
2. Design by Contract

Design by Contract

© Oscar Nierstrasz

Design by Contract

2.2

Bertrand Meyer, Object-Oriented
Software Construction, Prentice
Hall, 1997.

© Oscar Nierstrasz
 3

Roadmap

>  Data abstraction and contracts

>  Stacks

>  Design by Contract

>  A Stack ADT

>  Assertions

>  Example: balancing parentheses

Safety Patterns

© Oscar Nierstrasz
 4

Roadmap

>  Data abstraction and contracts

>  Stacks

>  Design by Contract

>  A Stack ADT

>  Assertions

>  Example: balancing parentheses

Safety Patterns

What is Data Abstraction?

>  An Abstract Data Type (ADT):

—  encapsulates data and operations, and

—  hides the implementation behind a well-defined interface.

>  Encapsulation means bundling together related entities

>  Information hiding means exposing an abstract interface

and hiding the rest

© Oscar Nierstrasz

Design by Contract

2.5

In object-oriented languages we
can implement ADTs as classes

© Oscar Nierstrasz

Design by Contract

2.6

Why are ADTs important?

Communication — Declarative Programming

>  An ADT exports what a client needs to know, and nothing more!

>  By using ADTs, you communicate what you want to do, not how to

do it!

>  ADTs allow you to directly model your problem domain rather than

how you will use to the computer to do so.

Software Quality and Evolution

>  ADTs help you to decompose a system into manageable parts,

each of which can be separately implemented and validated.

>  ADTs protect clients from changes in implementation.

>  ADTs encapsulate client/server contracts

>  Interfaces to ADTs can be extended without affecting clients.

>  New implementations of ADTs can be transparently added to a

system.

Class Invariants

© Oscar Nierstrasz

Design by Contract

7

An invariant is a predicate that must hold at certain points

in the execution of a program

A class invariant characterizes the valid states of instances

It must hold:

1.  after construction

2.  before and after every public method

© Oscar Nierstrasz

Design by Contract

2.8

Contracts

A contract binds the client to pose valid requests, and

binds the provider to correctly provide the service.

© Oscar Nierstrasz

Design by Contract

2.9

Contract violations

If either the client or the provider violates the contract,
an exception is raised.

NB: The service does not need to implement any special
logic to handle errors — it simply raises an exception!

© Oscar Nierstrasz

Design by Contract

2.10

Exceptions, failures and defects

>  An exception is the occurrence of an abnormal condition
during the execution of a software element.

>  A failure is the inability of a software element to satisfy its
purpose.

>  A defect (AKA “bug”) is the presence in the software of
some element not satisfying its specification.

Disciplined Exceptions

>  There are only two reasonable ways to react to an
exception:

1.  clean up the environment and report failure to the client

(“organized panic”)

2.  attempt to change the conditions that led to failure and retry

© Oscar Nierstrasz

Design by Contract

2.11

A failed assertion often indicates presence of a software
defect, so “organized panic” is usually the best policy.

© Oscar Nierstrasz
 12

Roadmap

>  Data abstraction and contracts

>  Stacks

>  Design by Contract

>  A Stack ADT

>  Assertions

>  Example: balancing parentheses

Safety Patterns

© Oscar Nierstrasz

Design by Contract

2.13

Stacks

A Stack is a classical data abstraction with many
applications in computer programming.

Stacks support two mutating methods: push and pop.

Operation
 Stack
 isEmpty()
 size()
 top()

TRUE
 0
 (error)

push(6)
 FALSE
 1
 6

push(7)
 FALSE
 2
 7

push(3)
 FALSE
 3
 3

pop()
 FALSE
 2
 7

push(2)
 FALSE
 3
 2

pop()
 FALSE
 2
 7

6
 7

6
 7
 3

6
 7

6
 7
 2

6
 7

6

© Oscar Nierstrasz

Design by Contract

2.14

Stack pre- and postconditions

Stacks should respect the following contract:

service
 pre
 post

isEmpty()
 -
 no state change

size()
 -
 no state change

push(Object item)
 -

not empty,

size == old size + 1,

top == item

top()
 not empty
 no state change

pop()
 not empty
 size == old size -1

Stack invariant

>  The only thing we can say about the Stack class
invariant is that the size is always ≥ 0

—  we donʼt know anything yet about its state!

