UNIVERSITAT

Dynamic Object-Oriented Programming with
Smalltalk

1. Introduction

Prof. O. Nierstrasz
Autumn Semester 2009

Smalltalk

Lecturer Prof. Oscar Nierstrasz
: David Roéthlisberger, Fabrizio Perin
Assistants .
Timur Altun
Lectures IWI 001, Wednesdays @ 10h15-12h00
Exercises IWI 001, Wednesdays @ 12h00-13h00
www http://scg.unibe.ch/teaching/smalltalk

Selected material courtesy Stéphane Ducasse

Birds-eye view

\ "
?

Smalltalk is still today one of the
few fully reflective, fully dynamic,
object-oriented development
environments.

We will see how a simple, uniform
object model enables live, dynamic,
Interactive software development.

Roadmap

Course schedule, goals, resources
What is Smalltalk?

Origins of Smalltalk

Smalltalk key concepts

The Smalltalk environment

VvV V V V V

Roadmap

Course schedule, goals, resources
What is Smalltalk?

Origins of Smalltalk

Smalltalk key concepts

The Smalltalk environment

VvV V V V V

Course Schedule

Week Date Lecture

1 16-Sep-09 Introduction

2 23-Sep-09 Smalltalk Basics

3 30-Sep-09 Standard Classes

4 07-Oct-09 Smalltalk Coding Idioms

5 14-Oct-09 Seaside

6 21-Oct-09 Debugging

7 04-Nov-09 Best Practice Patterns

8 28-0Oct-09 Refactoring and Design Patterns
9 11-Nov-09 Understanding Classes and Metaclasses
10 18-Nov-09 Reflection

11 25-Nov-09 Working with ByteCode

12 02-Dec-09 Virtual Machines

13 09-Dec-09 Traits and Classboxes

14 16-Dec-09 Final Exam

ST — Introduction

Pharo by Example (preview)

© Oscar Nierstrasz

Andrew P. Black - Stéphane Ducasse -
Oscar Nierstrasz - Damien Pollet

with Damien Cassou and Marcus Denker

Special preview
edition prepared
for this course

Goals of this Course

Some history

A pure object-oriented model

Classes and metaclasses

Reflection (not just introspection)

Design and implementation of dynamic languages
Advanced object-oriented design concepts

VvV V VvV V V V

What is surprising about Smalltalk

Everything is an object

Everything happens by sending messages

All the source code is there all the time

You can't lose code

You can change everything

You can change things without restarting the system
The Debugger is your Friend

VvV V VvV V V V V

A Word of Advice

You do not have to know everything!!!

Try not to care — Beginning Smalltalk programmers often
have trouble because they think they need to understand all
the details of how a thing works before they can use it. This
means it takes quite a while before they can master
Transcript show: ‘Hello World’. One of the great
leaps in OO is to be able to answer the question “How does
this work?” with “l don'’t care”.

—Alan Knight. Smalltalk Guru

Resources

> Pharo

— www.pharo-project.org
> History

— en.wikipedia.org/wiki/Smalltalk

— www.smalltalk.org/smalltalk/history.html
> Free books

— stephane.ducasse.free.fr/[FreeBooks.html

> European Smalltalk Users Group
— WWW.esug.org

Recommended Books

> Alec Sharp, Smalltalk by Example, McGraw-Hill, 1997.

> Kent Beck, Smalltalk Best Practice Patterns, Prentice
Hall, 1997.

> Sherman Alpert et al., The Smalltalk Design Pattern
Companion, Addison-Wesley, 1998

Roadmap

Course schedule, goals, resources
What is Smalltalk?

Origins of Smalltalk

Smalltalk key concepts

The Smalltalk environment

VvV V V V V

Why Smalltalk?

> Pure object-oriented language and environment
— “Everything is an object”

> Qrigin of many innovations in OO development
— RDD, IDE, MVC, XUnit ...

> Improves on many of its successors
— Fully interactive and dynamic

What is Smalltalk?

