Writing a Shape Grammar Interpreter

Bachelor Thesis

Lars Wüthrich

February 2018
Thesis Idea

- Interesting paper that references shape grammars

gTangle: a Grammar for the Procedural Generation of Tangle Pattern

Christian Santoni Fabio Pellacini
Sapienza University of Rome

Figure 1: An example tangle generated by our group grammars. Every letter is decorated by a different set of patterns, displaying the power of our formal grammar. We generated this tangle by recursively combining, in a meaningful manner, our grouping, and decorative operators, all of which are well-defined on sets of arbitrary polygons with holes.

Abstract

Tangles are a form of structured pen and ink 2D art characterized by repeating, recursive patterns. We present a method to procedurally generate tangle drawings, seen as recursively split sets of arbitrary 2D polygons with holes, with anisotropic and non-stationary features. We formally model tangles with group grammars, an extension of set grammars, that explicitly handles the grouping of shapes necessary to represent tangle repetitions. We introduce a small set of expressive geometric and grouping operators, showing that they can respectively express complex tangles patterns and sub-pattern distributions, with relatively simple grammars. We also show how users can control tangle generation in an interactive and intuitive way. Throughout the paper, we show how group grammars can be used to generate tangles free-handed, without using any ruler or stencil, the structures have an organic feel to them. Tangles are drawn at different scales, starting from the bigger subdivisions through the distribution of sub-structures over those acting with fine tangle patterns. An example of an hand-drawn tangle is provided in Fig. 2.

Since their distinctive repetitive traits, the use of fine-tuned, and the high variation of patterns even in the same case, the creation process for a tangle can take up to hours of skilled artist. Moreover, the completion of a non-trivial tangle doesn't require only the use of a single pattern, task with a steep learning curve for a non-expert user. The main reasons explaining why the existence of a tool...
The Interpreter

- Subshape Detection - Find all subshapes
- Subshape Selection - Choose one among all subshapes
- Shape Transformation - Apply the rule
Subshape Detection

• Find a transformation τ

• Applying τ on a shape makes it a subshape

• Existing algorithm: The construction of shapes - Krishnamurti 1981

• My algorithm is based on local coordinate point comparison
Homogeneous Coordinates

- Form a projective space
- 3D points have 4 components
- 2D points have 3 components

- We can differentiate between points in 2D:
 \[
 \begin{pmatrix}
 x \\
 y \\
 1
 \end{pmatrix}
 \]

- and vectors (or points at infinite distance):
 \[
 \begin{pmatrix}
 x \\
 y \\
 0
 \end{pmatrix}
 \]
Figure 5.19. Convert the coordinates of vertices relative to the world space to make them relative to the camera space.
Rotation, Scaling, and Translation in 2D

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} \cos(\theta) \cdot x - \sin(\theta) \cdot y \\ \sin(\theta) \cdot x + \cos(\theta) \cdot y \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} a \cdot x \\ b \cdot y \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x + a \\ y + b \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$
Subshape Detection Example
Create a coordinate system in potential subshape

(a) α shape in original coordinate system, yet untransformed

(b) α shape in local coordinates (scaled by 1/4 in x and y direction)
Create a coordinate system in target shape

(a) γ in original coordinate system

(b) γ in new local coordinate system
Point comparison in local coordinates

\[M_{\alpha \to \gamma} = M_{\alpha \to \text{local}} \cdot M_{\gamma \to \text{local}}^{-1} \]
Subshape Selection Problem

• Which triangle should we choose?

• First try - Choose randomly
Random Choice Result
Problem with Random Choice

• Probability of choosing an "older" triangle decreases

• Probability to expand in already split triangles increases
Balanced Random

- We group triangles together
- First choose random group then choose within group
Balanced Random Result
shape

\begin{verbatim}
<gtExample>
shape := SGShapeBuilder new
points:
({(a -> (0 @ 0)).
 (b -> (1 @ 0)).
 (c -> (1 @ 1))});
lines:
({(a -> b).
 (b -> c).
 (c -> a)});
build.
\end{verbatim}
Image Generation
What went well

- Subshape detection algorithm works
- Bloc could be used effectively for the editor and the slides
- The Editor helped to find bugs in the interpreter
- The DSL is handy to use
Problems

- I worked on features which weren't strictly necessary
- Used Bloc the wrong way (overwrote drawOnSpartaCanvas)
- Better to use composition of Bloc elements
Future work regarding the editor/interpreter

- Improve usability of the editor
- Let the editor catch up with the DSL
- Implement edge cases (1,2 points or straight line)