Generating class comments in Pharo
automatically

Pharo class comment

7 Comment o + a5
I represent a message to be scheduled by the WorldState.

For example, you can see me in action with the following example which print 'alarm test' on Transcript
one second after evaluating the code:

Transcript open.
MorphicUIManager currentWorld
addAlarm: #show:
withArguments: #('alarm test')
for: Transcript
at: (Time millisecondClockValue + 1000).

* Note =

Compared to doing:

[(Delay forMilliseconds: 1000) wait. Transcript show: 'alarm test'] forkAt: Processor activeProcess
priority +1.

the alarm system has several distinctions:

- Runs with the step refresh rate resolution.

- Alarms only run for the active world. (Unless a non-standard scheduler is 1in use)

- Alarms with the same scheduled time are guaranteed to be executed in the order they were added

Pharo comment template

+ New class x ! Comment X c Test x A& UML-Class x - Inst. side methc x + &5

Class: Test

Please comment me using the following template inspired by Class Responsibility Collaborator (CRC) design:
For the Class part: State a one line summary. For example, "I represent a paragraph of text".
For the Responsibility part: Three sentences about my main responsibilities - what I do, what I know.
For the Collaborators Part: State my main collaborators and one line about how I interact with them.
Public API and Key Messages

+ message one

* message two

e (for bonus points) how to create instances.
One simple example is simply gorgeous.

Internal Representation and Key Implementation Points.

Implementation Points

Pharo comment template

-+ New class x ! Comment x c Test % A, UML-Class % - Inst. side methc x

Class: Test

For the Class part: State a one line summary. For example, "I represent a paragraph of text".
For the Responsibility part: Three sentences about my main responsibilities - what I do, what I know.

For the Collaborators Part: State my main collaborators and one line about how I interact with them.

Public API and Key Messages
+ message one
* message two
+ (for bonus points) how to create instances.

One simple example is simply gorgeous.
Internal Representation and Key Implementation Points.

Implementation Points

Please comment me using the following template inspired by Class Responsibility Collaborator (CRC) design:

+ @

e Class,
Responsibility and
Collaborators

API and Key
Messages

e Examples,
implementations

Why do we want to generate comments?

e Possibility to spend less time on writing comments

e Create a uniform format to prevent inconsistent comments

Goal

Create a commenting tool written in Pharo

What are the challenges in generating
comments automatically?

e \Which approach to use?

e How do we define the heuristics to use?

Related work Iin Java

Automatic Generation of Natural Language
Summaries for Java Classes

Laura Moreno', Jairo Aponte’, Giriprasad Sridhara’, Andrian Marcus’, Lori Pollock’, K. Vijay-Shanker*

"Wayne State University
Detroit, ML USA
{Imorenoc, amarcus}@wayne.edu

Bogota, Colombia
jhapontem@unal edu.co

Abstraci—Most software engineering tasks require developers
to understand parts of the source code. When faced with
Snfiaar s, deteipart cien. Sl 4 gt of xtreal
0 gain an overall of dhe code and
drtermiae whethir ¥ f remnt for fho carvemt tue
Unfortunately, the documentation is often absent or outdated.

This paper presents a technique to automatically generate
human readable summaries for Java classes, assuming no
documentation exists. The summaries allow developers to
understand the main goal and structure of the class. The focus of
the summaries is on the content and responsibiliies of the classes,
rather than cheir relationships with other classes. The
summarization tool determines the class and method stereotypes
and uses them, in conjunction with heuristics, to select the
information to be included in the summaries. Then it generates
the summaries using existing lexicalization tools.

A 00D of prograinmersfudged 8 set of generated summarles
for Java classes and determined tl they are readable and
uderstandable, ey do not include extraneous information, and,
in most cases, they are not missing essential information.

Index Terms—Source code summarization, program
comprehension, documentation generation.

1. INTRODUCTION

Existing studies [1] revealed that developers often spend
more time scarching. browsing. and reading the code than
edifing it. Searching, browsing, and reading are essential
activities needed fo understand software, which in fum is
needed for everyday sofware maintemance fasks. While
browsing the source code. developers sometimes just glance at
it to get a quick understanding and sometimes spend more fime
reading it in detail [1-3]. Skimming the code is performed in
order to determine whether a specific part of it is relevant to the
task at hand or not. ode has good leading
comments, developers can acquire a quick understanding of the
code artifact. Unfortunately. more often than not. good
comments are missing or outdated. and therefore, developers
must spend nuuch more fime reading the code in defail in order
to gain even a superficial understanding

One approach to overcome this problem is to automatically
generate descriptive comments directly from the source code.
While successfully applied for Java methods [4]. generating
comments for more complex code artifacts. e.g. classes. is
significantly more difficult [5. 6]. Our focus here is on classes
as they are the primary decomposition unit in Object-Oriented
(00) programming languages, such as Java. In addition, the

*Universidad Nacional de Colombia

*IBM Research India *University of Delaware
Bangalore, India Newark, DE, USA
gisridha@in ibm com {pollock, vijay} @cis.udel edu

00 paradigm supports reasoning at the object level and,
consequently, code understanding and (re)use at the class level

Unfortunately, we cannot use existing comment generation
tools for methods (e.g.. [4]) and simply merge them o create a
class summary. The reasons vary: (i) classes bundle together
more than just methods — they also include data that the
methods presumably operate on: (i) adding together all method
descriptions would result in very large summaries, which
defeats their goals (i) not all methods are the same — some
may be relevant to describe the behavior of the class nstances.
while some may not

We propose in premicre a technique to automatically
generate structured natural-language descriptions for Java
classes. independent of their context and assuming that no
documentation exists (ic.. if it exists, the commients are not
currently used). The system takes a Java project as input. and
for each class. it outputs a natural-language summary. The
goal of the generated summaries is to support the quick
understanding of a class by describing its intent and leaving
aside its context and any algorithmic details. In this sense, the
summaries are indicative (i., provide a brief description of the
class content), abstractive (ic.. include information that is not
explicitin the class). and generic (ie.. attempt to cover only the
important information of the class).

