
Oscar Nierstrasz
Software Composition Group

scg.unibe.ch

Colloquium Polaris — 2014-11-20

Domain-Specific
Tooling

Roadmap

Agility in Moose

Agile Software
Assessment

Agile Modeling

Moldable Tools

Architectural
Monitoring

Agile Software
Assessment

4

Developers spend more time
reading than writing code

55

and Code

There is a gap
between Models

6

The architecture

... is not in the code

7

Specialized analyses
require custom tools

Agility in Moose

9

Moose is a platform for
software and data analysis

www.moosetechnology.org

Moose is a platform for modeling software
artifacts to enable software analysis.
Moose has been developed for well over a
decade. It is the work of dozens of
researchers, and has been the basis of
numerous academic and industrial projects.

http://www.moosetechnology.org

10

System complexity - Clone evolution view
Class blueprint - Topic Correlation Matrix - Distribution Map
for topics spread over classes in packages
Hierarchy Evolution view - Ownership Map

Mondrian Demo

Demo: visualizing
name cohesion
within packages

Meyer et al. Mondrian: An Agile Visualization Framework.
SoftVis 2006. DOI: 10.1145/1148493.1148513

Agile Modeling

13

Smalltalk

Navigation

Metrics

Querying

Grouping

Smalltalk

Java

C++

Python

…

Extensible meta model

Model repository

Moose is a powerful tool
once we have a model …

Roassal

Orion DSM ...BugMap

Nierstrasz et al. The Story of Moose.
ESEC/FSE 2005. DOI: 10.1145/1095430.1081707

14

Load the model in the morning,
analyze it in the afternoon

Challenge

The key bottleneck to assessment is creating a suitable
model for analysis. If a tool does not already exist, it can take
days, weeks or months to parse source files and generate
models.

15

Problems

Heterogeneous projects

Unknown
languages

Unstructured text
Developing a parser for a new language is a big challenge.
Parsers may be hard to scavenge from existing tools.
Not only source code, but other sources of information, like bug
reports and emails can be invaluable for model building.
Few projects today are built using a single language. Often a GPL
is mixed with scripting languages, or even home-brewed DSLs.

Ideas Grammar
Stealing

Hooking into
an existing tool

of this phase will be a model of the Ruby software system. As the meta-model
is FAME compliant, also the model will be. Information about the ClassLoader,
an instance responsible for loading Java classes, is covered in section 4.7.

The Fame framework automatically extracts a model from an instance of an
Eclipse AST. This instance corresponds to the instance of the Ruby plugin AST
representing the software system. Automation is possible due to the fact that
we defined the higher level mapping. Figure 2.1 reveals the need for the higher
mapping to be restored. In order to implement the next phase independently
from the environment used in this phase we extracted the model into an MSE
file.

Figure 2.1: The dotted lines correspond to the extraction of a (meta-)model.
The other arrows between the model and the software system hierarchy show
which Java tower level corresponds to which meta-model tower element.

2.3 Model Mapping by Example phase

Our previously extracted model still contains platform dependent information
and thus is not a domain specific model for reverse engineering. It could be
used by very specific or very generic reverse engineering tools, as it contains
the concrete syntax tree of the software system only. However such tools do
not exist. In the Model Mapping by Example phase we want to transform the
model into a FAMIX compliant one. With such a format it will be easier to use
in several software engineering tools.

The idea behind this approach relies on Parsing by Example [3]. Parsing
by Example presents a semi-automatic way of mapping source code to domain

9

Recycling
Trees

Parsing by Example

Evolutionary
Grammar Generation

18 CHAPTER 3. GENETIC PROGRAMMING

Since biological evolution starts from an existing population of species, we need to
bootstrap an initial population before we can begin evolving it. This initial population
is generally a number of random individuals. These initial individuals usually don’t
perform well, although some will already be a tad better than others. That is exactly
what we need to get evolution going.

The final part is reproduction, i.e. to generate a new generation from the surviving pre-
vious generation. For that purpose an evolutionary algorithm usually uses two types
of genetic operators: point mutation and crossover (We will refer to point mutations as
mutations, although crossover is technically also a mutation). Mutations change an
individual in a random location to alter it slightly, thus generating new information.
Crossover1 however, takes at least two individuals and cuts out part of one of them, to
put it in the other individual(s). By only moving around information, Crossover does
not introduce new information. Be aware that every modification of an individual has
to result in a new individual that is valid. Validity is very dependent on the search
space - it generally means that fitness function as well as the genetic operators should
be applicable to a valid individual. A schematic view is shown in fig. 3.1.

generate new

random population

select most fit

individuals

 generate new

population with

genetic operators

fit enough?

mutation crossover

Figure 3.1: Principles of an Evolutionary Algorithm

There are alternatives to rejecting a certain number of badly performing individuals
per generation. To compute the new generation, one can generate new individuals
from all individuals of the old generation. This would not result in an improvement
since the selection is completely random. Hence the parent individuals are selected

1Crossover in biology is the process of two parental chromosomes exchanging parts of genes in the
meiosis (cell division for reproduction cells)

16

17

Agile Modeling Lifecycle
Build a

coarse model

Build a custom
analysis

Refine the
model

18

Idea: use island grammars
to extract coarse models

'class' ID
(method / . {avoid})*

'end'

method?

method

. {avoid}

class Shape
int x;
int y;

method draw() … end
end

method main() … end

19

Problem: island grammars
lead to shipwrecks
class Shape

method end

'class' ID
(method / !'end' !method)*

'end'

method?

