
6. Debugging

Birds-eye view

© Oscar Nierstrasz

ST — Introduction

1.2

It can be easier to talk to objects than to read classes
— The system is alive. Talk to it.
The debugger can be your best friend. Donʼt be afraid of it.

© Oscar Nierstrasz

ST — Debugging

6.3

Roadmap

>  Common syntactic errors
>  Common semantic errors
>  Encapsulation errors
>  Class/instance errors
>  Debugging patterns

Selected material based on Klimas, et al., Smalltalk with Style.
Selected material courtesy Stéphane Ducasse.

© Oscar Nierstrasz

ST — Debugging

6.4

Roadmap

>  Common syntactic errors
>  Common semantic errors
>  Encapsulation errors
>  Class/instance errors
>  Debugging patterns

© Oscar Nierstrasz

ST — Debugging

6.5

Does not understand self

>  The error message “does not understand self” usually
means that you have forgotten the period at the end of a
statement

SnakesAndLaddersTest>>testExample
self assert: eg currentPlayer = jack.
loadedDie roll: 1.
eg playOneMove
self assert: jack position = 6.
self assert: eg currentPlayer = jill.

Klimas, et al., Smalltalk with Style

© Oscar Nierstrasz

ST — Debugging

6.6

Use parentheses in expressions with multiple
keyword messages

>  Do not forget to use parentheses when sending multiple
keyword messages in one expression

self assert: players includes: aPlayer.

self assert: (players includes: aPlayer).

Klimas, et al., Smalltalk with Style

© Oscar Nierstrasz

ST — Debugging

6.7

True vs true

>  true is the boolean value, True its class.

Book>>initialize 
inLibrary := true

Book>>initialize 
inLibrary := True

© Oscar Nierstrasz

ST — Debugging

6.8

nil is not a Boolean

>  nil is not an acceptable receiver for ifTrue:  

© Oscar Nierstrasz

ST — Debugging

6.9

whileTrue

>  The receiver of whileTrue: and whileTrue must be
a block

[x<y] whileTrue: [x := x + 3]

(x<y) whileTrue: [x := x + 3]

© Oscar Nierstrasz

ST — Debugging

6.10

Commenting comments

>  Be careful when commenting out code that contains
comments
—  You may activate some other code that was commented out!

MyClass>>doit
self doStuff.

"
self doMoreStuff.
"self suicide."
self finishUp.

"

MyClass>>doit
self doStuff.
self doMoreStuff.
"self suicide."
self finishUp.

© Oscar Nierstrasz

ST — Debugging

6.11

Forgetting to return the result

>  In a method self is returned by default.
—  Do not forget ^ to return something else!

BoardSquare>>isLastSquare
position = board lastPosition

Returns self (a BoardSquare), not a Boolean!

© Oscar Nierstrasz

ST — Debugging

6.12

Interesting Return Value

When do you explicitly return a value at the end of a
method?

>  Return a value only when you intend for the sender to
use the value.
—  Return self explicitly only if the client is expected to use it!

BoardSquare>>destination
^ self

Even though self is returned
by default we make explicit
that this is the value returned.

© Oscar Nierstrasz

ST — Debugging

6.13

Method arguments are read-only

>  Do not try to assign a value to a method argument.
—  Arguments are read only!

MyClass>>setName: aString
aString := aString, 'Device'. 
name := aString

Wonʼt compile!

© Oscar Nierstrasz

ST — Debugging

6.14

self and super are read-only

>  Do not try to modify self or super

© Oscar Nierstrasz

ST — Debugging

6.15

Roadmap

>  Common syntactic errors
>  Common semantic errors
>  Encapsulation errors
>  Class/instance errors
>  Debugging patterns

© Oscar Nierstrasz

ST — Debugging

6.16

Do not override basic methods

>  Never redefine basic-methods
—  ==, basicNew, basicNew:, basicAt:, basicAt:Put: ...

>  Never redefine the method class

© Oscar Nierstrasz

ST — Debugging

6.17

hash and =

>  Redefine hash whenever you redefine =
—  Ensure that if a = b then a hash = b hash
—  Otherwise Sets and Dictionaries may behave incorrectly!

Book>>=aBook
^ (self title = aBook title)
 and: [self author = aBook author]

Book>>hash
^self title hash bitXor: self author hash

© Oscar Nierstrasz

ST — Debugging

6.18

add: returns the argument

>  add: returns the argument and not the receiver
—  Use yourself to get the collection back.

OrderedCollection new add: 5; add: 6

OrderedCollection new add: 5; add: 6; yourself

an OrderedCollection(5 6)

6

[:range | range copy do: [:aNumber | aNumber isPrime
 ifFalse: [range remove: aNumber]]. range

] value: ((2 to: 20) asOrderedCollection)

First copy the collection

an OrderedCollection(2 3 5 7 11 13 17 19)

© Oscar Nierstrasz

ST — Debugging

6.19

Donʼt iterate over a collection and modify it

>  Never iterate over a collection which the iteration
somehow modifies.