© Oscar Nierstrasz

Design by Contract

15

© Oscar Nierstrasz
 16

Roadmap

>  Data abstraction and contracts

>  Stacks

>  Design by Contract

>  A Stack ADT

>  Assertions

>  Example: balancing parentheses

Safety Patterns

Design by Contract

© Oscar Nierstrasz

Design by Contract

2.17

“If you promise to call S with the precondition
satisfied, then I, in return, promise to deliver a final
state in which the post-condition is satisfied.”

Consequence:

— if the precondition does not hold, the object is not required to

provide anything! (in practice, an exception is raised)

When you design a class, each service S provided must
specify a clear contract.

© Oscar Nierstrasz

Design by Contract

2.18

In other words …

Design by Contract = Donʼt accept anybody elseʼs garbage!

© Oscar Nierstrasz

Design by Contract

2.19

Pre- and Post-conditions

The pre-condition binds clients:

—  it defines what the ADT requires for a call to the operation to be

legitimate

—  it may involve initial state and arguments

—  example: stack is not empty

The post-condition, in return, binds the provider:

—  it defines the conditions that the ADT ensures on return

—  it may only involve the initial and final states, the arguments and

the result

—  example: size = old size + 1

© Oscar Nierstrasz

Design by Contract

2.20

Benefits and Obligations

A contract provides benefits and obligations for both clients
and providers:

Obligations
 Benefits

Client
 Only call pop() on a
non-empty stack!

Stack size decreases by 1.

Top element is removed.

Provider

Decrement the size.
Remove the top
element.

No need to handle case
when stack is empty!

© Oscar Nierstrasz
 21

Roadmap

>  Data abstraction and contracts

>  Stacks

>  Design by Contract

>  A Stack ADT

>  Assertions

>  Example: balancing parentheses

Safety Patterns

© Oscar Nierstrasz

Design by Contract

2.22

StackInterface

Interfaces let us abstract from concrete implementations:

✎  How can clients accept multiple implementations of an
ADT?

✔  Make them depend only on an interface or an abstract
class.

public interface StackInterface {

public boolean isEmpty();

public int size();

public void push(Object item);

public Object top()
;

public void pop();

}

© Oscar Nierstrasz

Design by Contract

2.23

Interfaces in Java

Interfaces reduce coupling between objects and their
clients:

>  A class can implement multiple interfaces

—  ... but can only extend one parent class

>  Clients should depend on an interface, not an
implementation

—  ... so implementations donʼt need to extend a specific class

Define an interface for any ADT that will
have more than one implementation

© Oscar Nierstrasz

Design by Contract

2.24

Stacks as Linked Lists

A Stack can easily
be implemented by
a linked data
structure:

stack = new Stack();

stack.push(6);

stack.push(7);

stack.push(3);

stack.pop();

© Oscar Nierstrasz

Design by Contract

2.25

LinkStack Cells

We can define the Cells of the linked list as an inner class
within LinkStack:

public class LinkStack implements StackInterface {

private Cell top;

private class Cell {

Object item;

Cell next;

Cell(Object item, Cell next) {

this.item = item;

this.next = next;

}

}

...

}

© Oscar Nierstrasz

Design by Contract

2.26

Private vs Public instance variables

✎  When should instance variables be public?

✔  Always make instance variables private or protected.

The Cell class is a special case, since its instances are
strictly private to LinkStack!

© Oscar Nierstrasz

Design by Contract

2.27

LinkStack ADT

The constructor must construct a valid initial state:

public class LinkStack implements StackInterface {

...

private int size;

public LinkStack() {

// Establishes the class invariant.

top = null;

size = 0;

}

...

© Oscar Nierstrasz

Design by Contract

2.28

Class Invariants

A class invariant is any condition that expresses the valid
states for objects of that class:

>  it must be established by every constructor

>  every public method

—  may assume it holds when the method starts

—  must re-establish it when it finishes

Stack instances must satisfy the following invariant:

>  size ≥ 0

>  ...