> Pure OO language
— Single inheritance
— Dynamically typed

> Language and environment
— Guiding principle: “Everything is an Object”
— Class browser, debugger, inspector, ...
— Mature class library and tools

> Virtual machine

— Objects exist in a persistent image [+ changes]
— Incremental compilation

Smalltalk vs

. C++ vs. Java

Smalltalk C++ Java
Object model Pure Hybrid Hybrid
Garbage collection Automatic Manual Automatic
Inheritance Single Multiple Single
Types Dynamic Static Static
Reflection Fully reflective Introspection Introspection
Concurrency Semap_hores, Some libraries Monitors
Monitors
Modules Categories, Namespaces Packages

namespaces

Smalltalk: a State of Mind

> Small and uniform language
— Syntax fits on one sheet of paper

> Large library of reusable classes

— Basic Data Structures, GUI classes, Database Access, Internet,
Graphics

> Advanced development tools

— Browsers, GUI Builders, Inspectors, Change Management Tools,
Crash Recovery Tools, Project Management Tools

> Interactive virtual machine technology
— Truly platform-independent

> Team Working Environment
— Releasing, versioning, deploying

Smalltalk in industry

> Worldwide:

— http://www.esug.org/companiesdevelopinginsmalltalk/
— http://www.whysmalltalk.com/production/index.htm
— http://www.stic.org/companies/companies.htm

— http://www.goodstart.com/whousessmalltalk.php

> |n Bern:
— Netstyle.ch
— DVBern AG
— Mobiliar (in-house)
— Pulinco

Roadmap

Course schedule, goals, resources
What is Smalltalk?

Origins of Smalltalk

Smalltalk key concepts

The Smalltalk environment

VvV V V V V

Origins of Smalltalk

> Project at Xerox PARC in 1970s

— Language and environment for new generation of graphical
workstations (target: “Dynabook”)

> |In Smalltalk-72, every object was an independent
entity
— Language was designed for children (!)
— Evolved towards a meta-reflective architecture

> Smalltalk-80 is the standard

Smalltalk — The Inspiration

> Flex (Alan Kay, 1969)

> Lisp (Interpreter, Blocks, Garbage Collection)

> Turtle graphics (The Logo Project, Programming for Children)

> Direct Manipulation Interfaces (Sketchpad, Alan Sutherland, 1960)
> NLS, (Doug Engelbart, 1968), “the augmentation of human intellect”
> Simula (Classes and Message Sending)

\

Xerox PARC (Palo Alto Research Center)
DynaBook: a Laptop Computer for Children

\Y

— www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk Abstract.html

Dynabook Mockup

www.artmuseum.net/w2vr/archives/Kay/01 Dynabook.html

Alto: a Machine to Run Smalltalk

Smalltalk on Alto I

Precursor, Innovator & Visionary

vV V V V

First to be based on Graphics
— Multi-Windowing Environment (Overlapping Windows)

— Integrated Development Environment: Debugger, Compiler,
Text Editor, Browser

With a pointing device = yes, a Mouse
ldeas were taken over

— Apple Lisa, Mac
— Microsoft Windows 1.0

Platform-independent Virtual Machine

Garbage Collector

Just-in-time Compilation

Everything was there, the complete Source Code

story

-

970

i

Pascal

980

i

. JavaScript | [Ruby | | php | | Ada95 |

2010

The History (Internal)

> 1972 — First Interpreter
— More Agents than Objects
(every object could specify its own syntax!)

> 1976 — Redesign

— A hierarchy of classes with a unique root, fixed syntax, compact
bytecode, contexts, processes, semaphores, browsers, GUI
library.

— Projects: ThingLab, Visual Programming Environment,
Programming by Rehearsal.

> 1978 — NoteTaker Project

— Experimentation with 8086 Microprocessor with only 256 KB
RAM.

