
A journey in software fuzzing

Mohammadreza Hazhirpasand, Arash Ale Ebrahim

University of Bern, Switzerland

Fuzzing?

Fuzzing is a way of discovering bugs in software by providing randomized/pattern-
based inputs to programs to find test cases that cause a crash.

2

Smart or dumb?

● A fuzzer that generates completely random input is known as a “dumb” fuzzer

● A fuzzer with knowledge of the input format is known as a “smart” fuzzer

3

Types of fuzzers

● Mutation

● Replay

● Generation

● Evolutionary

4

A valid input is mutated randomly to produce malformed input
Dumb fuzzing / Smart fuzzing

Place the fuzzer in the middle of a client and server
Intercepting and modifying messages
Generate input from scratch
Only mutates randomly a chunk of an input

Use feedback from each test case to learn the format of the input
Code coverage

Vulnerable friends!

● Protocols

● File formats

● User inputs

● Programming languages

TCP, DNS, FTP, SSL, Wireless protocols, …

MP3, JPEG, PNG, TTF, …

Names, addresses, file names, ….

JavaScript, PHP, …

5

A fuzzer’s skeleton

● Test case generation

● Reproducibility

● Crash detection

Completely blank or long strings, null character, max and min values
for integers

Record test cases and associated information

Attach a debugger, process disappears, timeouts

6

7

AFL – American Fuzzy Lop

AFL – American Fuzzy Lop

● Michal Zalewski, 2013

● First practical high performance guided fuzzer

● Compile-time instrumentation and genetic algorithms

● Many bugs!

8

DEMO

9

Fuzzing in conferences

10

Our journey

1. A benchmark for existing concolic engine-based fuzzers

2. Optimize the AFL fuzzer

3. How the current fuzzers explore crypto libraries

11

#1 Concolic Execution Engines – Symbolic execution

● Traditional fuzzers fail to exercise all the possible behaviors that a program can have

● Execute the program with symbolic valued

● Generate new inputs at each branch to cover all parts of code

12

#1 Concolic Execution Engines – Symbolic execution!!!!

● Path explosion: symbolically executing all feasible program paths does not scale to large programs

● Loops and recursions: infinite execution tree

● SMT solver limitations: dealing with complex path constraints

13

#1 Concolic Execution Engines – Symbolic execution

● Concolic = Concrete + Symbolic (dynamic symbolic execution)

● A Program is executed with concrete (random inputs) and symbolic inputs

14

#1 Concolic Execution Engines

● QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing - USENIX 2018

● Symbolic execution with SymCC: Don't interpret, compile! - USENIX 2020

● Intriguer: Field-Level Constraint Solving for Hybrid Fuzzing - CCS 2019

● Eclipser : Grey-box Concolic Testing on Binary Code - ICSE 2019

● Driller: Augmenting Fuzzing Through Selective Symbolic Execution- NDSS 2016

● SAVIOR: Towards Bug-Driven Hybrid Testing - S&P 2019

15

#1 Concolic Execution Engines - challenges

● QSYM: limited to Linux kernel 2.x

● SymCC: -

● Intriguer: buggy version

● Eclipser : complexity in running a fuzzing job

● Driller: outdated, not maintained anymore

● SAVIOR: poor documentation, buggy, over 2 months of discussion

16

#1 Concolic Execution Engines - benchmark

● LAVA-M benchmark test suite (4 vulnerable binaries)

● Real world targets: libpng, ffmpeg, libjpeg, libexpat, curl, OpenSSL, php

17

#2 AFLQL – High performance static guided fuzzing system

● AFLQL = AFL + CodeQL

● Extract valuable information from the target program

● Optimize the generated corpus

18

+

#2 AFLQL – motivation

A good fuzzer should overcome:

1. Checksums

2. Magic numbers

3. Complex path constraints

19

#2 AFLQL – evaluation

● Code coverage - Google FuzzBench (slow procedure for private research requests)

● Bug coverage - Magma benchmark suite (over a month of discussion)

● Bug and code coverage - LAVA-M benchmark suite

20

#2 AFLQL – code coverage (Google FuzzBench)

● Target program: Bloaty

21

#2 AFLQL – code coverage (Google FuzzBench)

22

#2 AFLQL – code coverage (Google FuzzBench)

● Target program: cURL

23

#2 AFLQL – code coverage (Google FuzzBench)

24

#2 AFLQL – bug Coverage - Magma

● Target program: Libpng

25

Summary

26

