
Programmierung 2 
Object-Oriented Programming with Java

1. Introduction

Prof. O. Nierstrasz
Spring Semester 2009

© Oscar Nierstrasz

P2 — Introduction

1.2

P2 — Object-Oriented Programming

Lecturer: Oscar Nierstrasz
www.iam.unibe.ch/~oscar

Assistants: Adrian Kuhn
David Gurtner, Patrik Rauber

WWW: scg.unibe.ch/Teaching/P2

© Oscar Nierstrasz

P2 — Introduction

1.3

Roadmap

>  Goals, Schedule
>  What is programming all about?
>  What is Object-Oriented programming?
>  Foundations of OOP
>  Programming tools, subversion
>  Why Java?

© Oscar Nierstrasz

P2 — Introduction

1.4

Roadmap

>  Goals, Schedule
>  What is programming all about?
>  What is Object-Oriented programming?
>  Foundations of OOP
>  Programming tools, subversion
>  Why Java?

© Oscar Nierstrasz

P2 — Introduction

1.5

Your Learning Targets

Knowledge

Skills

+

You understand requirements engineering,
designing and implementing object-oriented software.

You are able to understand and create UML Diagrams

You apply a Test-Driven Development process

You use your IDE, Debugger efficiently and effectively

You understand and can apply a range of OO Patterns

You easily learn other OO languages (C++,Smalltalk)

You can communicate and work in Teams

© Oscar Nierstrasz

P2 — Introduction

1.6

The Big Picture

P1 P2

DB

DA

ESE PSE

© Oscar Nierstrasz

P2 — Introduction

1.7

Recommended Texts

>  Java in Nutshell: 5th edition,
David Flanagan, OʼReilly, 2005.

>  Object-Oriented Software Construction,
Bertrand Meyer,Prentice Hall, 1997.

>  Object Design - Roles, Responsibilities and Collaborations,
Rebecca Wirfs-Brock, Alan McKean, Addison-Wesley, 2003.

>  Design Patterns: Elements of Reusable Object-Oriented Software,
Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
Addison Wesley, Reading, Mass., 1995.

>  The Unified Modeling Language Reference Manual,
James Rumbaugh, Ivar Jacobson, Grady Booch, Addison-Wesley,
1999

© Oscar Nierstrasz

P2 — Introduction

1.8

Schedule

1.  Introduction
2.  Design by Contract
3.  A Testing Framework
4.  Debugging and Tools
5.  Iterative Development
6.  Inheritance and Refactoring
7.  GUI Construction
8.  Generics and Annotation
9.  Guidelines, Idioms and Patterns
10.  A bit of C++
11.  A bit of Smalltalk
12.  TBA
13.  Final Exam

© Oscar Nierstrasz

P2 — Introduction

1.9

Roadmap

>  Goals, Schedule
>  What is programming all about?
>  What is Object-Oriented programming?
>  Foundations of OOP
>  Programming tools, subversion
>  Why Java?

© Oscar Nierstrasz

P2 — Introduction

1.10

What is the hardest part of programming?

© Oscar Nierstrasz

P2 — Introduction

1.11

How do we become good Object-Oriented
Software Engineers?

What is good Chess?

There is a difference between knowing how the
pieces move and how to win the game.

© Oscar Nierstrasz

P2 — Introduction

1.12

What constitutes programming?

>  Understanding requirements
>  Design
>  Testing
>  Debugging
>  Developing data structures and algorithms
>  User interface design
>  Profiling and optimization
>  Reading code
>  Enforcing coding standards
>  ...

© Oscar Nierstrasz

P2 — Introduction

1.13

How can we simplify programming?

© Oscar Nierstrasz

P2 — Introduction

1.14

Key insights

Real programs
change!

Development
is incremental

Design is
iterative

© Oscar Nierstrasz

P2 — Introduction

1.15

Roadmap

>  Goals, Schedule
>  What is programming all about?
>  What is Object-Oriented programming?
>  Foundations of OOP
>  Programming tools, subversion
>  Why Java?

© Oscar Nierstrasz

P2 — Introduction

1.16

Encapsulation

Composition

Distribution of
Responsibility

Message Passing

Inheritance

Abstraction & Information Hiding

Nested Objects

Separation of concerns
(e.g., HTML, CSS)

Delegating responsibility

Conceptual hierarchy,
polymorphism and reuse

What is Object-Oriented Programming?

