Bachelor Thesis:
Automatic Token Classification for
Unknown Languages

1 Introduction

Example:
package autoca mode
Given code of an unknown | |ieort morenizer - Keywords
H public final class AnalyzeMode
programmlng Ianguage, A implements IOpeiati)oInMZde
attempt to automatically private DB db
. . private static final Logger logger
recognlze Wthh are the Logger getLogger AnalyzeMode class
keywor‘ds of the Ia nguage. ;::1;"1}i'AnalyzeMode JSONInterface data
a this db new DataBase data
catch SQLException e
logger error Analyze Mode e

Assume you have code of an unknown programming language,
The progeamm developped tries to automatically find the keywords of the language.

So first we are given code of an unknown programming language, like the example
on the right. (click)

The first task is to split it into tokens: which by definition is is a meaningful character
sequences.(click)

After that programmes tries to identify the keywords of the language. Here identified
in blue.

2 Architecture

Scanner
Hypothesis
Scan settings
Source files
pac = Scanner package
import Tokenizer; auto?a.
#delimiter
public final class AnalyzeMode mode
implements IOperationMode { #delimiter
. #newline
private DB db; import
private static final Logger logger = P .
Logger.getLogger (AnalyzeMode.class) ; Tokenizer
#delimiter
public AnalyzeMode (JSONInterface data) { #newline
try { :

this.db = new DataBase(data);
} catch (SQLException e) {
logger.error ("Analyze Mode",e);

}

To find said keywords, hypothesis on how they can be found in all those tokens had
to be made.

The reach our goal of the program, we had to automatically test different hypothesis
on source code provided.

Our first attempt at the architecture of the program failed becaue it was not
customizable

and the runtime increased exponentially when more data was added.

This new architecture runs linearly on any amount input and is designed to be
customizable
so we can easily change and test steps in these hypothesis as we progress.

These hypothesis that we want to verify are described by an object called hypothesis.
(click)

The first step when running such a test is to input the hypothesis object into the
scanner.

Now Lets pass our sample code from before into the scanner to see what it does:

So first the scanner loads the scanner settings from the hypothesis object, describing
what a tokens is.

Then it scans the source code files and tokenizes them into a list of tokens.

Database
Occurences
Token File OrderlD
package -
autoca package AnalyzeMode.java 1
#delimiter autoca AnalyzeMode.java 2
mode #delimiter |AnalyzeMode.java 3
#delimiter mode AnalyzeMode.java 4
#newline >| #delimiter | AnalyzeMode.java 5
:meort': #newline | AnalyzeMode.java 6
Tokenizer X N
sdelimiter import AnalyzeMode.java 7
#newline Tokenizer |AnalyzeMode.java 8
: #delimiter | AnalyzeMode.java 9
#newline | AnalyzeMode. java 10

The results from the Scanner are then stored relationally in the database.
The main table is the occurences table, which holds the exact position of each token
in the structure of the code files.

4 Analyze methods

—> | Analyzer

Hypothesis
Global — =
nalyze settings
The keywords appear most commonly v 9
in the source code
package Global result
Cavavasa Import [roken COUNT
Occurences — X
- Ily Sublic #delimiter 34 static 1
Token File OrderID (PUOIC] | ynewline 19 JSONInterface| 1
package AnalyzeMode.java 1 P | 4 dedent 6 implements 1
autoca AnalyzeMode.java 2 . | #indent 6 #string 1
. PI1 | AnalyzeMod 3 Tokeni 1
#separator | AnalyzeMode.java 3 | [pri nalyzeMode okenizer
mode AnalyzeMode.java 4 R public 2 DataBase !
AnalvzeMode.i 5 < | data 2 catch 1
sepalrator nalyzeMo eA]'ava - r Logger 2 DB 1
#newline | AnalyzeMode.java 6 pub | ol 2 SQLException 1
import AnalyzeMode.java 7 class 2 try 1
Tokenizer |AnalyzeMode.java 8 | db 2 package 1
#separator | AnalyzeMode.java 9 [V private 2 error 1
#newline | AnalyzeMode.java 10 logger . 2 getLogger !
|0perationMode 1 autoca 1
} mode 1 this 1
)7 import 1 new 1

In the analyzer are currently 4 hypothesis implemented on where in the code the
keywords can be found.

