
Dynamic Object-Oriented Programming with
Smalltalk

1. Introduction

Prof. O. Nierstrasz

Autumn Semester 2009

© Oscar Nierstrasz

ST — Introduction

1.2

Smalltalk

Lecturer
 Prof. Oscar Nierstrasz

Assistants
 David Röthlisberger, Fabrizio Perin

Timur Altun

Lectures
 IWI 001, Wednesdays @ 10h15-12h00

Exercises
 IWI 001, Wednesdays @ 12h00-13h00

WWW
 http://scg.unibe.ch/teaching/smalltalk

Selected material courtesy Stéphane Ducasse

Birds-eye view

© Oscar Nierstrasz

ST — Introduction

1.3

Smalltalk is still today one of the
few fully reflective, fully dynamic,
object-oriented development
environments.

We will see how a simple, uniform
object model enables live, dynamic,
interactive software development.

© Oscar Nierstrasz

ST — Introduction

1.4

Roadmap

>  Course schedule, goals, resources

>  What is Smalltalk?

>  Origins of Smalltalk

>  Smalltalk key concepts

>  The Smalltalk environment

© Oscar Nierstrasz

ST — Introduction

1.5

Roadmap

>  Course schedule, goals, resources

>  What is Smalltalk?

>  Origins of Smalltalk

>  Smalltalk key concepts

>  The Smalltalk environment

© Oscar Nierstrasz

ST — Introduction

1.6

Course Schedule

Week
 Date
 Lecture

1
 16-Sep-09
 Introduction

2
 23-Sep-09
 Smalltalk Basics

3
 30-Sep-09
 Standard Classes

4
 07-Oct-09
 Smalltalk Coding Idioms

5
 14-Oct-09
 Seaside

6
 21-Oct-09
 Debugging

7
 04-Nov-09
 Best Practice Patterns

8
 28-Oct-09
 Refactoring and Design Patterns

9
 11-Nov-09
 Understanding Classes and Metaclasses

10
 18-Nov-09
 Reflection

11
 25-Nov-09
 Working with ByteCode

12
 02-Dec-09
 Virtual Machines

13
 09-Dec-09
 Traits and Classboxes

14
 16-Dec-09
 Final Exam

Pharo by Example (preview)

© Oscar Nierstrasz

ST — Introduction

1.7

Special preview
edition prepared
for this course

© Oscar Nierstrasz

ST — Introduction

1.8

Goals of this Course

>  Some history

>  A pure object-oriented model

>  Classes and metaclasses

>  Reflection (not just introspection)

>  Design and implementation of dynamic languages

>  Advanced object-oriented design concepts

What is surprising about Smalltalk

>  Everything is an object

>  Everything happens by sending messages

>  All the source code is there all the time

>  You can't lose code

>  You can change everything

>  You can change things without restarting the system

>  The Debugger is your Friend

© Oscar Nierstrasz

LECTURE TITLE

9

A Word of Advice

© Oscar Nierstrasz

ST — Introduction

1.10

You do not have to know everything!!!

Try not to care — Beginning Smalltalk programmers often
have trouble because they think they need to understand all
the details of how a thing works before they can use it. This
means it takes quite a while before they can master
Transcript show: ‘Hello World’. One of the great
leaps in OO is to be able to answer the question “How does
this work?” with “I donʼt care”.

— Alan Knight. Smalltalk Guru

© Oscar Nierstrasz

ST — Introduction

1.11

Resources

>  Pharo

—  www.pharo-project.org

>  History

—  en.wikipedia.org/wiki/Smalltalk

—  www.smalltalk.org/smalltalk/history.html

>  Free books

—  stephane.ducasse.free.fr/FreeBooks.html

>  European Smalltalk Users Group

—  www.esug.org

© Oscar Nierstrasz

ST — Introduction

1.12

Recommended Books

>  Alec Sharp, Smalltalk by Example, McGraw-Hill, 1997.

>  Kent Beck, Smalltalk Best Practice Patterns, Prentice
Hall, 1997.