ST — Introduction

© Oscar Nierstrasz 1.27

The History (External)

> 1980 — Smalltalk-80

— ASCII, cleaning primitives for portability, metaclasses, blocks as first-
class objects, MVC.

— Projects: Gallery Editor (mixing text, painting and animations) +
Alternate Reality Kit (physics simulation)

> 1981 — Books + 4 external virtual machines
— Dec, Apple, HP and Tektronix
— GC by generation scavenging
> 1988 — Creation of Parc Place Systems
> 1992 — ANSI Draft
> 1995 — New Smalltalk implementations
— MT, Dolphin, Squeak, Smalltalk/X, GNU Smalltalk
> 2000 — Fscript, GNU Smalltalk, SmallScript
> 2002 — Smalltalk as OS: 128k ram

What are Squeak and Pharo?

> Squeak is a modern, open-source, highly portable, fast,
full-featured Smalltalk implementation

— Based on original Smalltalk-80 code PO 0/)
=S

> Pharo is a lean and clean fork of Squeak

— www.pharo-project.org ’

Roadmap

Course schedule, goals, resources
What is Smalltalk?

Origins of Smalltalk

Smalltalk key concepts

The Smalltalk environment

VvV V V V V

Smalltalk — Key Concepts

> Everything is an object
— numbers, files, editors, compilers, points, tools, booleans ...

> Everything happens by sending messages

> Every object is an instance of one class

— which is also an object

— A class defines the structure and the behavior of its instances.
> QObijects have private (protected) state

— Encapsulation boundary is the object
> Dynamic binding

— Variables are dynamically typed and bound

Objects and Classes

> Every object is an instance of a class

— A class specifies the structure and the behaviour of all its
instances

— Instances of a class share the same behavior and have a
specific state

— Classes are objects that create other instances
— Metaclasses are classes that create classes as instances

— Metaclasses describe class behaviour and state (subclasses,
method dictionary, instance variables...)

Messages and Methods

> Message — which action to perform

aWorkstation accept: aPacket
aMonster eat: aCookie

> Method — how to carry out the action

accept: aPacket
(aPacket isAddressedTo: self)
ifTrue:|
Transcript show:
'"A packet is accepted by the Workstation ',
self name asString]
ifFalse: [super accept: aPacket]

Smalltalk Run-Time Architecture

> Virtual Machine + Image + Changes and Sources

All the objects of the system

at 2 moment in time A byte-code interpreter:

the virtual machine interpretes the image

IMAGE1.IM
IMAGE1.CHA = Zz1
IMAGE2 IM Stanizird SOURCES
/ IMAGE2.CHA AN
ud Shared by everybody

One per user

> Image = bytecodes
> Sources and changes = code (text)

Smalltalk Run-Time Architecture

> Byte-code is translated to native code by a just-in-time
compiler
— Some Smalltalks, but not Pharo

> Source and changes are not needed to interpret the
byte-code.

— Just needed for development
— Normally removed for deployment

> An application can be delivered as byte-code files that

will be executed with a VM.

— The development image is stripped to remove the unnecessary
development components.

Roadmap

Course schedule, goals, resources
What is Smalltalk?

Origins of Smalltalk

Smalltalk key concepts

The Smalltalk environment

VvV V V V V

Mouse Semantics

Operate

\

Select
\/
R

s

/

L7

World Menu

(&) World

Class Browser
Workspace

Test Runner
Monticello Browser

Tools

©

Windows »
Debug >
System 4
(» Save
(¥ Save As...

&' Save and quit

&' Quit

Class Browser
Method Search
Method Finder
Workspace
Transcript

File Browser

Test Runner
Process Browser
Monticello Browser
Recover lost changes...
Change Sorter
More...

