Modular Exceptions

A bachelor thesis project
by: Patrick Indermuhle
supervised by: Prof. Dr. Oscar Nierstrasz

Conventional exception handling

 Done through try-catch blocks

* aFunction(){
Try{
//Do stuff here
} catch(Exception e){
//Handle exceptions here

/

Disadvantages

e Clutters the code
e Often not reusable
* Requires manual implementation

Method wrapping

 Many languages support treating methods as objects
e Using a wrapper for exception handling

* Class Wrapper{
execute(){

Try{
wrappedMethod.execute()

}Catch(Exception e){
//Handle exceptions here

/
b

Advantages

* Can keep exception handling outside of code
* Highly reusable/modular

* Much faster to implement

Additional advantages

* Can also be used to handle non exception
related things such as..

e ...preventing the execution of a method in
case...

— ...it would create an invalid object
— ...it would change data to an invalid state
— ...its parameters are null

Implementing Modular Exceptions

Multiple approaches

Deeper look at wrapper objects in Smalltalk
In Smalltalk all methods are objects

Any objects can serve as a method

Must implement run:with:in: among others

Can replace a method with an object and keep
the old implementation

Result: Complete control over execution of the
old method

Implementation of the wrapper

Object subclass: #ModularWrapper
instanceVariableNames: 'wrappedMethod wrappedClass selector
classVariableNames:
package: 'ModularExceptionPackage’

install

wrappedMethod := wrappedClass lookupSelector: selector.
wrappedClass addSelector: selector withMethod: ==Lt

uninstall
wrappedMethod methodClass methodDictionary
at: wrappedMethod selector
put: wrappedMethod.

Implementation of the wrapper

doesNotUnderstand: aMessage
‘wrappedMethod perform: aMessage selector withArguments: aMessage arguments

selector: aselector

selector := aSelector wrappedClass: aClass

wrappedClass := aClass.
selector

Agelector

run: aSelector with: arguments in: aReceiver
self inform: 'Modular wrapper was triggered'.

[}

Aizcelf callOldMethodOn: aReceiver withArgs: arguments

callOldMethodOn: aReceiver withArgs: arguments
faReceiver withArgs: arguments executeMethod: wrappedMethod

Implementation of the wrapper

e Class method:

installOn: aClass selector: aSelector
|newInstance |
newInstance := self new.
newInstance selector: aSelector.
newInstance wrappedClass: aClass.
newInstance install.
“newlnstance.

* Usage:

wrapper := ModularWrapper installoOn: someClass selector: #someMethod.

Result

Wrapper object takes the place of the old
method

Wrapper is triggered when method is called
Old method is saved in the wrapper
Can use the old method if needed or wanted

Exception handling can be done in the
wrapper while old method stays the same

Reflectivity

Smalltalk is a reflective language

Reflectivity = can recompile methods at
runtime

This allows method wrapping at runtime

Can implement exception handling when an
exception occurs

Possible future

* Implementation of Modular Exceptions in Java
— Can be done through annotations
— Or aspect oriented programming

* Tools to automatically add Modular Exceptions

* Tools to analyze currently deployed Modular
Exceptions

The End