>  Sherman Alpert et al., The Smalltalk Design Pattern
Companion, Addison-Wesley, 1998

© Oscar Nierstrasz

ST — Introduction

1.13

Roadmap

>  Course schedule, goals, resources

>  What is Smalltalk?

>  Origins of Smalltalk

>  Smalltalk key concepts

>  The Smalltalk environment

© Oscar Nierstrasz

ST — Introduction

1.14

Why Smalltalk?

>  Pure object-oriented language and environment

—  “Everything is an object”

>  Origin of many innovations in OO development

—  RDD, IDE, MVC, XUnit …

>  Improves on many of its successors

—  Fully interactive and dynamic

© Oscar Nierstrasz

ST — Introduction

1.15

What is Smalltalk?

>  Pure OO language

—  Single inheritance

—  Dynamically typed

>  Language and environment

—  Guiding principle: “Everything is an Object”

—  Class browser, debugger, inspector, …

—  Mature class library and tools

>  Virtual machine

—  Objects exist in a persistent image [+ changes]

—  Incremental compilation

© Oscar Nierstrasz

ST — Introduction

1.16

Smalltalk vs. C++ vs. Java

Smalltalk
 C++
 Java

Object model
 Pure
 Hybrid
 Hybrid

Garbage collection
 Automatic
 Manual
 Automatic

Inheritance
 Single
 Multiple
 Single

Types
 Dynamic
 Static
 Static

Reflection
 Fully reflective
 Introspection
 Introspection

Concurrency
 Semaphores,
Monitors

Some libraries
 Monitors

Modules
 Categories,
namespaces

Namespaces
 Packages

© Oscar Nierstrasz

ST — Introduction

1.17

Smalltalk: a State of Mind

>  Small and uniform language

—  Syntax fits on one sheet of paper

>  Large library of reusable classes

—  Basic Data Structures, GUI classes, Database Access, Internet,

Graphics

>  Advanced development tools

—  Browsers, GUI Builders, Inspectors, Change Management Tools,

Crash Recovery Tools, Project Management Tools

>  Interactive virtual machine technology

—  Truly platform-independent

>  Team Working Environment

—  Releasing, versioning, deploying

© Oscar Nierstrasz

ST — Introduction

1.18

Smalltalk in industry

>  Worldwide:

—  http://www.esug.org/companiesdevelopinginsmalltalk/

—  http://www.whysmalltalk.com/production/index.htm

—  http://www.stic.org/companies/companies.htm

—  http://www.goodstart.com/whousessmalltalk.php

>  In Bern:

—  Netstyle.ch

—  DVBern AG

—  Mobiliar (in-house)

—  Pulinco

© Oscar Nierstrasz

ST — Introduction

1.19

Roadmap

>  Course schedule, goals, resources

>  What is Smalltalk?

>  Origins of Smalltalk

>  Smalltalk key concepts

>  The Smalltalk environment

© Oscar Nierstrasz

ST — Introduction

1.20

Origins of Smalltalk

>  Project at Xerox PARC in 1970s

—  Language and environment for new generation of graphical

workstations (target: “Dynabook”)

>  In Smalltalk-72, every object was an independent
entity

—  Language was designed for children (!)

—  Evolved towards a meta-reflective architecture

>  Smalltalk-80 is the standard

© Oscar Nierstrasz

ST — Introduction

1.21

Smalltalk — The Inspiration

>  Flex (Alan Kay, 1969)

>  Lisp (Interpreter, Blocks, Garbage Collection)

>  Turtle graphics (The Logo Project, Programming for Children)

>  Direct Manipulation Interfaces (Sketchpad, Alan Sutherland, 1960)

>  NLS, (Doug Engelbart, 1968), “the augmentation of human intellect”

>  Simula (Classes and Message Sending)

>  Xerox PARC (Palo Alto Research Center)

>  DynaBook: a Laptop Computer for Children

—  www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_Abstract.html

© Oscar Nierstrasz

ST — Introduction

1.22

Dynabook Mockup

www.artmuseum.net/w2vr/archives/Kay/01_Dynabook.html

© Oscar Nierstrasz

ST — Introduction

1.23

Smalltalk on Alto III

Alto: a Machine to Run Smalltalk

© Oscar Nierstrasz

ST — Introduction

1.24

Precursor, Innovator & Visionary

>  First to be based on Graphics

—  Multi-Windowing Environment (Overlapping Windows)

