UNIVERSITAT

Adherence of class comments
to style guidelines

Suada Abukar

Bachelor Thesis Final Presentation
Supervised by Pooja Rani

04 May 2021

Motivation

o« Comments help developers understand code

« Contain different types of information (summary, description, ...)
« Comments are free-form text

« Style guidelines for code documentation

... but do developers follow documentation style guidelines?

/

[** Event fired when a spacer element is hidden or shown in Escalator.

o

*

* @author Vaadin Ltd
* @since 7.7.13
*/

Class: SpacerVisibilityChangedEvent.java

Style guidelines to write class comments

- First sentence is a summary.
- Use phrases instead of complete sentences.

- Use 3rd person instead of 2nd person.

/

[** Event fired when a spacer element is hidden or shown in Escalator.
*

* @author Vaadin Ltd
* @since 7.7.13

*/

o

Class: SpacerVisibilityChangedEvent.java
Compare

Style guidelines to write class comments

- First sentence is a summary.
- Use phrases instead of complete sentences.

- Use 3rd person instead of 2nd person.

Motivation

e Analysis of class comments in Pharo
e 60% of comments follow the style guideline

— We want to investigate this in Java and
Python

arXiv:2005.11583v1 [cs.SE] 23 May 2020

EMSE manuscript No.
{will be inserted by the editor)

What do class comments tell us? An investigation of comment
evolution and practices in Pharo

Pooja Rani - Sebastiano Panichella - Manuel
Leuenberger + Mohammad Ghafari « Oscar
Nierstrasz

Received: date / Accepted: date

Abstract Previous studies have characterized code comments in different programming
languages, and have shown how a high quality of code comments is crucial to support
program comprehension a ies and 1o improve the elfectiveness of maintenance tasks,
However, very few studies have focused on the analysis of the information embedded in code
comments. None of them compared the developer’s practices to write the comments to the
dard guidelines and analyzed these ch i in the Pharo Smalltalk environment.
The class cnmmenung practices have their origins in Smalltalk-80, going back 40 years.
Smallialk tradi lass from source code, and offers a brief template
for entering a Lmlmll:rll Iur newly-created classes, These templates have evolved over the
years, pa.mcul.arly in Ihc Pharo environment. This paper reports the first empirical study
in Pharo Smalltalk. As a first step, we analyze class
comment evolution over seven Pharo versions. Then, we quantitatively and qualitatively
analyze class comments of the most recent version of Pharo, to investigate the mfurmallon
types of Pharo comments. Finally, we study the adh e of developer co ing p
to the class template over Pharo versions.

The results of this study show that there is a rapid increase in class comments in the initial
three Pharo versions, while in subsequent versions developers added comments to both new
and old classes, thus maintaining a similar ratio, In addition, the analysis of the semantics of
the comments from the latest Pharo version suggests that 23 information types are typically
embedded in class comments by developers and that only seven of them are present in
the latest Pharo class commeni template. However, the information types proposed by the
standard template tend (o be present more often than other types ol information. Additionally,
we find that a substantial proportion of comments follow the writing style of the template in
writing these information types, but they are written and formatted in a non-uniform way.
This suggesis the need o fardize the i ideli for formatting the lext,

Ponja Rani, Manue! Leucnberger, Mohammad Ghafarl, Oscar Nierstrasz
Sofltware Composition Group, University of Bem, 3012 Bern, Swileerland
hitp:ifscg.unibe.ch/staff

Schastiano Panichella
Zurich University of Applied Sc
E-muil: panc @ghaw.ch

What has been done?

e Analysis of class comments in Java and
Python

e Focus on information types present in class
comments

e Proposes techniques to automatically
identify class comment information types

How to Identify Class Comment Types?

