
Immediate Search in the IDE as an Example of Socio-
Technical Congruence in Search-Driven Development

Adrian Kuhn
Software Composition Group

University of Bern, Switzerland
http://scg.unibe.ch/akuhn

ABSTRACT
Search-driven development is mainly concerned with code
reuse but also with code navigation and debugging. In this
essay we look at search-driven navigation in the IDE. We
consider Smalltalk-80 as an example of a programming sys-
tem with search-driven navigation capabilities and explore
its human factors. We present how immediate search re-
sults lead to a user experience of code browsing rather than
one of waiting for and clicking through search results. We
explore the socio-technical congruence of immediate search,
i.e. unification of tasks and breakpoints with method calls,
which leads to simpler and more extensible development
tools. Eventually we conclude with remarks on the socio-
technical congruence of search-driven development.

1. INTRODUCTION
Search-driven development aims to satisfy the informa-

tion needs of developers through novel technical solutions.
Search-satisfiable information needs have been observed dur-
ing (at least) three different activities: code reuse, code nav-
igation, and program debugging. Common to most of these
activities is that they are dominated by both human fac-
tors and technical issues. For example, in order to reuse
external source code, developers have to trust the external
code (trustability, a human factor) as well as to adapt the
external code to the their local source base (suitability, a
technical issue).

In this essay we look into the socio-technical issues of
search-driven navigation in the IDE. We consider Smalltalk-
80 as an example of a programming system with search-
driven navigation and explore its human factors. As the
Smalltalk language was designed together with the Small-
talk IDE, we have the case of a language that was shipped
from the first day together with an IDE that supports im-
mediate search. This led to interesting best practices.

For example, it is common practice to mark pending tasks
by calling a method named #todo (which is defined on Ob-
ject and thus valid in all source code) rather than putting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SUITE ’10, May 1 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-962-6/10/05 ...$10.00.

the term todo in a comment. In order to view all pend-
ing issues developers will just search for all references to the
Object#todo method—and since the result opens immedi-
ately, the developer will refer to this as “browsing all todos.”
This leads to the unification of otherwise unrelated concepts
such as tasks and even breakpoints(see Subsection 3.3) with
simple method calls. As a direct technical benefit of this
unification design and implementation of the IDE become
simpler. As an indirect benefit developers can add new con-
cepts (e.g. a new kind of task or breakpoint) in the same
way they add methods to the system, there is no need to
learn the arcane skills of writing an IDE or VM plug-in.

The remainder of this essay is structured as follows: Sec-
tion 2 provides a general introduction to search-driven de-
velopment in order to clarify the context of this paper. Sec-
tion 3 considers Smalltalk-80 as an example to explore socio-
technical issues of search-driven code navigation (parts of
which extend upon a recent blog post by the same author1).
Eventually, Section 4 concludes with a summary and re-
marks on research challenges.

2. SEARCH-DRIVEN DEVELOPMENT
To our best knowledge, no taxonomy of search-driven de-

velopment has been proposed yet. It seems to be common
though to define search-driven development in terms of those
information needs of developers [12] that can be satisfied
through search (including both active and proactive search
(e.g. [21, 9]), i.e. search queries with pull and push based
result streams as well as with automatic and human query
formulation).

Information needs that can be satisfied with search have
been observed as part of (at least) three different activities:
code reuse, code navigation, and program debugging. The
information needs of code reuse are satisfied by searching
external sources, such as the internet or a local code repos-
itory. The information needs of code navigation are typi-
cally satisfied within the local code base through the means
of an IDE (integrated development environment). The in-
formation needs of program debugging have received little
attention by the SUITE community so far; some of them
are satisfied by searching back-in-time through the program
state (e.g. [13, 15]).

In the remainder of this section we will discuss search-
driven reuse and search-driven navigation in more detail,
and eventually end with remarks on search user interfaces.

