Writing a Shape Grammar Editor

Lars Wüthrich
Supervised by Manuel Leuenberger

Bachelor Thesis Fall 2017
Seminar SCG 7th November
SCG University of Bern
What’s a Shape Grammar?

• Defined by George Stiny in 1971

• A shape grammar $<S, L, R, I>$ has four parts:
 1. S, a finite set of shapes
 2. L, a finite set of labels
 3. R, a finite set of rules of the form $\alpha \rightarrow \beta$
 where $\alpha \in (S, L)^+$ and $b \in (S, L)^*$
 4. I, a labelled shape $\in (S, L)^+$, called initial shape

• Creates patterns in 2D, 3D
Rules

• Add edges

• Add points
• Remove Edges

• Remove Points

• Scale the shape

• Move points around
Rule Application

- Start with an initial shape I
• Find α inside starting shape
• Find α inside starting shape
• α could be translated, rotated, scaled
• Subshape Detection

α shape present in base shape transformed (rotated)
• Apply Rule
• Apply Rule
• \(l' = [l - t(\alpha)] + t(\beta) \)
Cases to consider

• Only apply rules in viewport
• Width/Height of desired image
• Apply rules over the whole shape

Not only apply rules here?
• Do not generate geometry below pixel level

• In which order and how often are rules applied?
Labels

• Restrict/Guide rule

• Stop rule application
Figure 1. A simple shape grammar that inscribes squares in squares. (a) Shape rules, (b) initial shape.

Figure 2. Generation of a shape using the shape grammar of figure 1.

Figure 3. Some shapes in the language defined by the shape grammar of figure 1.

G. Stiny, 1980, Introduction to shape and shape grammars

Rules handdrawn, no implementation
Rule stops grammar

Figure 1. A simple shape grammar that inscribes squares in squares. (a) Shape rules, (b) initial shape.

Figure 2. Generation of a shape using the shape grammar of figure 1.

Figure 3. Some shapes in the language defined by the shape grammar of figure 1.

G. Stiny, 1980, Introduction to shape and shape grammars
Figure 1. A simple shape grammar that inscribes squares in squares. (a) Shape rules, (b) initial shape.

Figure 2. Generation of a shape using the shape grammar of figure 1.

Figure 3. Some shapes in the language defined by the shape grammar of figure 1.

G. Stiny, 1980, Introduction to shape and shape grammars
Why do we care?

• Create Textures/Patterns

• Create art

• Procedural content for games (room, level design)

• Tool for designers
• Used in Computer Graphics
• «Geometry Synthesis on Surfaces using Field-Guided Shape Grammars» (2010)
• Use it in architecture in 3D (model generation)

• Shape Grammars are interesting and cool
 → visual logic

• There has been no unified implementation found yet (?)
Subshape Detection Problem

We need to find this

Inside the base shape
• Rotation, Translation and Scaling can be allowed

• Subshape Detection under these conditions is difficult
Idea

• Use local coordinates for α
• Local coordinates for every 3 points in base shape
• Compare points

\begin{align*}
(0,1) & \quad (1,0) \\
(0,0) & \quad (-0.05, -0.5) \\
(1.4,0.8) & \\
\end{align*}
• Local coordinates for every 3 points in base shape
• Compare points
• Local coordinates for every 3 points in base shape
• Compare points
• Local coordinates for every 3 points in base shape
• Compare points
• If match is found compare lines
What I have done

• C++ shape grammar interpreter
• Only for simple grammars
• No editor
Possibly breaking a ton of C++ idioms, no prior C++ programming before this!
My Bachelor Project

• Focus on 2D Shape Grammars

• Implement an editor

• Draw rules

• Draw starting shape
Save and load grammars
Draw Rules
Add new Rules
Remove Rules
Draw a starting shape
Run grammar, step forward and backward
Adjust parameters
Roadmap

• Backend
 subshape detection, shape transformation

• Front end (the editor)
 with spec and roassal or maybe bloc in Pharo

• Test Algorithm
 If it breaks figure out why
• Map software metrics into rules

• Software fingerprint generation

• Add coloring, tagging for further processing
Questions / Feedback

• What do you think about the subshape detection using local coordinates?

• I hope I can create some cool images until the next presentation
References

Image 1:

Image 2:
From «Geometry Synthesis on Surfaces Using Field-Guided Shape Grammars”
https://csdl-images.computer.org/trans/tg/2013/02/figures/tpg20110202315.gif, 29.10.2017

Image 3:

Image 4:
http://www.cs.duke.edu/courses/fall01/cps100/assign/recursivegraph/, 29.10.2017

Image 5:
https://i.pinimg.com/originals/24/ca/f7/24caf7f4d101d4fdec36575628f1e319.jpg, 29.10.2017

Image 6:
http://www.cs.princeton.edu/courses/archive/fall08/cos126/art/anya.1.png, 29.10.2017

Image 7:
https://i.pinimg.com/originals/d1/33/77/d1337739ad66deaaac7ec57cb018607b8.jpg, 29.10.2017

Image 8:
https://i.pinimg.com/originals/5b/3c/ce/5b3cc3f47c0d0248fabc98012faed7.jpg, 29.10.2017
Image 9:
https://i.pinimg.com/736x/a7/d9/c4/a7d9c4129f62712e643536ae30a1106c-islamic-patterns-modern-patterns.jpg, 29.10.2017

Image 10:
https://cdn.dribbble.com/users/1123302/screenshots/2735420/3dpattern_1x.png, 29.10.2017