(click)The first one is the Global hypothesis it rates the token higher the more they
appear in the source code.

(click) the second one is coverage it rates token higher the more they appear per file
(click) the third is Newline it rate it rates token higher the more they appear on the
first line

(click) the fourth is indent it rates token higher the more they appear on at the first
position of a line before an inden.

To explain this here is a picture(click)

Lets go back to our example that we scanned and saved in the dateabas and pass it to
the analyzer.
The analyze settings in the hypothesis object contains information on which

hypothesis we want to execute.

For our example we use the global hypothesis , to generate this global result table on
the right.

Note that in the global result table the likelihood for a token to be a keyword
increases by its count.

So we would say using global hypothesis our token that is most likely to be a keyword
is #delimiter

4 How can we verify our results?

—> | Analyzer

Global result . . L, L,
m—, P ! Precision= True Positive/TruePositive
#delimiter 34 1 |static 1 +Fa/5€ Positive
#newline 19 JSONInterface 1 | e . |
sdedent 6 implements 1 77 rfze Positive=Keywords in top NV
#indent 6 string 1 Loreri L. L.
AnalyzeMode 3 | 3 |Tokenizer 1 False Positive= N —True Positive
public 2 DataBa 1
data 2 4 |catch 1
Logger 2 QB;‘ 1
final | 2 5 | sQLExcention
class 2 try T~ True Positive=2 ‘
db 2 6 |package 1 ~
private 2 error ! =\ False Positive=9 —2=7 ‘
logger 2 7 |getLogger 1
'OperationMode | - 1 autoca ' Precision=2/2+7 =0,2222=22,22%
mode 1 8 | this 1 - - - 4 0
import 1 new 1

So now we have an orderd table with rated tokens of which the topmost are
supposed to be keywords, but how do we verify them?

We achieved this by finding the real java keywords in the result table and calculating
the precision at their position.

Lets calculate the precision for the keyword «final» as an example:
1) First find final

2) Count position

3) Calculate the precision

So the precision to find 2 keywords is 22,22 percent.

5 Java result of the hypothesis

08

/7 L
04 /

0.2

Precision

AN\
N
A

0

0 S 10 15 20 25 30 35 40 45 50

Number of Keywords (True Positives)
Keywords in Java: 50 Global Coverage
Keywords in Projects: 49 The keywords appear most The token that appear in most files
Projects: 179 commonly over all source code are keywords
Files: 100’764 %
Distinct tokens: 414’334 Newline Indent
Occurences of tokens: 92°036'362 The token that appear in most files | | The token at the beginning of a
are keywords line before an indent are keywords

Now let’s have a look at the results of the actual data.

We used was 179 java projects from github which after the scanner resulted in 92
million entries in the main table of the database.

Java has 50 keywords and in the 179 project we found 49.

This Graph shows the precision as calculated on the slide before for each Java
keyword in each hypothesis:

Lets say we want to find the top 20 keywords with each hypothesis.
the Global hypothesis in purple gives us a precision of 45%
the Coverage in green 52%
the Newline in red 62%
and Indent in blue 78%

6 Filters

How can we improve those results?

Global result

Scanner filter: Removes all tokens
TOKEN ICOUNT

marked by the scan mode.

‘ static [1

‘ [implements | 1 Intersection filter: Counts in how
many projects a token occurs and
removes the tokens that don’t occur in

| enough projects (Used to remove project

specific pollution)

| public | 2
‘catch l 1

class

N

final ‘ 2 ‘

try ’ ! Upper case filter: Since in Java and
package

| many other languages keywords are
written in lower-case letters. This Filter
Removes all tokens containing capital

letters.

| private |2

this 1

| import | 1 | new 1

The question is now where to go from here, how are we going to improve the
results?

We compared the result tables and tried to find commonalities between wrongly
identified keywords.

Finally we ended up implementing three filters which are applied after each analysis
to improve the results.