The intended audience is any developer. especially a
novice, who is unfamiliar with the code and needs to quickly
get the gist of the class to decide whether fo peruse the source

code or not. For example, the developer may be deciding
Whether to (reuse clast ¥ and wonderng whether it would
serve her needs; or. while reading the code of another class. she
encounters an attribute of type X and wonders what it means
Developers sometimes write comments that describe the main
responsibility of a class, to help other developers, regardless of
their task. Our automatic summaries have the same goal
Although different maintenance tasks require different kinds of
information from classes. our approach can serve as an inifial
step in the generation of specific-purpose summaries, which is
outside the scope of this paper.

Our conjecture is that the type of methods and their
distribution in a class is not accidental and denotes some design
intent, which reflects the main goal of the class. Thus, our
summarization technique first determines the stereotypes of the
class [7] and each one of its methods [8]. The stereorype
information is used in conjunction with predefined heuistics,
to select the information that will be included in the summary.

Moreno et Al
Focused mostly on the responsibilities of the

classes

Heuristic-based process of Moreno et Al

Class written in Java

Class stereotypes

1 Entity 7. Controller

2 Minimal entity 8. Pure controller

3 Data provider 9. Large class

4. Commander 10. Lazy class

5 Boundary 11 Degenerate

6 Factory 12. Data class

13. Pool

Method stereotypes

1. Accessors

2 Mutators

3. Creational methods

4. Collaborational methods

5 Degenerate methods

Summary

1. General description

2. Description based
on class stereotype.

3. Description of
behaviour based on
method stereotyp

4. List of inner classes

Our approach

e Heuristic based

e Corresponding to the template format

10

Related work in Pharo

EMSE manuscript No.
(will be inserted by the editor)

e Analyzed Class comments

‘What do class comments tell u:
evolution and practices in Pharo

An investigation of comment

e Found various information types embedded in class

Pooja Rani - Sebastiano Panichella - Manuel
Leuenberger - Mohammad Ghafari - Oscar
Nierst

comments

Abstract Previous studies have characterized code comments in different programming

languages, and have shown how a high quality of code comments is crucial to support

program comprehension activities and to improve the effectiveness of maintenance tasks. . .

Howerer, very few studies have focused on the analysis of the information embedded in code o a n CO m m e n S \X/e re \X/ rl e n a n O r m a e I n a
comments. None of them compared the developer’s practices to write the comments to the

standard guidelines and analyzed these characteristics in the Pharo Smalltalk environment.

ctices have their origins in Smalltalk-80, back 40 years,

Smalltalk traditionally separates class comments from source code. and offers a brief template

for entering a comment for newly-created classes. These templates have evolved over the

.
years, particularly in the Pharo environment. This paper reports the first empirical study
investigating commenting practices in Pharo Smalltalk. As a first step. we analyze class -

comment evolution over seven Pharo versions. Then, we quantitatively and qualitatively
analyze class comments of the most recent version of Pharo, to invest
types of Pharo comments. Finally, we study the adherence of developer commenting practices
1o the class template over Pharo versions.

e the information

‘The results of this study show that there is a rapid increase in class comments in the initial
three Pharo versions, while in subsequent versions developers added comments to both new
and old classes, thus maintaining a similar ratio. In addition. the analysis of the semantics of
the comments from the latest Pharo version suggests that 23 information types are typically
embedded in class comments by developers and that only seven of them are present in
the latest Pharo class comment templare. However. the information types proposed by the
standard template tend to be present more often than other types of information. Additionally
we find that a substantial proportion of comments follow the writing style of the template in
writing these information types, but they are written and formatted in a non-unifo
This suggests the need to standardize the commenting

m way

guidelines for formatting the text

Pooja Rani, Manuel Leuenberger, Mohammad Ghafari, Oscar Nierstrasz.
Software Composition Group. University of Bern, 3012 Bern, Switzerland
hup:/scg.unibe.clystaft

Sebastiano Panichella
Zurich University of Applied Science
E-mail: panc @zhaw.ch

Heuristic-based process in Pharo

Class written in Pharo

Information types

1.

© ON OO pWN

Intent

Responsibility
Collaborator

Public API

Example
Implementation Points
Instance Variables
Class references
Warnings

Filled in template.

12

Pipeline

Understanding Developing the Comparison with

the project tool Moreno et Al
g ar
End of March

End of February

. O . -
O O O

Ongoing End of February April
O w— v—Q Jsssss
: = g—_ o —
Define heuristics Evaluate Writing paper
approach by
Pharo
developers

13