1http://www.iam.unibe.ch/~akuhn/blog/2010/
imagine-ide-search-so-faaaaast-that/

http://www.iam.unibe.ch/~akuhn/blog/2010/imagine-ide-search-so-faaaaast-that/
http://www.iam.unibe.ch/~akuhn/blog/2010/imagine-ide-search-so-faaaaast-that/

The promise of search-driven reuse is that developers will
locate pieces of (possibly external) source code through the
means of search and reuse the search results in their local
code base [11]. This is based on observations of the actual
behavior of software developers and end-user programmers,
in fact current internet search engines are often used to lo-
cate both snippets of code as well as complete components.
It has been found that, to enable their reuse, not only the
relevance but also trustability and suitability of search re-
sults are important [20]. In general trustability is a human
factor and suitability is a technical issue. But there are
socio-technical congruences too, e.g. Steven Reiss conjec-
tured that developers might be less likely to reuse a search
result if it does not adhere to their personal coding conven-
tion and style guide [16].

In the IDE, search is a useful means of navigation. We
refer to search that is embedded in the navigation features
of the IDE as search-driven navigation. For example, iden-
tifiers names that are turned into hyperlinks to their defini-
tion. We distinguish this from search that is separate from
navigation and often accessible through a complex dialog
only; but also from drill-down navigation that is not search
based, as e.g. in a hierarchical code outline.

The promise of search-driven navigation is that develop-
ers will save development time that would otherwise have
been spent with searching the local code either manually or
with primitive search tools (i.e. keyword search, text-based
regular expressions). This is based on observations that de-
velopers spend most of their time in the IDE with navigation
and search [18] and that software developers are often lost
in code [2]. Developers can be lost in two ways: either they
do know the cognitive clue (e.g. method name, or its func-
tionality such as concatenating strings) of their target but
not its precise location in the source code, or they do not
know at all where to go next (e.g. when starting to work on
a bug report).

A major short-coming of most IDE-based search is the
search user interface [19]. A good search interface should
be simple and lucid [8]. Search results are often presented
in IDE elements that parallel the normal navigation means,
i.e. outline and editor. If we compare this with e.g. compiler
warnings that are typically embedded in outline and editor,
then there is clearly room for improvement. The same holds
for query formulation, which is typically a modal dialog with
a single-line text field and a myriad of check boxes and radio
buttons. It has been suggested to replace this dialog with at
a text area [10], the current context or selection in the source
code [9], or even to use unit tests as search queries [14, 11].

3. EXAMPLE: SMALLTALK-80
In this section we consider Smalltalk-80, an early object-

oriented programming language and development environ-
ment. For this essay we selected2 Smalltalk-80 because it is

2If I my allow myself a personal note—of course, as is not un-
common in science, causality of the actual scientific conduct
is reversed to the one presented in the paper. My occupation
with Smalltalk predates my interest in search-driven devel-
opment. I am with the Software Composition Group, which
makes heavy use of Smalltalk to explore new programming
languages features, and it was in that context that I became
aware of the socio-technical impact of Smalltalk’s immedi-
ate search. And even then, I was not aware of it unless my
advisor asked in a private tweet: “How do you flag to-do

one of the few industry-proof systems where programming
language and development environment have been created
together, which has led to interesting best practices. Also
Smalltalk-80 is different enough from today’s mainstream
systems for these practices to be evident even without con-
ducting a user study. Smalltalk pioneered the use of graph-
ical user interfaces at a time where there were no modern
operating system, thus both programming language and IDE
had been developer by the same team at the same time. In
the 80ies and 90ies, Smalltalk was widely used in both in-
dustry and academia.

3.1 Technical Details
In this subsection we present just enough technical detail

of Smalltalk in order to understand and discuss the issues
that relate to search-driven development. For a full coverage
of Smalltalk, please refer to either the original documenta-
tion [7, 5, 6] or recent tutorials [1].

