be statistically significant.

Ant, April to June of 2006

Probability Density

0.4 0.6

Modularity

Latent social structure in 0SS projects — Three hypotheses

»Hypothesis 1

Subcommunities of participants will form in the email social networks of large
OSS projects and the levels of modularity will be statistically significant. 5

»Hypothesis 2
Social Networks constructed from product-related discussions will be more
modular than those relating to non-product related discussions or all
discussions. V

Latent social structure in 0SS projects — Three hypotheses

»Hypothesis 1

Subcommunities of participants will form in the email social networks of large
OSS projects and the levels of modularity will be statistically significant. 5

»Hypothesis 2

Social Networks constructed from product-related discussions will be more
modular than those relating to non-product related discussions or all
»Hypothesis 3

discussions.
Pairs of developers within the same subcommunity will have more files in
common than pairs of developers from different subcommunities. V

Identification of Coordination Requirements:
Implications for the Design of
Collaboration and Awareness Tools

Marcelo Cataldo' Patrick A. Wagstrom?

James D. Herbsleb' Kathleen M. Carley'

Institute for Software Research International
2 Department of Engineering and Public Policy
Carnegie Mellon University
Pittsburgh, PA 15213

{mcataldo,pwagstro}@andrew.cmu.edu

ABSTRACT
Task dependencies drive the need to coordinate work activities.
We describe a ique for using i d archi-

val data to compute coordination requirements, i.e., who must
coordinate with whom to get the work done. Analysis of data
from a large software development project revealed that coordina-
tion requirements were highly volatile, and frequently extended
beyond team boundaries. Congruence between coordination re-
quirements and coordination activities shortened development
time. Developers, particularly the most productive ones, changed
their use of electronic communication media over time, achievi

jdh@cs.cmu.edu kathleen.carley@cmu.edu

in the formal and informal organizations. Over time, those infor-
mation conduits develop around the interactions that are most
critical to the organization’s main task [12]. This is particularly
important in product development organizations which organize
themselves around their products’ architectures because the main
components of their products define the organization’s key sub-
tasks [30]. Organizations also develop filters that identify the
most relevant information pertinent to the task at hand [9].

Changes in task dependencies, however, jeopardize the appropri-
ateness of the information flows and filters and can disrupt the

higher congruence. We discuss practical implications of our

technique for the design of collaborative and awareness tools.

Categories and Subject Descriptors

H.5.3 [Information Interfaces and Presentation]: Groups and

Organization Interfaces — i i 1p
perative work, izational design.

General Terms
Management, Performance, Human Factors.

Keywords
e

tools, Task ss Tools, Dy-
namic Network Analysis.

1. INTRODUCTION

It has long been observed that organizations carry out complex
tasks by dividing them into smaller interdependent work units
assigned to groups and coordination arises as a response to those
interdependent activities [21]. Communication channels emerge

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.

Computer Supported Cooperative Work 06, November 4-8, 2006,
Banff, Alberta, Canada.

Copyright 2006 ACM 1-58113-000-0/00/0004...85.00.

s ability to inate effectively. For example,
I & Clark [15] found that minor changes in product
hi can generate ial changes in task dependen-

cies, and can have drastic consequences for the organizations’
ability to coordinate work. If we had effective ways of identifying
detailed task dependencies and tracking their changes over time,
we would be in a much better position to design collaborative and
task awareness tools that could help to align information flow
with task dependencies.

Identifying task dependencies and determining the appropriate
coordination mechanism to address the dependencies is not a
trivial problem. Coordination is a recurrent topic in the organiza-
tional theory literature and, as we will discuss in the next section,
many stylized types of task dependencies and coordination
mechanisms have been proposed over the past several decades.
However, numerous types of work, in particular non-routine
ki i ive activities, are i full of fine-grain
dependencies that might change on a daily or hourly basis. Con-
ventional coordination mechanisms like standard operating proce-
dures or routines would have very limited applicability in these
dynamic contexts. Therefore, designing tools that support rapidly
shifting coordination needs requires a more fine-grained level of
analysis than what the traditional views of coordination provide.