© Oscar Nierstrasz

P2 — Introduction

1.17

Procedural versus OO designs

Problem: compute the total area of a set of geometric
shapes

public static void main(String[] args) {
Picture myPicture = new Picture();
myPicture.add(new Square(3,3,3)); // (x,y,width)
myPicture.add(new Rectangle(5,9,5,3)); // (x,y,width,height)
myPicture.add(new Circle(12,3,3)); // (x,y,radius)

System.out.println("My picture has size " + myPicture.size());
}

How to compute the size?

© Oscar Nierstrasz

P2 — Introduction

1.18

Procedural approach: centralize computation

double size() {
double total = 0;
for (Iterator<Shape>i = shapes.iterator(); i.hasNext();) {
 Shape shape = i.next();
 switch (shape.kind()) {
 case SQUARE:
 Square square = (Square) shape;
 total += square.width * square.width;
 break;
 case RECTANGLE:
 Rectangle rectangle = (Rectangle) shape;
 total += rectangle.width * rectangle.height;
 break;
 case CIRCLE:
 Circle circle = (Circle) shape;
 total += java.lang.Math.PI * circle.radius * circle.radius / 2;
 break;
 }
}
return total;

}

Object-oriented approach: distribute
computation

© Oscar Nierstrasz

P2 — Introduction

1.19

double size() {
double total = 0;
for (Iterator<Shape>i = shapes.iterator(); i.hasNext();) {
 total += i.next().size();
}
return total;

}

What are the advantages and disadvantages of the two
solutions?

public class Square extends Shape {
...
public double size() {
 return width*width;
}

}

© Oscar Nierstrasz

P2 — Introduction

1.20

Roadmap

>  Goals, Schedule
>  What is programming all about?
>  What is Object-Oriented programming?
>  Foundations of OOP
>  Programming tools, subversion
>  Why Java?

© Oscar Nierstrasz

P2 — Introduction

1.21

Object-Oriented Design in a Nutshell

>  Identify minimal requirements
>  Make the requirements testable
>  Identify objects and their responsibilities
>  Implement and test objects
>  Refactor to simplify design
>  Iterate!

© Oscar Nierstrasz

P2 — Introduction

1.22

Design by Contract

>  Formalize client/server contract as obligations
>  Class invariant — formalize valid state
>  Pre- and post-conditions on all public services

—  clarifies responsibilities
—  simplifies design
—  simplifies debugging

© Oscar Nierstrasz

P2 — Introduction

1.23

Responsibility-Driven Design

>  Objects are responsible to maintain information and
provide services

>  A good design exhibits:
—  high cohesion of operations and data within classes
—  low coupling between classes and subsystems

>  Every method should perform one, well-defined task:
—  High level of abstraction — write to an interface, not an

implementation

© Oscar Nierstrasz

P2 — Introduction

1.24

Extreme Programming

Some key practices:
>  Simple design

—  Never anticipate functionality that you “might need later”
>  Test-driven development

—  Only implement what you test!
>  Refactoring

—  Aggressively simplify your design as it evolves
>  Pair programming

—  Improve productivity by programming in pairs

© Oscar Nierstrasz

P2 — Introduction

1.25

Testing

>  Formalize requirements
>  Know when you are done
>  Simplify debugging
>  Enable changes
>  Document usage

© Oscar Nierstrasz

P2 — Introduction

1.26

Code Smells

>  Duplicated code
>  Long methods
>  Large classes
>  Public instance variables
>  No comments
>  Useless comments
>  Unreadable code
>  …

© Oscar Nierstrasz

P2 — Introduction

1.27

Refactoring

“Refactoring is the process of rewriting a computer
program or other material to improve its structure or
readability, while explicitly keeping its meaning or
behavior.”

— wikipedia.org
Common refactoring operations:
>  Rename methods, variables and classes
>  Redistribute responsibilities
>  Factor out helper methods
>  Push methods up or down the hierarchy
>  Extract class
>  …

© Oscar Nierstrasz

P2 — Introduction

1.28

Design Patterns

“a general repeatable solution to a commonly-occurring problem in
software design.”

Example
>  Adapter — “adapts one interface for a class into one that a client

expects.”