ST — Introduction

“Hello World”

066 ThreadSafeTranscript =)
hello world

shout Workspace

Transcript show: 'hello world’.
Transcript cr

© Oscar Nierstrasz 1.39

ST — Introduction

The Smalltalk Browser

. (class search), i... (implementor search), #C... (class ref search), #s... (sender (&)(ﬁ)(;)

)
S180 [TestCase I-- all -- addDependentToHierach:
. % TestFailure accessing A assert:
Extensions % ResumableTestFailure dependencies A assert:description:
Kernel TestResource extensions assert:description:resum.
Te'st.s. TestResult printing v assert:equals:
Ut"!t'es TestSuite running comparingStringBetween
B sunitGu testing vdebug
.5cr|QtLoader private debugAsFailure
ac-Bacq -- required (?) -- deny:
-- local (51) -- deny:description:
-- uncommented (?) -- 2

Object subclass: #TestCase
instanceVariableNames: 'testSelector'

classVariableNames: "'

poolDictionaries: '’
category: 'SUnit-Kernel'

© Oscar Nierstrasz 1.40

ST — Introduction

The Debugger

666

Shout Workspace o

1/6

© Oscar Nierstrasz

Smallinteger>>/

UndefinedObject>>Dolt
Compiler>=>evaluate:in:to:notifying:ifFail:logged:

[1in TextMorphForShoutEditor(ParagraphEditor)>>evaluateSelection
BlockClosure>=>on:do:

Run to Here

/ aNumber
"Primitive. This primitive (for /) divides the receiver by the argument
and returns the result if the division is exact. Fail if the result is not a
whole integer. Fail if the argument is @ or is not a SmallInteger. Optional.

No Lookup. See Object documentation whatIsAPrimitive."

<primitive: 10> o
aNumber isZero ifTrue: [~(ZeroDivide dividend: self) signall.
~(aNumber isMember0Of: SmallInteger)
ifTrue: [(Fraction numerator: self denominator: aNumber) reduced]
ifFalse: [super / aNumber]

self thisContext
all inst vars stack top
all temp vars
aNumber

1.41

ST — Introduction

The Inspector

06006 OB Package Browser: ThreadSafeTranscript (@]
IC. .. (class search), i... (implementor search), #C... (class ref search), #s... (sender ‘(Z‘)(’ﬁ.)(;)
Inspector ThreadSafeTranscript --all -- <<
Process Browser color black
Transcript initialize buildwith:
» BB ToolsTest printing buildwWith:labeled:
» BB Traits protected low level characterLimit
» BB TrueType streaming clear
» B VB-Regex ui building close
-- supersend (3) -- closeAllViews
--long (?) -- contents
- -- required (?) -- cr
-- debugging (2) -- endEntry

Object subclass: #ThreadSafeTranscript
instanceVariableNames: 'stream accessSemaphore’

classVariableNames: "'

poolDictionaries: '’

category: 'Tools-Transcript'

¥ Transcript

Transcript

» accessSemaphore : a Mutex
» stream : a WriteStream "
» Class : ThreadSafeTranscript

» Methods

666

Shout Workspace

Transcript inspect

© Oscar Nierstrasz

1.42

ST — Introduction

The Explorer

© Oscar Nierstrasz

¥ root: Object

» superclass: ProtoObject

» methodDict: a MethodDictionary(size 380)

» format: 2
instanceVariables: nil

» organization: ("*Polymorph-EventEnhancements’ whe

» subclasses: {BalloonState . StandardFileMenuResult
name: #O0bject

» classPool: a Dictionary(#DependentsFields->a Weakl
sharedPools: nil

» environment: Smalltalk

category: #'Kernel-Objects’
traitComposition: nil
localSelectors: nil

1.43

Other Tools

> File Browser
— Browse, import, open files

> Method Finder, Message Name tool
— Find methods by name, behaviour

> Change Sorter
— Name, organize all source code changes

> SUnit Test Runner
— Manage & run unit tests

ST — Introduction

File Browser

0006 /Users/oscar/Documents/P....0-10418-BETAdev09.08.3 O

k name J k date J L size J
&) Pharo (2009.09.08 12:14:17 30,718) PharoDebug.log
v 5)pharo1.0-10418-BETAdev09 (2009.09.08 12:08:25 16,757,188) st-lecture.image
» (=) Fonts (2009.09.08 12:07:55 19,299,349) pharol.0-10418-BETAdev09.0
») PierBib (2009.08.26 17:40:22 725) changelog.txt
») Seaside-2.8-578.a (2009.08.26 15:55:12 16,855,560) pharol.0-10418-BETAdev09.0
' : -app (2009.08.26 15:52:40 702) packages.txt