© Oscar Nierstrasz

Design by Contract

2.29

LinkStack Class Invariant

A valid LinkStack instance has an integer size, and a
top that points to a sequence of linked Cells, such
that:

—  size is always ≥ 0

—  When size is zero, top points nowhere (== null)

—  When size > 0, top points to a Cell containing the top item

© Oscar Nierstrasz
 30

Roadmap

>  Data abstraction and contracts

>  Stacks

>  Design by Contract

>  A Stack ADT

>  Assertions

>  Example: balancing parentheses

Safety Patterns

© Oscar Nierstrasz

Design by Contract

2.31

Assertions

>  An assertion is a declaration of a boolean expression
that the programmer believes must hold at some point in
a program.

—  Assertions should not affect the logic of the program

—  If an assertion fails, an exception is raised

x = y*y;

assert x >= 0;

© Oscar Nierstrasz

Design by Contract

2.32

Assertions

Assertions have four principle applications:

1.  Help in writing correct software

—  formalizing invariants, and pre- and post-conditions

2.  Documentation aid

—  specifying contracts

3.  Debugging tool

—  testing assertions at run-time

4.  Support for software fault tolerance

—  detecting and handling failures at run-time

© Oscar Nierstrasz

Design by Contract

2.33

Assertions in Java

assert is a keyword in Java since version 1.4

will raise an AssertionError if expression is false.

—  NB: Throwable Exceptions must be declared; Errors need not

be!

✔  Be sure to enable exceptions in eclipse! (And set the vm
flag -enableassertions [-ea])

assert expression;

© Oscar Nierstrasz

Design by Contract

2.34

Enabling assertions in eclipse

© Oscar Nierstrasz

Design by Contract

2.35

Checking pre-conditions

Assert pre-conditions to inform clients when they violate the
contract.

✎  When should you check pre-conditions to methods?

✔  Always check pre-conditions, raising exceptions if they

fail.

public Object top() {

assert(!this.isEmpty());
// pre-condition

return top.item;

}

NB: This is all you have to do!

© Oscar Nierstrasz

Design by Contract

2.36

Checking class invariants

Every class has its own invariant:

protected boolean invariant() {

return (size >= 0) &&

((size == 0 && this.top == null)

|| (size > 0 && this.top != null));

}

Why protected and not private?

© Oscar Nierstrasz

Design by Contract

2.37

Checking post-conditions

Assert post-conditions and invariants to inform yourself
when you violate the contract.

✎  When should you check post-conditions?

✔  Check them whenever the implementation is non-trivial.

public void push(Object item) {

top = new Cell(item, top);

size++;

assert !this.isEmpty();

// post-condition

assert this.top() == item;

// post-condition

assert invariant();

}
 NB: This is all you have to do!

© Oscar Nierstrasz
 38

Roadmap

>  Data abstraction and contracts

>  Stacks

>  Design by Contract

>  A Stack ADT

>  Assertions

>  Example: balancing parentheses

Safety Patterns

© Oscar Nierstrasz

Design by Contract

2.39

Example: Balancing Parentheses

Problem:

>  Determine whether an expression containing

parentheses (), brackets [] and braces { } is correctly
balanced.

Examples:

>  balanced:

>  not balanced:

if (a.b()) { c[d].e(); }

else { f[g][h].i(); }

((a+b())

© Oscar Nierstrasz

Design by Contract

2.40

A simple algorithm

Approach:

>  when you read a left parenthesis, push the matching

parenthesis on a stack

>  when you read a right parenthesis, compare it to the

value on top of the stack

—  if they match, you pop and continue

—  if they mismatch, the expression is not balanced

>  if the stack is empty at the end, the whole expression is
balanced, otherwise not

© Oscar Nierstrasz

Design by Contract

2.41

Using a Stack to match parentheses

Sample input: “([{ }]]”

Input
 Case
 Op
 Stack

(
 left
 push)
)

[
 left
 push]
)]

{
 left
 push }
)]}

}
 match
 pop
)]