Take care, since the iteration can involve various methods and
modifications which may not be obvious!

[:range | range do: [:aNumber | aNumber isPrime
 ifFalse: [range remove: aNumber]]. range

] value: ((2 to: 20) asOrderedCollection)

an OrderedCollection(2 3 5 7 9 11 13 15 17 19)

© Oscar Nierstrasz

ST — Debugging

6.20

Roadmap

>  Common syntactic errors
>  Common semantic errors
>  Encapsulation errors
>  Class/instance errors
>  Debugging patterns

© Oscar Nierstrasz

ST — Debugging

6.21

Use of Accessors: Protect your Clients

>  The literature says:
—  “Access instance

variables using
methods”
–  I.e., getters and

setters

SnakesAndLadders>>initialize
…
self squares: OrderedCollection new.
…

SnakesAndLadders>>squares
^ squares

>  However, accessor methods should be private by default.
—  Put them in the private protocol

>  A client could use a public accessor to modify our state
—  If we change the representation of squares, client code could

break!
—  Instead provide dedicated methods to modify private state

© Oscar Nierstrasz

ST — Debugging

6.22

Copy a collection if you do not want it modified

>  Answer a copy of a collection if you do not want it
modified
—  Law of Demeter: never modify a returned collection!

SnakesAndLadders>>squares
^ squares

NastyClient>>break: aSnakesAndLadders
 aSnakesAndLadders squares removeFirst

SnakesAndLadders>>squares
^ squares copy

Klimas, et al., Smalltalk with Style

© Oscar Nierstrasz

ST — Debugging

6.23

Collection Accessor method

How do you provide access to an instance variable that
holds a collection?

>  Provide methods that are implemented with delegation
to the collection.
—  To name the methods, (possibly) add the name of the collection

to the collection messages

SnakesAndLadders>>at: position
^ squares at: position

SnakesAndLadders>>currentPlayer
^ players at: turn

© Oscar Nierstrasz

ST — Debugging

6.24

Enumeration Method

How do you provide safe, general access to collection
elements?

>  Implement a method that executes a Block for each
element of the collection
—  Name the method by concatenating the name of the collection

and Do:

SnakesAndLadders>>squaresDo: aBlock
squares do: aBlock

SnakesAndLadders>>playersDo: aBlock
players do: aBlock

© Oscar Nierstrasz

ST — Debugging

6.25

Boolean Property Setting Method

How do you set a boolean property?

>  Create two methods beginning with “be”.
—  One has the property name, the other the negation.
—  Add “toggle” if the client doesnʼt want to know about the current

state.

switch beOn

switch on: true

© Oscar Nierstrasz

ST — Debugging

6.26

Roadmap

>  Common syntactic errors
>  Common semantic errors
>  Encapsulation errors
>  Class/instance errors
>  Debugging patterns

© Oscar Nierstrasz

ST — Debugging

6.27

(Re-)Defining classes

>  Redefining a class:
—  Before creating a class, check if it already exists. This is (sigh) a

weakness of the system
—  VisualWorks 7.0 has namespaces so less likely to redefine a

class

Pharo checks this for critical classes.

© Oscar Nierstrasz

ST — Debugging

6.28

Class methods cannot access instance
variables

>  Do not try to access instance variables to initialize them
in a class method.
—  It is impossible!
—  A class method can only access class instance variables and

classVariables.
–  Define and invoke an initialize method on instances.
–  Or define a Constructor Parameter Method

GamePlayer class>>named: aName
^ self new setName: aName

SnakesAndLadders>>initialize
…
die := Die new.
squares := …

© Oscar Nierstrasz

ST — Debugging

6.29

Do not reference class names

>  Do not explicitly reference the class name to create new instances
of the receiver
—  This will break subclassing
—  Reference self instead

Object subclass: #VeebleFetzer
instanceVariableNames: 'name'
…

VeebleFetzer>>name: aName
name := aName

VeebleFetzer class>>named: aName
^ VeebleFetzer new name: aName

VeebleFetzer named: 'mine'

a VeebleFetzer

VeebleFetzer subclass: #FeebleVetzer
instanceVariableNames: ''
…

FeebleVetzer named: 'mineToo'

a VeebleFetzer

Klimas, et al., Smalltalk with Style

© Oscar Nierstrasz

ST — Debugging

6.30

Returning the class instead of an instance

Returns the class
MyClass (self) and
not the new instance!

MyClass>>new
^ super new initialize

MyClass>>new
super new initialize

Looping initialization

© Oscar Nierstrasz

ST — Debugging

6.31

This example loops!

Behavior>>new
^ self basicNew initialize

Packet class>> new
^self new initialize

In Pharo, new objects are initialized by default!

© Oscar Nierstrasz

ST — Debugging

6.32

Super new initialize

>  super new initialize is usually redundant
—  In Pharo, this is done automatically (in Behavior)
—  Your objects will be initialized twice!

Object subclass: #MyClass
…

MyClass>>initialize
Transcript show: self class name;
 show: ' initialized'; cr.