In this paper, we develop a technique to measure task dependen-
cies among people, and the “fit” between these task dependencies
and the coordination activities performed by individuals. We refer
to the fit measure as congruence. Using data from a software de-
velopment project, we found that patterns of task dependencies
among people are in fact quite volatile, confirming our suspicion
that a fine-grained view of dependencies is important. We then
explored the consequences of congruence for the speed and effi-

Coordination & Productivity

Don’t Touch My Code!
Examining the Effects of Ownership on Software Quality

Christian Bird
Microsoft Research
cbird@microsoft.com

Harald Gall
University of Zurich
gall@ifi.uzh.ch

ABSTRACT

Ownership is a key aspect of large-scale software develop-
ment. We examine the relationship between different own-
ership measures and software failures in two large software
projects: Windows Vista and Windows 7. We find that
in all cases, measures of ownership such as the number of
low-expertise developers, and the proportion of ownership
for the top owner have a relationship with both pre-release
faults and post-release failures. We also empirically iden-
tify reasons that low-expertise developers make changes to
components and show that the removal of low-expertise con-
tributions dramatically decreases the performance of contri-
bution based defect prediction. Finally we provide recom-
mendations for source code change policies and utilization
of resources such as code inspections based on our results.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Process metrics

General Terms

Measurement, Management, Human Factors

Keywords
Empirical Software Engineering, Ownership, Expertise, Qual-
ity

1. INTRODUCTION

Many recent studies [6, 9, 26, 29] have shown that hu-
man factors play a significant role in the quality of software
components. Ouwnership is a general term used to describe
whether one person has responsibility for a software com-
ponent, or if there is no one clearly responsible developer.
There is a relationship between the number of people work-
ing on a binary and failures [5,26]. However, to our knowl-
edge, the effect of ownership has not been studied in depth in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEC/FSE’11, September 5-9, 2011, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

Nachiappan Nagappan Brendan Murphy
Microsoft Research
nachin@microsoft.com bmurphy@microsoft.com

Microsoft Research

Premkumar Devanbu
University of California, Davis
ptdevanbu@ucdavis.edu

commercial contexts. Based on our observations and discus-
sions with project managers, we suspect that when there is
no clear point of contact and the contributions to a software
component are spread across many developers, there is an
increased chance of communication breakdowns, misaligned
goals, inconsistent interfaces and semantics, all leading to
lower quality.

Interestingly, unlike some aspects of software which are
known to be related to defects such as dependency com-
plexity, or size, ownership is something that can be delib-
erately changed by modifying processes and policies. Thus,
the answer to the question: “How much does ownership af-
fect quality?” is important as it is actionable. Managers and
team leads can make better decisions about how to govern
a project by knowing the answer. If ownership has a big
effect, then policies to enforce strong code ownership can be
put into place; managers can also watch out for code which
is contributed by developers who have inadequate relevant
prior experience. If ownership has little effect, then the nor-
mal bottlenecks associated with having one person in charge
of each component can be removed, and available talent re-
assigned at will.

We have observed that many industrial projects encour-
age high levels of code ownership. In this paper, we examine
ownership and software quality. We make the following con-
tributions in this paper:

1. We define and validate measures of ownership that are
related to software quality.

2. We present an in depth quantitative study of the effect
of these measures of ownership on pre-release and post-
release defects for multiple large software projects.

I

We identify reasons that components have many low-
expertise developers contributing to them.

Lo

We propose recommendations for dealing with the ef-
fects of low ownership.

2. THEORY & RELATED WORK

A number of prior studies have examined the effect of
developer contribution behavior on software quality.

Rahman & Devanbu [30] examined the effects of owner-
ship & experience on quality in several open-source projects,
using a fine-grained approach based on fix-inducing frag-
ments of code, and report findings similar to those of our
paper. However, they operationalize ownership differently,

Coordination & Quality

Latent Social Structure in Open Source Projects

Christian Bird, David Pattison, Raissa D’'Souza,
Vladimir Filkov and Premkumar Devanbu
Dept. of Computer Science, Kemper Hall,
University of California, Davis, CA, USA,

cabird,dspattison,rmdsouza,vEilkov,ptdevanbuCucdavis. edu

ABSTRACT

Commercial software project managers design project orga-
nizational structure carefully, mindful of available skills, di-
vision of labour, geographical boundaries, etc. These organi-
zational “cathedrals” are to be contrasted with the “bazaar-
like” nature of Open Source Software (OSS) Projects, which
have no pre-designed organizational structure. Any struc-
ture that exists is dynamic, self-organizing, latent, and usu-
ally not explicitly stated. Still, in large, complex, success-
ful, OSS projects, we do expect that subcommunities will
form spontaneously within the developer teams. Studying
these subcommunities, and their behavior can shed light
on how successful OSS projects self-organize. This phe-
nomenon could well hold important lessons for how com-
mercial software teams might be organized. Building on
known well-established techni for detectin,

structure in complex networks, we extract and study latent
subcommunities from the email social network of several
projects: Apache HTTPD, Python, PostgresSQL, Perl, and
Apache ANT. We then validate them with software devel-
opment activity history. Our results show that subcommu-
nities do indeed spontaneously arise within these projects as
the projects evolve. These subcommunities manifest most
strongly in technical discussions, and are significantly con-
nected with collaboration behaviour.