Smalltalk pre-dates modern operating systems with their
hierarchical file systems and has thus some rather uncom-
mon features. Of interest with regard to code search is how
the sources of a Smalltalk are handled. A Smalltalk system
consists of two parts, the “image” which is a core dump of
the running system and the “sources file” which is a disk-
based cache for source code. The memory dump contains
all objects, that is both all domain objects of the running
application and the full class model of the system (including
the byte-code of all method, but not their source code). The
sources file contains all source code of the system,

Smalltalk does not distinguish between development and
deployment: all development is done on a running system,
updating classes and methods at runtime (i.e. hot-swapping
of code). All code is always compiled and available as byte-
code, even during development3. In the byte-code of Small-
talk method, the names of all called methods are stored as
symbols (i.e. interned strings) in a literal array. Therefore,
searching for all references to a method is a very fast opera-
tion, which allows the IDE to immediately open the search
result, without having to go through the performance bottle
neck of parsing all source code and resolving all bindings.

In a Smalltalk-80 system, the main means of navigating
is to search for all references or declarations of the target
method’s signature (this is done by pressing Ctrl-m or Ctrl-
n on a method name). The results of this search pop up
immediately, and therefore developers refer to this search as
“code browsing” since their user experience does not include
any observable search activity. The same is the case for e.g.
compilation: if compilation is immediate, then (from the
point of the user experience) compilation ceases be experi-
enced and eventually becomes equivalent to “just running
the code”.

3.2 Search Capabilities
Figure 1 illustrates all search capabilities of Smalltalk that

are presented below (from left to right): browse senders and
implementers, cascading code browser with search bar, the
code rewrite panel, and the method finder tool.

In the Smalltalk IDE the actions “browse senders of” and

items in Java? Annotations or dedicated methods?”
3In fact, Eclipse got its ability to keep all code compiled at
all times from its predecessor VisualAge which was IBM’s
prime Smalltalk IDE before they switched from Smalltalk
to Java.

Figure 1: All search capabilities that are presented in Section 3 (from left to right): browser senders and
implementers, cascading code browser, the code rewrite panel, the method finder tool, and on top of all
windows (except the method finder tool on the left) the code browser’s search bar.

“browse implementers of” are the main means of navigation.
Executing these actions opens – immediately – a new edi-
tor window with all callers (respectively implementers) of a
given method. The search queries find all references (respec-
tively declarations) of a method and immediately open all
results in a code editor. Of course, not all navigation needs
can be satisfied by hyper-jumping. Sometimes developers
need to drill down from top-levels packages to methods. To
do so Smalltalk offers a tabbed code browser which is the
predecessor of Eclipse code browsing perspective.

Over the years, more capabilities were added: the code
rewrite panel of the refactory browser, the method finder
tool, and the code browser’s search bar.

Smalltalk’s refactory browser (RB) was the first IDE
with support for automated refactorings [17], and it got a
feature that is, to our best knowledge, still unique. Inter-
nally, the RB uses an extension of Smalltalk’s abstract syn-
tax tree to search (and replace) the abstract syntax tree of
source code. The same syntax is also exposed to the de-
velopers through a code rewrite panel. In the code rewrite
panel developers can enter Smalltalk source code – with spe-
cial wildcards for pattern matching – in order to search for
(an possibly rewrite, using search and replace) any kind of
code snippet.

Alas, the code search of RB is rather slow. In order to
search all ASTs, the RB must (same as e.g. Eclipse for a
simple references search) parse all source code of the sys-
tem, which is slow. However, in the context of sub-method
reflection it has been showed that it is feasible to store ASTs
rather than byte-code in the Smalltalk image [3], that would
bring RB’s code rewriting up to almost the same immediate
speed as Smalltalk’s browsing of callers and senders.

The Method Finder (MF) tool allows developers to find
unknown methods. The developer must not know the name
of the methods. MF expects a list of parameters (which in-
cludes the receiver) plus an expected return value. MF will
iterate through all permutations of the expected parame-
ters, calling all available methods of the permutation’s first
element, and eventually returns all methods that returned
the expected return value. MF keeps a black list of possibly
harmful methods.