A Multi-language Approach for Class Comments Classification

Pooja Rani*, Sebastiano Panichella®, Manuel Leu

aberger®, Andrea Di Sorbof, Oscar Nierstrasz®

ftware Composision Group, University of Bern, Swit
"Zurich Universiry of Applied Science, Switzerland
Deparment of Engineering, University of Sannio, Ialy

lond

Abst

Most software maintenance and evolution tasks require developers to understand the source code of their software systems. Software
developers usually inspect class comments to gain knowledge about program behavior, regardless of the programming language they

are using. Unfortuna

tely, (i) different programming languages present langu: pecific code commenting notations and guidelines;

and (if) the source code of software projects often lacks comments that adequately describe the class behavior, which complicates

program comprehension and evolution activities. To handie these challenges, this paper investigates the different language-specific
class commenting practices of three programming languages: Python, Java, and Pharo. In particular, we systematically analyze the
similarities and differences of the information types found in class comments of projects developed in these languages. We propose

an approach that leverages two techniques — namely Natural Language Processing and Text Analysis— to automatically identify

class comment types, i.e., the specific types of semantic information found in class comments. To the best of our knowledge, no

previous work has provided a comprehensive

axonomy of class comment types for these three programming languages with the

help of a common automated approach. Our results confirm that our approach can classify frequent class comment inform

ation

types with high accuracy for the Python, Java, and Pharo programming languages. We believe this work can help o monitor and

assess the quality and evolution of code comments in different programming lang

ges, and thus support maintenance and evolution

Lasks.

ywords: Natural Language Processing Technique, Code Comment Analysis, Software Documentation

1. Introduction comprehension questions [5, 6, 4]. In addition, recent work

has also d d that “code doc " is the most

Software mainte:

ance and evolution tasks require developers

used source of information for bug fixing. implementing fea-
To under-

to perform program comprehension activities [1, 2
tures, communication, and even code review [7]. In particular,
stand a software system, developers usually refer to the soft-
well-documented code simplifies software maintenance activi-
ware documentation of the system [3, 4]. Previous studies have

ties, but many programmers often overlook or delay code com-

demonstrated that developers trust code comments more than
menting tasks [8].
other forms of docu

nentation when they try (o answer program
Class comments play an important role in obtaining a high-
Email oddresses. . inf . unibe.ch (Pooja Rani), level overview of the classes in object-oriented languages (9]

pancezhaw. ch (Sebastiano Panichella),
In particular, when applying code changes, developers using

anuel.le e ch (Manue! Leuenberger),
I —— different programming languages can inspect class comments
a erstrasz@inf,unibe (Oscar Nienstrasz) to achieve most or majority of the high-level insights about the

reprins submitted to Jowrnal of Systems and Sofrware April 14, 2021

What has been done?

Eclipse.cdt

136 class comments

Hadoop

195 class comments

Java

Spark

14 class comments

Django

108 class comments

Mailpile

25 class comments

Pipenv

107 class comments

Vaadin
85 class comments

Python

Requests

4 class comments

Guava
59 class comments

Guice

19 class comments

6 open-source Java projects

iPython

22 class comments

Pandas

35 class comments

.

Pytorch

49 class comments

7 open-source Python projects

Approach

Find style guidelines of
projects

\ 4

Extract comment
related rules from style
guidelines

Categorize and create
taxonomy

Y

Extract class comment
related rules

\ 4

Validate rules against
comment

Find style guidelines of projects

Eclipse.cdt

Hadoop

Java

Spark

Vaadin

Guava

Oracle

Guice

Google

10

Find style guidelines of projects

Django

Mailpile

Pipenv

Python

Requests

iPython

PEP 8 / 257

Pandas

NumpyDoc

Pytorch

Google

11

Approach

Find style guidelines of
projects

\ 4

Extract comment
related rules from style
guidelines

Categorize and create
taxonomy

Y

Extract class comment
related rules

\ 4

Validate rules against
comment

12

Extract comment related rules from style guidelines

Example PEP257

Multi-line Docstrings @ @ @

Multi-line docstrings consist of a summary line just like a one-line docstring, followed by a blank line, followed by a more
elaborate description. The summary line may be used by automatic indexing tools; it is important that it fits on one line and is @
separated from the rest of the docstring by a blank line. The summary line may be on the same line as the opening quotes or

on the next line. The entire docstring is indented the same as the quotes at its first line (see example below).

