Java Cryptography Architecture

SOPHIE PFISTER

Context

• Kühne *et al.* (2017)

and their parameters. We have implemented a compiler that translates a CRYSL ruleset into a context- and flow-sensitive demand-driven static analysis. The analysis automatically checks a given Java or Android app for violations of the CRYSL-encoded rules.

We empirically evaluated our ruleset through analyzing 10,001 Android apps. Our results show that misuse of cryptographic APIs is still widespread, with 96% of apps containing at least one misuse. However, we observed fewer of the misuses that were reported in previous work.

Context

- Cryptography libraries lack usability.
- API misuse leads to security vulnerabilities.

→ unsafe applications!

Research Questions

- 1. What **issues** do programmers face when implementing symmetric encryption using the JCA library?
- 2. What **security risks** are present on Stack Overflow referring to the implementation of symmetric encryption using JCA library?
- 3. To what extent are these **linked to** missing or inadequate **documentation**?

Methodology

- 150 Stack Overflow threads targeting symmetric encryption in JCA
- 50% «newest» / 50% «most popular»
- identify issues
- qualitative content analysis + frequency analysis

Analysis 1

- Summarizing
- Classification 1: Technical Aspects
- Classification 2: Requirements

Analysis 1: Technical Aspects

Cipher Object Instantiation

Parameters Generation

Cipher Object Initialization

Transformation

Parameter Transmission

Dependency Encryptor - Decryptor

Analysis 1: Technical Aspects

Total	197 issues	(90%)
Generation of Algorithm Parameters: • Key Derivation	53 issues 36 issues	(24.2%) (16.5%)
Cipher Object Instantiation: • Encryption Mode & Padding	50 issues 40 issues	(22.8%) (18.3%)

Analysis 1: Requirements

Security

Use Cases (Functional Requirements)

Performance

Space

Reliability

Interoperability

Portability

Methodology

Analysis 2: Check List

- Deriving rules from existing sets
 - CRYLOGGER tool for dynamic security risk tracking
 - CogniCrypt compiler for static security risk tracking

Analysis 2: Security Rules

Cipher Object Instantiation

Parameters Generation

Cipher Object Initialization

Parameter Transmission

Analysis 2: Checklist

4 Checklists:

- Question Code
- Question Text
- Answer Code
- Answer Text

Analysis 2: Results

- 150 question posts and 84 answer posts
- 331 security risks

	Code	Text
Question	249	38
Answer	35	9

Methodology

Questions

- based on results from former analyses
- How many threads are targeted by a question?
 Priority
- 2 Lists:
 - «General Questions»
 - «Questions to Documentation»

Questions - to Documentation

	Question	Priority
\rightarrow	What happens if I do not specify the IV although it is required?	9
\rightarrow	How can I derive a key from a password?	7
\rightarrow	What is the default value if I do not specify padding?	6
\rightarrow	What kind of parameters do I have to pass to the decryption methods (update / doFinal)?	6
\rightarrow	Which of the provided key derivation functions are standardized?	6

- default behavior
- (password based) key derivation
- method overloads

Questions - General

	Question	Priority
\rightarrow	Which encryption modes are safe?	113
\rightarrow	What are security requirements for the key?	43
\rightarrow	What requirements must the IV / nonce meet to be safe?	37
\rightarrow	Which input data and specifications must be equal for encryption and decryption?	27
\rightarrow	Which symmetric encryption algorithms are safe to use?	24
\rightarrow	What are requirements for safe password based key derivation?	15

- security related
- dependency encryptor decryptor

Questions - General

	Question	Priority
\rightarrow	What encryption modes require padding?	9
\rightarrow	Which encryption modes do require an IV or nonce?	6
\rightarrow	What is the required size for an IV?	5
\rightarrow	What key sizes are supported by AES?	4
\rightarrow	What does an IV do during encryption?	4

- encryption mode
- initialization vector
- key

Questions

- Total: 66 Questions
- 10 questions unanswered
- 13 answers are unclear, incomplete, or misleading

"Advanced Encryption Standard as specified by NIST in FIPS 197. Also known as the Rijndael algorithm by Joan Daemen and Vincent Rijmen, AES is a 128-bit block cipher supporting keys of 128, 192, and 256 bits."

Unanswered Questions

- How can I specify PKCS#7 padding in Java?
- What properties does AES-256 require?
- Which symmetric algorithms are safe?

General Observations

- examples are not working (incomplete)
- platform / provider issue
 - → decreases portability

Conclusion

What issues do programmers face ...?

Tasks / Properties:

- (password based) key derivation
- key storage / transmission
- initialization vector
- encryption mode

API Related Issues

- platforms and providers
- overloaded methods, update (...) vs. doFinal (...)

Programmer Related Issues

lack of (domain) knowledge

What security risks are present...?

- unsafe encryption mode (ECB, CBC)
- static values for key and initialization values
- unsafe key derivation procedure

... issues linked to ... documentation?

- 65% of questions are answered by documentation
- "higher priority" questions are answered
- Yet, the quality could be improved by
 - providing working code examples
 - linking trusted resources
 - adding security hints / warnings

Conductive Thoughts

- Do programmers read documentation?
- API usability is very complex.
- Implementing cryptography requires expertise.

Summary