(5 Seaside-Tutorial (2009.08.26 15:47:00 4,453) installScript.st
>\ M

Here is a list of packages included in this Pharol.0beta (#10418): AST-damiencassou.171
AutomaticMethodCategorizer-DF.25 AutomaticMethodCategorizerOB-DF.1
ImageForDevelopers-pharo-DamienCassou.189 Installer-Core-kph.324 Newlnspector-DamienCassou.39

Nile-All-damiencassou.144 02-Enhancements-DavidRoethlisbergr.3 02-Morphic-DavidRoethlisbergr.2
0O2-Standard-DavidRoethlisbergr.2 OB-Morphic-Ir.99 OB-Refactory-Ir.159 OB-Regex-Ir.19
OB-Standard-DamienCassou.429 OCForOB-rr.2 Ocompletion-damiencassou.33
OmniBrowser-DamienCassou.459 OmniBrowser2-DavidRoethlisbergr.2 Refactoring-Core-Ir.57
Refactoring-Spelling-Ir.6 RoelTyper-PF.74 Shout.3.15-damiencassou.73 ShoutWorkspace.l-tween.4

© Oscar Nierstrasz 1.45

ST — Introduction

Message Name Finder

© Oscar Nierstrasz

Installer match:
NSCollectionStream match:

canStartMatch:in: NSCompressedSourceStream match

deflateBlock:chainLength:goodMat NSDecoderlinflateStream match:
deny:match: NSFileStream match:

encodeMatch:distance: NSTGettablePositionableStream mat

findMatch:lastLength:lastMatch:ch: Parser match:
howManyMatch: PositionableStream match:

match: RxCharSetParser match:
match:inContext: RxParser match:
reorderParametersToMatch: String match:
scaleToMatch:

startingAt:match:startingAt:

senders || implementors | versions | inheritance

match: text
"Answer whether text matches the pattern in this string.
Matching ignores upper/lower case differences.
Where this string contains #, text may contain any character.
Where this string contains *, text may contain any sequence
of characters."

~ self startingAt: 1 match: text startingAt: 1

Yk match: 'zort' true
'*baz' match: 'mobaz' true
'*baz' match: 'mobazo' false

1.46

ST — Introduction

Method Finder

© Oscar Nierstrasz

re:

NSDecoderinflateStream n+

NSFileStream match:

‘ab' caseSensitiveLessOrEQ™ |\ s1GettablePositionableSt
‘ab' includesAnyOf: *b' --> & o o oche

:*tl;.' mgt;:h: 'ab’ --> m‘s . PositionableStream match
ab’ windowReqNewLabel: RxCharSetParser match:

:ag: ~= ':g: --> true RxParser match:
ab' ~~ --> true *String match:

Type a fragment of a selector in the top pane. Accept it.

Or, use an example to find a method in the system.
Type receiver, args, and answer in the top pane with
periods between the items. 3. 4.7

1.47

Methods in ChangeSets & Versions

006 Changes go to "Unnamed"

Money B Money Money B Money
ImageForDevelopers-pha # Money class ImageForDevelopers-pha # Money class
AutomaticMethodCategord TestMoney AutomaticMethodCategord TestMoney
AutomaticMethodCategor AutomaticMethodCategor

Nile-Base-cyrille_delauna

QOco rion-damipnraq<"] 4
ﬂ' o

setUp
testAdd
testEquals

setUp
chf2
chf8
chfloe
10.