—  Integrated Development Environment: Debugger, Compiler,

Text Editor, Browser

>  With a pointing device ☞ yes, a Mouse

>  Ideas were taken over

—  Apple Lisa, Mac

—  Microsoft Windows 1.0

>  Platform-independent Virtual Machine

>  Garbage Collector

>  Just-in-time Compilation

>  Everything was there, the complete Source Code

© Oscar Nierstrasz

ST — Introduction

1.25

History

© Oscar Nierstrasz

ST — Introduction

1.26

The History (Internal)

>  1972 — First Interpreter

—  More Agents than Objects  

(every object could specify its own syntax!)

>  1976 — Redesign

—  A hierarchy of classes with a unique root, fixed syntax, compact
bytecode, contexts, processes, semaphores, browsers, GUI
library.

—  Projects: ThingLab, Visual Programming Environment,
Programming by Rehearsal.

>  1978 — NoteTaker Project

—  Experimentation with 8086 Microprocessor with only 256 KB

RAM.

© Oscar Nierstrasz

ST — Introduction

1.27

© Oscar Nierstrasz

ST — Introduction

1.28

The History (External)

>  1980 — Smalltalk-80

—  ASCII, cleaning primitives for portability, metaclasses, blocks as first-

class objects, MVC.

—  Projects: Gallery Editor (mixing text, painting and animations) +

Alternate Reality Kit (physics simulation)

>  1981 — Books + 4 external virtual machines

—  Dec, Apple, HP and Tektronix

—  GC by generation scavenging

>  1988 — Creation of Parc Place Systems

>  1992 — ANSI Draft

>  1995 — New Smalltalk implementations

—  MT, Dolphin, Squeak, Smalltalk/X, GNU Smalltalk

>  2000 — Fscript, GNU Smalltalk, SmallScript

>  2002 — Smalltalk as OS: 128k ram

© Oscar Nierstrasz

ST — Introduction

1.29

What are Squeak and Pharo?

>  Squeak is a modern, open-source, highly portable, fast,
full-featured Smalltalk implementation

—  Based on original Smalltalk-80 code

>  Pharo is a lean and clean fork of Squeak

—  www.pharo-project.org

© Oscar Nierstrasz

ST — Introduction

1.30

Roadmap

>  Course schedule, goals, resources

>  What is Smalltalk?

>  Origins of Smalltalk

>  Smalltalk key concepts

>  The Smalltalk environment

© Oscar Nierstrasz

ST — Introduction

1.31

Smalltalk — Key Concepts

>  Everything is an object

—  numbers, files, editors, compilers, points, tools, booleans …

>  Everything happens by sending messages

>  Every object is an instance of one class

—  which is also an object

—  A class defines the structure and the behavior of its instances.

>  Objects have private (protected) state

—  Encapsulation boundary is the object

>  Dynamic binding

—  Variables are dynamically typed and bound

© Oscar Nierstrasz

ST — Introduction

1.32

Objects and Classes

>  Every object is an instance of a class

—  A class specifies the structure and the behaviour of all its

instances

—  Instances of a class share the same behavior and have a

specific state

—  Classes are objects that create other instances

—  Metaclasses are classes that create classes as instances

—  Metaclasses describe class behaviour and state (subclasses,

method dictionary, instance variables...)