Patterns:
>  Document “best practice”
>  Introduce standard vocabulary
>  Ease transition to OO development
But …
>  May increase flexibility at the cost of simplicity

© Oscar Nierstrasz

P2 — Introduction

1.29

Roadmap

>  Goals, Schedule
>  What is programming all about?
>  What is Object-Oriented programming?
>  Foundations of OOP
>  Programming tools, subversion
>  Why Java?

© Oscar Nierstrasz

P2 — Introduction

1.30

Programming Tools

Know your tools!

—  IDEs (Integrated Development Environment)— e.g., Eclipse,
—  Version control system — e.g., svn,cvs, rcs
—  Build tools — e.g., maven, ant, make
—  Testing framework — e.g., Junit
—  Debuggers — e.g., jdb
—  Profilers — e.g., java -prof, jip
—  Document generation — e.g., javadoc

© O. Nierstrasz

P2 — Testing and Debugging

5.31

Version Control Systems

A version control system keeps track of multiple file
revisions:

>  check-in and check-out of files
>  logging changes (who, where, when)
>  merge and comparison of versions
>  retrieval of arbitrary versions
>  “freezing” of versions as releases
>  reduces storage space (manages sources files +

multiple “deltas”)

© O. Nierstrasz

P2 — Testing and Debugging

5.32

Version Control

Version control enables you to make radical changes to a
software system, with the assurance that you can
always go back to the last working version.

✎  When should you use a version control system?
✔  Use it whenever you have one available, for even the

smallest project!

Version control is as important as testing in iterative
development!

© O. Nierstrasz

P2 — Testing and Debugging

5.33

Subversion (SVN)

SVN is a standard versioning system for Mac, Windows
and UNIX platforms (see subversion.tigris.org)

>  Shared repository for teamwork
— Manages hierarchies of files
— Manages parallel development branches

>  Uses optimistic version control
— no locking
— merging on conflict

>  Offers network-based repositories
>  Integrated in Eclipse! (You may need to install a svn

plugin)

© O. Nierstrasz

P2 — Testing and Debugging

5.34

Using SVN

svn import ${svnrepo}/MyProject
cd MyProject make a svn directory
cd somewhere checkout a svn project
svn co ${svnrepo}/MyProject
cd MyProject
... modify and add files (text or binary)
svn add ArrayStack.java
svn commit commit changes (with comments)
... time passes ...
svn update update working copy (if necessary)
svn log list recent changes

© O. Nierstrasz

P2 — Testing and Debugging

5.35

SVN and Eclipse

Eclipse offers a
simple GUI for
interacting with svn
repositories

© Oscar Nierstrasz

P2 — Introduction

1.36

Roadmap

>  Goals, Schedule
>  What is programming all about?
>  What is Object-Oriented programming?
>  Foundations of OOP
>  Programming tools, subversion
>  Why Java?

© Oscar Nierstrasz

P2 — Introduction

1.37

Why Java?

Special characteristics
>  Resembles C++ minus the complexity
>  Clean integration of many features
>  Dynamically loaded classes
>  Large, standard class library

Simple Object Model
>  “Almost everything is an object”
>  No pointers
>  Garbage collection
>  Single inheritance; multiple subtyping
>  Static and dynamic type-checking
Few innovations, but reasonably clean, simple and usable.

© Oscar Nierstrasz

P2 — Introduction

1.38

History

© Oscar Nierstrasz

P2 — Introduction

1.39

What you should know!

✎  What is meant by “separation of concerns”?
✎  Why do real programs change?
✎  How does object-oriented programming support

incremental development?
✎  What is a class invariant?
✎  What are coupling and cohesion?
✎  How do tests enable change?
✎  Why are long methods a bad code smell?

© Oscar Nierstrasz

P2 — Introduction

1.40

Can you answer these questions?

✎  Why does up-front design increase risk?
✎  Why do objects “send messages” instead of “calling

methods”?
✎  What are good and bad uses of inheritance?
✎  What does it mean to “violate encapsulation”?
✎  Why is strong coupling bad for system evolution?
✎  How can you transform requirements into tests?
✎  How would you eliminate duplicated code?
✎  When is the right time to refactor your code?

© Oscar Nierstrasz

P2 — Introduction

1.41

License

>  http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:
•  to copy, distribute, display, and perform the work
•  to make derivative works
•  to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

•  For any reuse or distribution, you must make clear to others the license terms of this work.
•  Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