Categories and Subject Descriptors

D.2.9 [Soft Engineering]: M prog
ming teams; D.2.8 [Software Engineering]: Metrics—pro-
cess metrics

General Terms

Human Factors, Measurement, Management

Keywords
Open Source Software, social networks, collaboration

This work was supported by a grant from the National Science
Foundation Grant no. NSF-SoD-0613949 and software dona-
tions from SciTools and GrammaTech Corporations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGSOFT 2008/FSE 16, November 9-15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

1. INTRODUCTION

Brooks, in his seminal work The Mythical Man-
Month [12], noted the scaling issues that arise in large soft-
ware teams: the number of potential interactions grows
quadratically with team size, thus quadrupling when the
team size is doubled. Clearly, without organization of some
kind, both within the software and the community that de-
velops it, there is a limit to how much projects can be scaled.

In traditional, commercial software projects, the response
to the Brooksian critique of large teams is to divide and con-
quer, by fiat. The system is deliberately divided into smaller
components, and the developer pool grouped into manage-
able teams which are then assigned to those components.
‘With well-defined interfaces, the teams’ efforts are confined
to smaller groups, and the coordination needs are moder-
ated. Software design principles such as separation of con-
cerns [53] play a part in this, as does “Conway’s Law” [16],
which connects artifact structure with organizational struc-
ture.

By contrast, Open Source Software (OSS) projects are
not formally organized, and have no pre-assigned command
and control structure. No one is forced to work on a par-
ticular portion of the project. Team members contribute as
they wish in any number of ways: by submitting bug re-
ports, lending technical knowledge, writing documentation,
improving the source code in various ares of the code base,
etc. It has been observed by Sosa et al. [56] that the fixed
organizational structure found in commercial settings may
lead to misalignment with evolving complex products. Hen-
derson and Clark point out that it may may actually hin-
der innovation [32]. Thus the lack of a rigid organizational
structure may in fact be a boon to OSS projects. However,
the absence of any structure at all may be just as harm-
ful. Henderson and Clark [32] found that “architectural
knowledge tends to become embedded in the structure and
information-processing procedures of established organiza-
tions”. Modularizing artifacts and mapping artifact tasks
onto organizational units is a well known solution to the
problem of complex product development in organizational
management literature [56]. The question then arises, is the
social structure of OSS projects free of such constraints and
actually unorganized and free-for-all? Do they stand in con-
trast to the structured, hierarchical style of traditional com-
mercial software efforts? Or, do OSS projects have some
latent! structure of their own? Are there dynamic, self-
organizing subgroups that spontaneously form and evolve?

By latent, we mean not explicitly stated, but observable.

Coordination & Success

Socio-technical Aspects in Software Systems — A take on Conway’s Law

WHAT is important for SOFTWARE QUALITY and WHY? Conway’s Law — A potential corollary

» When you write software and you care about software quality(*):

» What are the aspects that you always try to keep in mind and/or
the behaviors that you try to have?

» Form groups of 2/3 students, discuss the answer to the question above, and come
up with a list of top-3 elements and their rationale.
Let us discuss the results in 5 minutes.
» Do these aspects/behaviors change when you know that you are
working in a team?

» Let us find 5 elements that matter and their rationale.

Any organization that designs a system
will produce a design whose structure is
a copy of the organization’s
communication structure.

-

A software system whose structure
closely matches its organization’s

yes, b"t.. hOW dO you know? Melvin Conway communication structure works “better.”
(*) e.g., that the software is maintainable and reasonably defect free
Don’t Touch My Code! — Example metrics for a software component Latent social structure in 0SS projects — Three hypotheses

»Hypothesis 1
Subcommunities of participants will form in the email
social networks of large 0SS projects and the levels of

Metric Ownership of B.dll by Developers modularity will be statistically significant.

Minor

Top contributor makes 22% of commits (OWNERSHIP)

Percent of Commits

4 major contributors (MAJOR)
74 minor contributors (MINOR)

Ownership 40

Developer