:= Money new currenc

L MNila-Raca-curilla dalaunar

4

Money currency: 'C
Money new currency

006 Money.2.cs log

method: Money amount:; on 7/2/2007 13:18

method: Money currency; on 7/2/2007 13:17

method: Money currency:; on 7/2/2007 13:18

method: Money class currency:amount:; on 7/2/2007 13:23
method: Number chf; on 7/2/2007 13:30

method: TestMoney setUp; on 7/2/2007 13:28

method: TestMoney testAdd; on 7/2/2007 13:25

method: TestMoney testEquals; on 7/2/2007 13:17
preamble: Number reorganize

do it: (‘arithmetic' * + - / //...onZero)/('"*Money' chf)/

w0

chfle := Money new currency: 'CHF'; amount: 10.

(_ selectall) deselectall)(selectconflicts){ filein selections J.dlffs .prettylefs
setUp

chf2 := 2 chf.

chf8 := 8 chf.

chfl0 := 10 chf.

chf2 := Money currency: 'CHF' amount: 2.

chf8 := Money new currency: 'CHF'; amount: 8.

ST — Introduction

Preferences

1

)

) '_. -1 =% g
load from disk | | | he

keyb.oard & enabled | | local
media)
menus duplicateControlAndAltKeys .| enabled [| local

methzq categorizati projectsSentToDisk | enabled [| local
morphic
performance swapControlAndAltKeys [| enabled [| local

printing If true, swaps some control- and alt-keys (making ctrl-c
Pﬂgl‘?ctt‘? be copy instead of alt-c).
publishing Cannot be true if duplicateControlAndAltKeys or

refactorin .)
scrolling g duplicateAliControlAndAltKeys is true.

security

services
unclassified
updates

window colors
windows

-- search results --

© Oscar Nierstrasz 1.49

ST — Introduction

SUnit

Tests-Localization TestMoney
Tests-Mac
Tests-Monticello
Tests-Morphic
Tests-Multilingual
Tests-Object Events
Tests-ObjectsAsMethe¢
Tests-Packagelnfo
Tests-PrimCallControl
Tests-Release
Tests-ST80
Tests-ScriptLoader
Tests-System
Tests-System-Setting:
Tests-SystemChangel
Tests-SystemTests-Su
Tests-ToolBuilder
Tests-Tools
Tests-Traits
Tests-Traits-MOP
Tests-VB-Regex
Tests-VM
ToolsTest-Inspector
ToolsTest-PointerFinde

© Oscar Nierstrasz 1.50

Challenges of this Course

> Mastering Smalltalk syntax
— Simple, but not Java-like

> Pharo Programming Environment
— Requires some effort to learn at first, but worth the effort
> Pharo Class Library
— Need time to learn what is there
> Object-oriented thinking
— This is the hardest part!
> Fully dynamic environment
— This is the most exciting part!

> Smalltalk culture
— Best Practice Patterns (cf. book by Kent Beck)

What you should know!

How does Smalltalk differ from Java or C++7?
Where are Smalltalk programs stored?
Where are objects stored?

What was the Dynabook?

Is a class an object?

What is dynamic binding?

What is the difference between a message and a
method?

/A /)

Can you answer these questions?

What ideas did Smalltalk take from Simula? From Lisp?
Is there anything in Smalltalk which is not an object?
What exactly is stored in the changes file?

If objects have private state, then how can an Inspector
get at that state?

How do you create a new class?
What is the root of the class hierarchy?

If a class is an object, then what is its class? The class
of its class? ...

~ If you don’t know, how would you find out?

o ¢ 0 0

o 0 0

License

http://creativecommons.org/licenses/by-sa/3.0/

@creative
commons

C OMMO N S D E E D

Attribution-ShareAlike 3.0 Unported
You are free:
to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The

best way to do this is with a link to this web page.
Any of the above conditions can be waived if you get permission from the copyright holder.
Nothing in this license impairs or restricts the author's moral rights.