The most recent addition to the Smalltalk IDE is the
Mercury search bar. The bar fills the full width at the
top of each code editor window. It can be used to search
for references, declarations, strings in string literals (which
is fast as it searches the running “image” file) as well as full-
text search (which is slow as it searches the external“sources
file” cache).

3.3 Socio-technical issues
Since the Smalltalk language was designed together with

the Smalltalk IDE, the language was shipped from the first
day on together with an IDE that supports immediate search.
This had an interesting consequence: Best practices that are
related to text-editors never got adopted by the Smalltalk
community, instead unique best practices emerged that are
fully IDE-driven.

For example, it is common practice to mark pending tasks
by calling a method named #todo (which is defined on Ob-
ject and thus valid in all source code) rather than putting
the term todo in a comment. In order to view all pending
issues, developers just search for all references to the Ob-

ject#todo method—and since the result open immediately,
the developer will refer to this as “browsing all todos.”

Using todo methods is not the only occurrence of such
designated methods, the class Object is literally cluttered
with designated methods. Even modifiers, such as abstract,
are realized using a dedicated method call. The most re-
markable of these designated methods is probably the #halt

method that sets a breakpoint. As a developer, to set a
breakpoint you would add a method call, to browse all break-
points you would search for all references to Object#halt,
and to disable a breakpoint you would comment out the
corresponding method call.

So we observe that typically unrelated concepts such as
tasks and breakpoints are unified through the socio-technical
congruence of immediate search. A direct technical benefit
of this unification is that design and implementation of the
IDE become much simpler. An indirect benefit is that de-
velopers can create new tasks and breakpoints in the same
way as they add methods to the system, there is no need to
learn the arcane skills of how to write an IDE or VM plug-in.

For example, a conditional breakpoint that triggers only
when shift is pressed can be implemented as follows

Object >> haltOnShift

InputSensor shiftPressed ifTrue: [self halt]

One more example of designated methods: to deprecate
a method, the developer adds a call to #deprecated to the
method body. This is typically done as the first statement,
such that the implementation of #deprecated may take ap-
propriate action. For example, in a deployment context it
might do nothing and in a development context it might
pop up a warning dialog—or, even more interesting, it might
automatically refactor the caller of the deprecated method
to not use the deprecated method any more, which is also
known as “inline renaming” [4].

4. CONCLUDING REMARKS
In this essay we outlined search-driven development and

argued that human factors are as important as technical is-
sue, but even more influence each other in unexpected ways.
As an example, we looked at Smalltalk-80 (a system with
immediate search-driven navigation) and observed the fol-
lowing socio-technical congruences

• We observed that in Smalltalk-80 searching for refer-
ences and declarations is so fast and immediate that
the user experience becomes one of browsing code rather
than one of waiting for and clicking through search re-
sults

• We observed that, as a socio-technical consequence of
immediate search, otherwise unrelated concepts (such
as tasks and breakpoints) are unified into the same ab-
straction, i.e. method calls in the source code. Which,
as another consequence, led to programming tools that
are, at the same time, simpler and more extensible.

As a sidenote, we also observed how the co-evolution of pro-
gramming language and development tools lead to imme-
diate search results of Smalltalk-80’s browse senders resp.
implementers feature. And we also observed how the uni-
lateral evolution of development tools (i.e. the development
of a refactoring browser without according co-evolution of
the language) led to a none-optimal search that might hin-
der the emergence of new socio-technical congruence.

With the rise of Eclipse, “compile” and “build” ceased to
part of the user experience in Java development. Developers
do not compile anymore, they immediately execute code.
This feature was brought to Java from Smalltalk through the
VisualAge heritage of Eclipse. As a personal conjecture, I’d
say that our job as builders of IDE search tools is not done
unless “search” ceases to be part of the user experience in
software development (in the same way as “compile” ceased
to be part of the software developer’s user experience).