MyClass class>>new
^ super new initialize

© Oscar Nierstrasz

ST — Debugging

6.33

Super initialize

>  Donʼt forget to initialize any inherited state!

MyClass>>initialize
super initialize.
…

Establish super invariants before
establishing own invariant (as in Java)

© Oscar Nierstrasz

ST — Debugging

6.34

Roadmap

>  Common syntactic errors
>  Common semantic errors
>  Encapsulation errors
>  Class/instance errors
>  Debugging patterns

© Oscar Nierstrasz

ST — Debugging

6.35

Debug printing

>  Basic printing
—  You can use the Transcript to display progress

>  Optional printing
—  Use a global or a class to control printing information

Transcript cr; show: ‘The total= ’, self total printString.

Debug
ifTrue: [Transcript show: self total printString]

Debug > 4
ifTrue: [Transcript show: self total printString]

Debug print: [Transcript show: self total printString]

© Oscar Nierstrasz

ST — Debugging

6.36

Tests are your friends!

>  Resist the temptation to write debugging print methods
—  Write a test instead!

>  Resist the temptation to evaluate ad hoc expressions in
a Workspace
—  Write a test instead!

—  Tests are reusable
–  You will have to spend the effort debugging anyway
–  Amortize the investment by coding your debugging effort as tests

© Oscar Nierstrasz

ST — Debugging

6.37

The Inspector is your friend!

>  You can inspect anything
—  Inspect any expression
—  View the printString state
—  Interact with any object
—  Inspect instance variables
—  Navigate through the system

© Oscar Nierstrasz

ST — Debugging

6.38

Use the Inspector to make ad hoc changes

>  You can use the Inspector as an ad hoc interface to
modify the state of a running system
—  Use this sparingly!

If we change the name
of a GamePlayer, this
will be reflected in the
running system.

© Oscar Nierstrasz

ST — Debugging

6.39

Modify a running system

>  You can change the code on the fly while you are
running the system
—  Keep the Inspector open
—  Keep the Debugger open

>  You do not have to:
—  Close the application and any views (inspectors, debuggers)
—  Implement your changes
—  Compile
—  Restart

>  Just keep everything running while you are
changing things

Well, sometimes you have to …

© Oscar Nierstrasz

ST — Debugging

6.40

Breakpoints

>  Send the message self halt to start the debugger at
an arbitrary location

SnakesAndLadders>>playOneMove
| result |
self assert: self invariant.
self halt.
^ self isOver
 …

© Oscar Nierstrasz

ST — Debugging

6.41

Debugging

Step over or into
methods to
track the state

© Oscar Nierstrasz

ST — Debugging

6.42

The Debugger is your friend!

Everything is an object!

>  You can:
—  Inspect any entity
—  Evaluate any code
—  Modify code on the fly

Donʼt forget:
—  Keep the Debugger

open!

© Oscar Nierstrasz

ST — Debugging

6.43

Dangling self halt

>  When you have finished debugging, donʼt forget to
remove any self halt in the code!
—  Running all the tests should catch this!

© Oscar Nierstrasz

ST — Debugging

6.44

The Browser is your friend!

Learn to tinker with the system

>  Example:
—  How can we browse all methods that send to super?

>  We follow a browsing path:
1.  “browse”
2.  Object>>browse
3.  Object>>systemNavigation
4.  SystemNavigation
5.  SystemNavigation>>browseMethodsWithSourceString:

>  First solution:
SystemNavigation default
browseMethodsWithSourceString: 'super'

A bit slow, and
contains many
false negatives

© Oscar Nierstrasz

ST — Debugging

6.45

The Message Name Finder is your friend!

>  We continue browsing:
1. SystemNavigation>>browseMethodsWith*
2. SystemNavigation>>browseAllSelect:

>  Query the Message Name Finder for “super”
—  Yields CompiledMethod>>sendsToSuper

>  Better solution:

SystemNavigation default
browseAllSelect: [:method | method sendsToSuper]

Fast, and accurate!

© Oscar Nierstrasz

ST — Debugging

6.46

What you should know!

✎  When should you explicitly return self?
✎  Why shouldnʼt you redefine methods named basic*?
✎  Why are blocks not full closures?
✎  How do you provide access to instance variables that

are collections, without breaking encapsulation?
✎  What is one of the most important uses of super?
✎  How does programming with Smalltalk differ from

programming in a conventional static language?

© Oscar Nierstrasz

ST — Debugging

6.47

Can you answer these questions?

✎  What will happen if you redefine the method class?
✎  When should you define accessors for instance

variables?
✎  How can explicit references to class names make your

application fragile?
✎  Where is the method halt defined?

© Oscar Nierstrasz

ST — Introduction

1.48

Attribution-ShareAlike 3.0 Unported
You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.

Any of the above conditions can be waived if you get permission from the copyright holder.
Nothing in this license impairs or restricts the author's moral rights.

License

http://creativecommons.org/licenses/by-sa/3.0/	