Tweaking island grammars till
they work is not an option …

20

A Bounded Sea searches for an
island in a bounded scope
'class' ID

(~method~)*
'end'

method?

~method~

method

~method~

Jan Kurs, et al. Bounded Seas: Island Parsing Without
Shipwrecks. SLE 2014. DOI: 10.1007/978-3-319-11245-9_4

Architectural Monitoring

22

Challenge

“What will my code
change impact?”

Large software systems are so complex that one can never
be sure until integration whether certain changes can have
catastrophic effects at a distance.
Ideas: Tracking Software Architecture; exploiting Big
Software Data

23

Problems

Diverse views of SA

SA is not in the code

The IDE focuses on code

24

Ideas

Architecture

Architecture monitoring
(beyond dependencies)

Uncovering “Software
Architecture in the Wild”

What is SA in the Wild?

Andrea Caracciolo, et al. How Do Software Architects Specify
and Validate Quality Requirements? Software Architecture 2014.
DOI: 10.1007/978-3-319-09970-5_32

26

Impact of SA
constraints

constraint Impact (1-5)
availability 4.2
response-time 4.0
authorization 3.9
authentication 3.6
communication 3.4
throughput 3.4
signature 3.4
software infrastructure 3.3
data integrity 3.3
recoverability 3.1
dependencies 3.1
visual design 3.0
data retention policy 3.0
hardware infrastructure 2.9
system behavior 2.9
data structure 2.9
event handling 2.9
code metrics 2.7
meta-annotation 2.6
naming conventions 2.6
file location 2.5
accessibility 2.5
software update 2.2

Automated Validation is not Prevalent

naming conventions
file location

hardware infrastructure
software update
recoverability
dependencies

signature
software infrastructure

data structure
event handling

availability
communication
accessibility

meta-annotation
code quality

visual design
data integrity
authentication

data retention policy
response-time

throughput
authorization

0% 25% 50% 75% 100%

Avg: 40%

Formalization is not Prevalent

software update
hardware infrastructure

accessibility
recoverability

software infrastructure
authentication

data retention policy
throughput

response-time
availability

file location
code metrics
visual design

communication
data integrity
authorization

event handling
naming conventions

meta-annotation
data structure

signature
dependencies

0% 25% 50% 75% 100%

Avg: 20%

ER, UML + profile
Regex, BNF
annotations

…

Architectural Rules

“Repository interfaces can only
declare methods named find..()”

“Only Service classes are allowed
to throw AppException”

“The rendering operation has to be
completed in less than 4ms”

Naming Conventions

Dependencies

Performance

Rule Validation
xml

java

uml

Limited functionality

Poor usability

Dicto — a unified ADSL

Andrea Caracciolo, et al. Dicto: A Unified DSL for Testing
Architectural Rules. ECSAW '14. DOI: 10.1145/2642803.2642824

Dicto Rules

…

MyService : Website with url=“http://www.abc.com/api”

MyService must HandleLoadFrom("10 users")

MyService cannot HaveResponseTimeLessThan(“1000 ms")

MyService can only HandleSOAPMessages()

…

Periodic Validation

	
 	
 	

	
 	
 	

Rule Examples

Website response time
Website load testing

Dependencies

Code clones

Deadlock freeness

File Content grep

Moldable Tools

36

Build a new assessment
tool in ten minutes

Challenge

Custom analyses require custom tools. Building a tool should
be as easy as writing a query in SQL or a form-based
interface.

37

Problems

What tools do
developers really need?

What are appropriate
meta-tools?

What is a unifying
meta-model for tool

construction?

38

Ideas

Analyze developer
needs (!)

“Moldable” Tools
(not just plug-ins)

39

Conventional debuggers
just offer an interface to
the run-time stack.

40

Specific Models

Mind the abstraction gap

Generic Debugger

Domain-specific Debuggers

The Moldable
Debugger

Debugging
Widget

Debugging
Action

*

Activation
Predicate

Andrei Chis et al. The Moldable Debugger: A Framework for Developing
Domain-Specific Debuggers. SLE 2014. DOI: 10.1007/978-3-319-11245-9_6

PetitParser

identifier
letter , (letter / digit) *

letter *

,

/

letter digit

42

IdentifierParser new
parse: 'aLong32Identifier'

43

44

Domain specific-extensions

Debugging
Widget

Debugging
View

Debugging
Action

Debugging
Session

Debugging
Predicate

Primitive
Predicate

HighLevel
Predicate

**
*

Activation
Predicate

Next production

Next parser

Production(aproduction)

Next failure

Stream position(anInteger)

Stream position changed

46

Debugging
widgets

Debugging
actions

Petit Parser Events

SUnit Glamour

47

New debuggers are cheap

The Moldable Inspector

Conclusion
Current IDEs offer

developers primitive
support for software

assessment

Developers need support
for agile modeling,

architectural monitoring
and moldable tools

