Commercial CAS programming environments: a brief comparison

Cédric Vonesch
Image restoration

• Signal-processing model of imaging device:

\[x \xrightarrow{A} y \]

• Problem: given measurement \(y \), retrieve underlying signal \(x \)

• Typically linear model (\(A \) is a matrix)
Algorithm research: discussion

• Creativity
• Reproducibility
• Interoperability
• Productivity

⇒ Best platform?
CAS comparison

• Application example: implement and document toy algorithm for image restoration

• Demo of 4 CASs:
 - Matlab
 - Mathematica
 - Maple
 - Jupyter (non-commercial)
Matlab Live Editor

- Introduced recently (R2016a)
- Basic functionality, easy to learn
- Matlab language targeted towards linear algebra
Mathematica Notebook

- Mathematica 11 just released
- For large software projects, the Mathematica documentation recommends using the Wolfram Workbench (based on Eclipse)
Maple Document/Worksheet

- Maplesoft advertises two possibilities for advanced coding:
 - Code Editor
 - Maple IDE (based on Eclipse)
Jupyter Notebook

- Web server for browser-based edition of documents that interleave code and explanatory text
- Support for Python and 40+ other languages
Summary

- Dominant CASs seem to be converging towards interactive documents
- Mathematica and Maple: head-to-head race
 - Very similar feature set
 - Image-processing libraries have some limitations
- Historically Matlab has been very popular among signal-processing engineers; over the past few years, Python has gained popularity thanks to its extensive libraries