First the scanner filter, which gets rid of the tokens tagged by the scanner.
Second the Intersection filter, it count in how many projects a token occurs and
removes tokens that dont occur

In enough projects.

Finally the Upper case filter: which removes tokens containing capital letters.

7 Java unfiltered vs filtered

08

Precision

04

0.2 \\

0 5 10 15 20 25 30 35 40
Number of Keywords (True Positives)

Keywords in Java: 50
Keywords in Projects: 49
Projects: 179

Global
The keywords appear most
commonly over all source code

Coverage
The token that appear in most files
are keywords

Files: 100'764

Newline
The token that appear in most files
are keywords

Distinct tokens: 414’334
Occurences of tokens: 92’036'362

Indent
The token at the beginning of a
line before an indent are keywords

Here are the unfiltered results again and as you can see the precision to find 1

keyword is roughly 40% only.

Compared to the filtered ones(click), the precision incresed greatly for the first 20

keywords.

For our newline hypothesis it is 100% for the first 20 keywords.

Still if we want to find all the keywords we arent very successful since the precision
drops greatly after 20 tokens.

8 More data, better Results?

0.9
0.8
0.7

0.6

1 project

o
n

5 projects

Precision

179 projects

o
IS

o
w

o
o

o
[

0

0 5 10 15 20 25 30 35 40 45 50
Number of keywords(True Positives
Keywords in Java: 50 Coverage
Keywords in Projects: 49 The token that appear in most files
Projects: 179 are keywords
Files: 100’764
Distinct tokens: 414’334
Occurences of tokens: 92'036362

How can we improve the precision from 20 keywords upwards?
We tried to find out how the amount of data influences these hypothesis to see
whether even more data would bring better results.

This graph shows how the coverage hypothesis reacts to the changes in data.
It shows more data seems not to improve the result of the coverage hypothesis.

9 More data, better Results?

0.9
0.8

0.7

o
=

1 project

Precision
o
[

5 project
179 projects

I
S

4
w

0.2

0.1

0 5 10 B Numggr of Kengrsds(True Poss?tives) 3 40 45 50
Keywords in Java: 50 Indent
Keywords in Projects: 49 The token at the beginning of a line
Projects: 179 before an indent are keywords
Files: 100'764
Distinct tokens: 414’334
Occurences of tokens: 92'036362

Next we see how the amount of data influences the indent hypothesis.

The dotted line shows the a single project,

the dotted with lines in between shows 5 random projects and
the normal line shows the result of the 179 projects.

If we look at the lines of the 3 data sets, the precision for keywords between 20 to
40 does raise about 10 to 15 % with more data.

So the graph seems to indicate that more data can yield better results with the right
hypothesis,

but also that finding all 49 keywords with high precision is unlikely using these
methods.

10 Summary

Architecture Hypothesis
Runtime: exponential to Indent Newline
Static design to The_tolfen at thf: The tokep that appear
beginning of a line in most files are
before an indent are keywords
T
Scanner — = —> Analyzer keywords
Database
Global Coverage
The keywords appear | The token that appear
most commonly over | in most files are
all source code keywords
Filters Results

Scanner filter: Removes all tokens
marked by the scan mode.

Intersection filter: Counts in how
many projects a token occurs and
removes the tokens that don’t occur in
enough projects

Upper case filter: This Filter Removes
all tokens containing capital letters.

To sum up the presentation:

Upper left corner: We changed the Architecture by improving the
runtime from exponential to linear, the old static design got replaced by a new
cutsomizable and extendable one.

New Hypothesis and test can be added and verified easily.

Upper right : The 4 hypothesis we implemented were indent, newline
global and coverage of which indent and newline gave the best results.

Bottom left : To improve the results we introduced 3 Filters: Scanner,
Intersection and Upper case filter. Which got applied to the results of the 4 hypotesis

Bottom right :Introducing the filters improved the first results greatly
but only for the first 20 tokens. The graph of the indent hypothesis suggest that with

a lot more data we can get even better results this way. Reaching 50
token seems unlikely with current methods.

12