Acknowledgments.
We thank Niko Schwarz for his feedback and comments, and we

thank the members of the Pharo mailing list for their help with

Smalltalk and its search features. We gratefully acknowledge the

financial support of the Swiss National Science Foundation for

the project “Bringing Models Closer to Code” (SNF Project No.

200020-121594, Oct. 2008 – Sept. 2010).

5. REFERENCES
[1] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,

and M. Denker. Pharo by Example. Square Bracket
Associates, 2009.

[2] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia, S. M.
Drucker, and G. G. Robertson. Code thumbnails: Using
spatial memory to navigate source code. In VL/HCC, pages
11–18, 2006.

[3] M. Denker. Sub-method Structural and Behavioral
Reflection. PhD thesis, University of Bern, May 2008.

[4] T. Freese. Inline method considered helpful: An approach
to interface evolution. page 1012. 2003.

[5] A. Goldberg. Smalltalk 80: the Interactive Programming
Environment. Addison Wesley, 1984.

[6] A. Goldberg and D. Robson. Smalltalk 80: the Language
and its Implementation. Addison Wesley, May 1983.

[7] A. Goldberg and D. Robson. Smalltalk-80: The Language.
Addison Wesley, 1989.

[8] M. A. Hearst. Search User Interfaces. Cambridge
University Press, 1 edition, September 2009.

[9] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 117–125, New York, NY, USA,
2005. ACM.

[10] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In Proceedings of
ICSE’05, pages 1–10, 2005.

[11] O. Hummel, W. Janjic, and C. Atkinson. Code conjurer:
Pulling reusable software out of thin air. Software, IEEE,
25(5):45–52, 2008.

[12] A. J. Ko, R. DeLine, and G. Venolia. Information needs in
collocated software development teams. In ICSE ’07:
Proceedings of the 29th international conference on
Software Engineering, pages 344–353, Washington, DC,
USA, 2007. IEEE Computer Society.

[13] A. J. Ko and B. A. Myers. Designing the whyline: a
debugging interface for asking questions about program
behavior. In Proceedings of the 2004 conf. on Human
factors in computing systems, pages 151–158. ACM, 2004.

[14] O. A. L. Lemos, S. K. Bajracharya, J. Ossher, R. S. Morla,
P. C. Masiero, P. Baldi, and C. V. Lopes. Codegenie: using
test-cases to search and reuse source code. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pages
525–526, New York, NY, USA, 2007. ACM.

[15] A. Lienhard, J. Fierz, and O. Nierstrasz. Flow-centric,
back-in-time debugging. In Objects, Components, Models
and Patterns, Proceedings of TOOLS Europe 2009,
volume 33 of LNBIP, pages 272–288. Springer, 2009.

[16] S. P. Reiss. Semantics-based code search. Software
Engineering, International Conference on, 243–253, 2009.

[17] D. Roberts, J. Brant, R. E. Johnson, and B. Opdyke. An
automated refactoring tool. In Proceedings of ICAST ’96,
Chicago, IL, Apr. 1996.

[18] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An
examination of software engineering work practices. In
CASCON ’97: Proceedings of the 1997 conference of the
Centre for Advanced Studies on Collaborative research,
page 21. IBM Press, 1997.

[19] J. Starke, C. Luce, and J. Sillito. Working with search
results. In Search-Driven Development-Users,
Infrastructure, Tools and Evaluation, 2009. SUITE ’09.
ICSE Workshop on, pages 53–56, 2009.

[20] R. E. G. Valencia and S. E. Sim. Internet-scale code search.
In Search-Driven Development-Users, Infrastructure, Tools
and Evaluation, 2009. SUITE ’09. ICSE Workshop on,
pages 49–52, 2009.

[21] Y. Ye and G. Fischer. Supporting reuse by delivering
task-relevant and personalized information. In ICSE ’02:
Proceedings of the 24th International Conference on
Software Engineering, pages 513–523, USA, 2002. ACM.

	Introduction
	Search-driven Development
	Example: Smalltalk-80
	Technical Details
	Search Capabilities
	Socio-technical issues

	Concluding Remarks
	References

