
Graphs and Trees

Lecturer: Nataliia Stulova
Teaching assistant: Mohammadreza Hazirprasand

OF THE UNIVERSITIES OF
BERN, NEUCHÂTEL AND

FRIBOURG

Software Skills Lab

Graphs

2

Graph data structure

A data structure to store a collection of elements

(vertices) and relations between them (edges):

● 5 vertices: A, B, C, D, E

● 5 edges: (A,B), (A,E), (A,C), (B,D), (B,C)

Use whenever you need to study a network:

● city map (public transport routes and stops)

● social network (“share with friends of friends”)

● program call graph (which method calls which)

● …. and many more

3

A
B

C

D

E

Graph properties

Edges can have additional properties:

● direction (=> “directed graph”)

● weight (=> “weighted graph”)

Most common tasks:

● find a path between two vertices

● find cycles (paths that begin and end at the same

vertex)

4

A
B

C

D

E

A
B

C

D

E

1

5

2

-1

3

Graph data structure implementation

public class Graph {
 List<Edge> vertices;
}

public class Edge {
 public Vertex start;
 public Vertex end;
 public int weight;
}

public class Vertex {
 public String label;
 }

5

A
B

C

D

E

1

5

2

-1

3

Adjacency matrix of a graph

6

A
B

C

D

E

A
B

C

D

E

1

5

2

-1

3

0 1 0 0 1
0 0 0 0 0
1 1 0 0 0
0 1 0 0 0
0 0 0 0 0

A B C D E

A
B
C
D
E

0 5 1 0 -1
5 0 2 3 0
1 2 0 0 0
0 3 0 0 0
-1 0 0 0 0

A B C D E

A
B
C
D
E

Java and Graphs

Java doesn't have a default implementation of the graph data structure.

But there are several public libraries to use:

● JGraphT

● Google Guava

● Apache Commons Graph

7

https://jgrapht.org/
https://github.com/google/guava/wiki/GraphsExplained
https://commons.apache.org/sandbox/commons-graph/

Trees

8

Tree data structure

9

A data structure to store a collection of (usually,

ordered) elements in a structured way:

● A is a tree root
● B and C are regular nodes, children of A

● D and E, and F are leaf nodes

● ...but we do not have branches: we have

sub-trees!

● each tree has depth: the number of levels

● unlike a graph, never has a cycle

A

B C

D E F

Trees and Lists

Single-linked list:

● each node holds a value

● each node has one child

10

Tree:

● each node holds a value

● each node has several children

h e l l o

h e l l o

e a t

p

l

Trees and Arrays
Any tree can be converted to an array:

● need to account for number of

children of each node

● need to account for tree traversal

order:
○ breadth-first (here), or

○ depth-first

11

Tree properties

Tree elements are typically ordered and it is

reflected in the tree structure:

- Binary search tree

- Min/Max Heap

On top of that, many trees are balanced to

minimize the difference in length of the branches

(for performance reasons):

- AVL tree

- B-tree

- Red–black tree

12

https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

Trees for search

Most commonly tree data structures are used to

store data sorted according to some order and

make the search of elements with specific values

faster compared to data structures with linear

lookup, such as arrays and lists.

Binary search tree:
● child on the left has smaller value than parent
● child on the right has larger value than parent

Insertion order:

12, 15, 20, 9, 13, 3

Steps (=cost) to check if 13 is

present:

● list: 5 (linear)

● tree: <3 (logarithmic,

at most its depth)

13

12

9 15

3 13 20

3 9 12 13 15 20

More trees use

Other tasks where it is convenient to store data in

trees:

● parsing

● autocomplete

● indexing

A trie (prefix tree) for

keys "A", "to", "tea",

"ted", "ten", "i", "in", and

"inn"
14

A parse tree of an

arithmetic expression

(a+b)*c+7

Java and Trees

Java doesn't have a default implementation of any tree data structures as general purpose collection

classes or interfaces, but some data structures are using them internally:

● TreeMap (Java SE 11 & JDK 11) - A Red-Black tree based NavigableMap implementation

● TreeSet (Java SE 11 & JDK 11) - A NavigableSet implementation based on a TreeMap

Set and map data structures are coming in the next lecture!

15

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/TreeMap.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/TreeSet.html

Practice

16

Exercise

Building graph adjacency matrix

● Write the 3 classes implementing the graph data

structure (as in slide 7)

● attributes:
○ as provided

● methods:
○ in Vertex and Edge: constructors
○ in Graph: constructor to create an empty graph, and

Matrix toMatrix() that returns an adjacency
matrix of the graph

I/O

● read a graph from a CSV file where

each row contains edges as triplets:

a,5,b
● print the adjacency matrix to

System.out

Tests

-

17

Reuse the Matrix implementation from the previous class
and add the toString() method to it for pretty-printing the matrix