© Oscar Nierstrasz

ST — Introduction

1.33

Messages and Methods

>  Message — which action to perform

>  Method — how to carry out the action

aWorkstation accept: aPacket

aMonster eat: aCookie

accept: aPacket

(aPacket isAddressedTo: self)

ifTrue:[

Transcript show:

'A packet is accepted by the Workstation ',

self name asString]

ifFalse: [super accept: aPacket]

© Oscar Nierstrasz

ST — Introduction

1.34

A byte-code interpreter:
the virtual machine interpretes the image

IMAGE2.IM
IMAGE2.CHA

Standard SOURCES

Shared by everybody

IMAGE1.IM
IMAGE1.CHA

All the objects of the system
at a moment in time

One per user

+

Smalltalk Run-Time Architecture

>  Virtual Machine + Image + Changes and Sources

>  Image = bytecodes

>  Sources and changes = code (text)

© Oscar Nierstrasz

ST — Introduction

1.35

Smalltalk Run-Time Architecture

>  Byte-code is translated to native code by a just-in-time
compiler

—  Some Smalltalks, but not Pharo

>  Source and changes are not needed to interpret the
byte-code.

—  Just needed for development

—  Normally removed for deployment

>  An application can be delivered as byte-code files that
will be executed with a VM.

—  The development image is stripped to remove the unnecessary

development components.

© Oscar Nierstrasz

ST — Introduction

1.36

Roadmap

>  Course schedule, goals, resources

>  What is Smalltalk?

>  Origins of Smalltalk

>  Smalltalk key concepts

>  The Smalltalk environment

© Oscar Nierstrasz

ST — Introduction

1.37

Mouse Semantics

Select

Operate

Window

© Oscar Nierstrasz

ST — Introduction

1.38

World Menu

© Oscar Nierstrasz

ST — Introduction

1.39

“Hello World”

© Oscar Nierstrasz

ST — Introduction

1.40

The Smalltalk Browser

© Oscar Nierstrasz

ST — Introduction

1.41

The Debugger

© Oscar Nierstrasz

ST — Introduction

1.42

The Inspector

© Oscar Nierstrasz

ST — Introduction

1.43

The Explorer

© Oscar Nierstrasz

ST — Introduction

1.44

Other Tools

>  File Browser

—  Browse, import, open files

>  Method Finder, Message Name tool

—  Find methods by name, behaviour

>  Change Sorter

—  Name, organize all source code changes

>  SUnit Test Runner

—  Manage & run unit tests

© Oscar Nierstrasz

ST — Introduction

1.45

File Browser

© Oscar Nierstrasz

ST — Introduction

1.46

Message Name Finder

© Oscar Nierstrasz

ST — Introduction

1.47

Method Finder

© Oscar Nierstrasz

ST — Introduction

1.48

Methods in ChangeSets & Versions

© Oscar Nierstrasz

ST — Introduction

1.49

Preferences

© Oscar Nierstrasz

ST — Introduction

1.50

SUnit

© Oscar Nierstrasz

ST — Introduction

1.51

Challenges of this Course

>  Mastering Smalltalk syntax

—  Simple, but not Java-like

>  Pharo Programming Environment

—  Requires some effort to learn at first, but worth the effort

>  Pharo Class Library

—  Need time to learn what is there

>  Object-oriented thinking

—  This is the hardest part!

>  Fully dynamic environment

—  This is the most exciting part!

>  Smalltalk culture

—  Best Practice Patterns (cf. book by Kent Beck)

© Oscar Nierstrasz

ST — Introduction

1.52

What you should know!

✎  How does Smalltalk differ from Java or C++?

✎  Where are Smalltalk programs stored?

✎  Where are objects stored?

✎  What was the Dynabook?

✎  Is a class an object?

✎  What is dynamic binding?

✎  What is the difference between a message and a

method?

© Oscar Nierstrasz

ST — Introduction

1.53

Can you answer these questions?

✎  What ideas did Smalltalk take from Simula? From Lisp?

✎  Is there anything in Smalltalk which is not an object?

✎  What exactly is stored in the changes file?

✎  If objects have private state, then how can an Inspector

get at that state?

✎  How do you create a new class?

✎  What is the root of the class hierarchy?

✎  If a class is an object, then what is its class? The class

of its class? …

✎  If you donʼt know, how would you find out?

© Oscar Nierstrasz

ST — Introduction

1.54

Attribution-ShareAlike 3.0 Unported

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.

Any of the above conditions can be waived if you get permission from the copyright holder.

Nothing in this license impairs or restricts the author's moral rights.

License

http://creativecommons.org/licenses/by-sa/3.0/	