]
 match
 pop
)

]
 mismatch
 ^false
)

© Oscar Nierstrasz

Design by Contract

2.42

The ParenMatch class

A ParenMatch object uses a stack to check if
parentheses in a text String are balanced:

public class ParenMatch {

private String line;

private StackInterface stack;

public ParenMatch (String aLine, StackInterface aStack)

{

line = aLine;

stack = aStack;

}

© Oscar Nierstrasz

Design by Contract

2.43

A declarative algorithm

We implement our algorithm at a high level of abstraction:

public boolean parenMatch() {

for (int i=0; i<line.length(); i++) {

char c = line.charAt(i);

if (isLeftParen(c)) { // expect matching right paren later

stack.push(matchingRightParen(c)); // Autoboxed to Character

} else {

if (isRightParen(c)) {

// empty stack => missing left paren

if (stack.isEmpty()) { return false; }

if (stack.top().equals(c)) { // Autoboxed

stack.pop();

} else { return false; } // mismatched paren

}

}

}

return stack.isEmpty(); // not empty => missing right paren

}

© Oscar Nierstrasz

Design by Contract

2.44

Ugly, procedural version

public boolean parenMatch() {

char[] chars = new char[1000]; // ugly magic number

int pos = 0;

for (int i=0; i<line.length(); i++) {

char c = line.charAt(i);

switch (c) { // what is going on here?

case '{' : chars[pos++] = '}'; break;

case '(' : chars[pos++] = ')'; break;

case '[' : chars[pos++] = ']'; break;

case ']' : case ')' : case '}' :

if (pos == 0) { return false; }

if (chars[pos-1] == c) { pos--; }

else { return false; }

break;

default : break;

}

}

return pos == 0; // what is this?

}

© Oscar Nierstrasz

Design by Contract

2.45

Helper methods

The helper methods are trivial to implement, and their
details only get in the way of the main algorithm.

private boolean isLeftParen(char c) {

return (c == '(') || (c == '[') || (c == '{');

}

private boolean isRightParen(char c) {

return (c == ')') || (c == ']') || (c == '}');

}

© Oscar Nierstrasz

Design by Contract

2.46

Running parenMatch

public static void parenTestLoop(StackInterface stack) {

BufferedReader in =

new BufferedReader(new InputStreamReader(System.in));

String line;

try {

System.out.println("Please enter parenthesized expressions to test");

System.out.println("(empty line to stop)");

do {

line = in.readLine();

System.out.println(new ParenMatch(line, stack).reportMatch());

} while(line != null && line.length() > 0);

System.out.println("bye!");

} catch (IOException err) {

} catch (AssertionException err) {

err.printStackTrace();

}

}

© Oscar Nierstrasz

Design by Contract

2.47

Running ParenMatch.main ...

Which contract has been violated?

Please enter parenthesized expressions to test

(empty line to stop)

(hello) (world)

"(hello) (world)" is balanced

()

"()" is balanced

static public void main(String args[]) {

"static public void main(String args[]) {" is not balanced

()

"()" is not balanced

}

"}" is balanced

"" is balanced

bye!

© Oscar Nierstrasz

Design by Contract

2.48

What you should know!

✎  What is an abstract data type?

✎  What is the difference between encapsulation and

information hiding?

✎  How are contracts formalized by pre- and post-

conditions?

✎  What is a class invariant and how can it be specified?

✎  What are assertions useful for?

✎  What situations may cause an exception to be raised?

✎  How can helper methods make an implementation more

declarative?

© Oscar Nierstrasz

Design by Contract

2.49

Can you answer these questions?

✎  When should you call super() in a constructor?

✎  When should you use an inner class?

✎  What happens when you pop() an empty java.util.Stack?

Is this good or bad?

✎  What impact do assertions have on performance?

✎  Can you implement the missing LinkStack methods?

License

© Oscar Nierstrasz
 50

Attribution-ShareAlike 2.5

You are free:

•  to copy, distribute, display, and perform the work

•  to make derivative works

•  to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

•  For any reuse or distribution, you must make clear to others the license terms of this work.

•  Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

Design by Contract