® ®

13

Approach

Find style guidelines of
projects

\ 4

Extract comment
related rules from style
guidelines

Categorize and create
taxonomy

Y

Extract class comment
related rules

\ 4

Validate rules against
comment

14

Categorize and create taxonomy

[Taxonomy }

[Formatting} [Content } [Syntax } [Structure } [Writing Style}

15

Categorize and create taxonomy

Example PEP257

semantic formatting semantic formatting

Multi-line Docstrings @ @ @

Multi-line docstrings consist of a summary line just like a one-line docstring, followed by a blank line, followed by a more

elaborate description. The summary line may be used by automatic indexing tools; it is important that it fits on one line and is @
separated from the rest of the docstring by a blank line. The summary line may be on the same line as the opening quotes or

on the next line. The entire docstring is indented the same as the quotes at its first line (see example below).

® ®

formatting formatting

16

Categorize and create taxonomy

Formatting Content Syntax Structure Writing style

Vaadin 20% 48% 5% 12% 16%
|
Hadoop 19% 49% 5% 12% 16%
|
Spark 16% 51% 8% 10% 15%
|
Eclipse.cdt 19% 48% 5% 12% 16%
|
Guava 82% 18%
|
Guice 82% 18%
OI% 25% 50% 75% 100%

Majority of the rules are about
formatting and content.

Categorize and create taxonomy

Django

Requests

Pipenv

Mailpile

Pandas

iPython

Pytorch

0%

Formatting Content Syntax

46%

45%

44%

44%

27%

31%

25%

50%

Writing style

28% 7% 16% 4%

25% 1% 15% 4%

29% 9% 13% 4%

29% 9% 13% 4%

36% 27% 2%

80% 20%

34% 31% 3%
75% 100%

Majority of the rules are about
formatting and content.

18

Approach

Find style guidelines of
projects

\ 4

Extract comment
related rules from style
guidelines

Categorize and create
taxonomy

A 4

Extract class comment
related rules

\ 4

Validate rules against
comment

19

Extract class comment related rules

Example PEP257

Multi-line Docstrings @ @ @

Multi-line docstrings consist of a summary line just like a one-line docstring, followed by a blank line, followed by a more
elaborate description. The summary line may be used by automatic indexing tools; it is important that it fits on one line and is @
separated from the rest of the docstring by a blank line. The summary line may be on the same line as the opening quotes or

on the next line. The entire docstring is indented the same as the quotes at its first line (see example below).

® ®

All 6 rules are class comment
related.

20

Approach

Find style guidelines of
projects

\ 4

Extract comment
related rules from style
guidelines

Categorize and create
taxonomy

A 4

Extract class comment
related rules

\ 4

Validate rules against
comment

21

Validate rules against comments

Project
Vaadin
Hadoop
Spark
Eclipse.cdt
Guava

Guice

Nr. of rules
59
60
59
32

Applicable rules | Non applicable rules

28.58%
19.82%
20.17%
23.55%
33.90%
26.32%

71.42 %
80.18 %
79.83 %
76.45 %
66.10 %
73.68 %

Most rules were not applicable due
to data unavailability.

22

The @deprecated description in the first sentence should at least tell the
user when the APl was deprecated.

@deprecated tag not present

rule is not applicable

23

Validate rules against comments

Project
Django
Requests
Pepenv
Mailpile
Pandas
iIPython
Pytorch

Nr. of rules

39
39
29
29
140
72
27

66.81%
68.33%
64.49%
62.15%
15.83%
65.38%
20.82%

Applicable rules | Non applicable rules

33.19%
31.67%
35.51%
37.85%
84.17%
34.62%
79.18%

High % of non applicable rules only
for Pandas and Pytorch observable.

24

Validate rules against comments

B not followed followed

“EHgEET ™

75%
50%
25%

0%

Vaadin Hadoop Spark Eclipse.cdt Guava Guice

From the applicable rules, on

average 87.91% are followed.

25

Validate rules against comments

B not followed followed
- . . . -
75% I . .
50%
25%

0%
Django Requests iPython Pytorch Pandas Mailpile Pipenv

From the applicable rules, on

average 75.86% are followed.

26

Summary

Most of the rules are not applicable due to data unavailability.
From those applicable rules most are followed.
Only small portion of applicable rules are not followed.

27

Future Work

Comparison of style guide adherence between Java and Python
Finish writing thesis

28

