
Searching and Using External Types in an Extensible
Software Development Environment

Alexander Paar
Department of Computer Science

University of Pretoria
Pretoria 0002, South Africa

alexpaar@acm.org

ABSTRACT
Schema and ontology languages have proved to be useful for
conceptualizing knowledge in a variety of applications. In
many software projects, XML Schema Definition data types
and ontological concept descriptions coexist with program-
ming language class hierarchies. However, only program-
ming language type definitions are fully integrated into to-
day’s software development environments. Support for ex-
ternal type systems is spotty. For programmers, it is partic-
ularly tedious to search type definitions in XML schema files
and OWL ontologies, to browse external type hierarchies, to
investigate external type members, and to analyze and com-
prehend the use of external type definitions in program code.
In this work, it will be argued that improved search capa-
bilities are required to ease the use of schema and ontology
languages in software projects. Difficulties of searching type
definitions in software project workspaces will be indicated.
An extensible compiler framework will be outlined that fa-
cilitates the use of schema and ontology languages in C#
programs. An Eclipse-based integrated development envi-
ronment will be described that makes XML data types and
OWL concept descriptions first-class citizens of the source
code editor. Finally, identical search and (just in time) pro-
gram analysis features for programming language and exter-
nal type definitions will be suggested.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—data types and structures, frameworks; D.3.3
[Programming Languages]: Processors—compilers

General Terms
Integration of programming and ontology languages

Keywords
C#, Zhi#, OWL, XSD

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SUITE ’10, May 1 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-962-6/10/05 ...$10.00.

1. INTRODUCTION
Computers have become fast enough to afford the lux-

ury of using schema and ontology languages such as XML
Schema Definition (XSD) [5] and the Web Ontology Lan-
guage (OWL) [7]. The Extensible Markup Language (XML)
[4] and XML Schema Definition have been widely adopted
as a format to describe data and to define programming
language agnostic data types and content models. Corpora-
tions from all sectors have braced to define company specific
knowledge using the Web Ontology Language. However,
using external type definitions (i.e. type definitions based
on schema and ontology languages) in software projects is
still laborious and error-prone. From the author’s expe-
rience, this is mainly caused by the deficient integration
of external types with the development tools for program-
ming languages. Neither programming language compilers
nor integrated development environments are aware of XML
data type definitions and OWL concept descriptions. There
is no support for 1) searching external type definitions in
project workspaces, 2) importing and using external type
definitions in program code, and 3) checking the use of ex-
ternal types. It is particularly tedious for programmers to
find answers to questions such as “What external types are
available in my software project?”, “How can external type
definitions be used (together)?”, and “Where in my program
are what external types used?”. Program analysis and com-
prehension are severely limited by a deficient integration
of schema and ontology languages with programming lan-
guages and software development environments. In particu-
lar, the above problems are caused by lacking search capabil-
ities for external type definitions in development tools such
as Visual Studio [8] and Eclipse [12]. Using text search util-
ities such as grep is not a solution. XML schema files and
RDF/XML [3] representations of OWL ontologies require
type system specific logic such as an XML parser and an
ontology management system to extract complete informa-
tion from files. Limited search capabilities are particularly
problematic since Singer et al. [11] showed that code search
is the most frequent software developer activity.

Unfortunately, XML data types and ontological concept
descriptions cannot simply be used in form of programming
language proxy classes because of different conceptual bases.
In XSD, atomic types can be derived through the applica-
tion of value space constraints. In OWL, types are inferred
based on ontological reasoning. OWL object properties can
be used to declare ad hoc relationships between ontologi-
cal individuals. Ponder the following definitions of an XML
data type age, OWL concepts Person, Employee, Company

and Job, OWL datatype property hasAge, and OWL ob-
ject properties worksFor and hasJob. Type age is defined
in XML syntax. The ontology is given in Description Log-
ics [2] notation. Symbol > denotes the top level concept.
In this text, namespaces may be omitted for brevity. The
value space of type age is restricted to non-negative integer
numbers less than 110. The OWL datatype property re-
lates Persons with XML age values; OWL object properties
worksFor and hasJob relate Employees with Companys and
Jobs, respectively. The latter two concepts are declared to
be disjoint (i.e. an ontological individual cannot simultane-
ously be a Company and a Job).

1 <xsd : schema [. . .] >
2 <xsd : simpleType name=”age”>
3 <xsd : r e s t r i c t i o n base=”xsd : nonNegat iveInteger”>
4 <xsd : maxExclusive va lue=”110”/>
5 </xsd : r e s t r i c t i o n >
6 </xsd : simpleType>
7 </xsd : schema>

1 Person v >, ≥1hasAge v Person, > v ∀hasAge.age,
2 > v (≤1hasAge), Employee v Person, Company v >,
3 ≥1worksFor v Employee, > v ∀worksFor.Company,
4 Job v ¬Company, ≥1hasJob v Employee, > v ∀hasJob.Job

Note that in OWL, in contrast to frame logics, ontologi-
cal roles form a separate hierarchy of their own. Automatic
reasoning is used to compute the class membership of onto-
logical individuals. In contrast to C#, in OWL ontologies,
declarations of object property values do not fail immedi-
ately. Instead, the reasoner considers the declared piece of
knowledge for subsequent deduction steps. If an ontological
role relates two individuals then the subject and object of
the declared triple are inferred to belong to the domain and
range class, respectively. For example, if an ontological in-
dividual Bill is related via role hasAge with an age value,
Bill can be inferred to be a Person. If it is stated that
Bill worksFor Microsoft one can conclude that Bill is
an Employee and Microsoft is a Company. This is only a
small contrived example but a plethora of viable ontologies
is available on the Web today – encoding valuable knowledge
from a variety of domains.

In today’s software development environments, however,
external type definitions such as ontologies can at best be
technically included with the set of files in the project work-
space. Still, the semantics of the defined types is concealed
in unintelligible text files (containing a bulk of angle brack-
ets in case of XML-based syntax formats). In general, text
search tools are insufficient for extracting complete type in-
formation from schema and ontology files.

Program analysis and comprehension is limited by the in-
evitable use of APIs for external type definitions. The code
snippet below indicates the instantiation of XML data type
age by means of the W3C Document Object Model [13]. In
the given example, the use of type age in C# program code
can barely be discovered by program comprehension tools.
Automatic debugging techniques such as delta debugging [14]
regularly find exactly those kinds of errors where external
resources that are not subject to built-in static type check-
ing are incorrectly referenced by string literals (e.g., SQL
query strings). Search appears to be similarly impaired.

1 var pool = new TypePool () ;
2 pool . LoadSchema (@”Person . xsd ”) ;
3 var age = pool . GetSimpleType (”age ” , ”ns#”);
4 age . Va l idate (5 4) ;

The following two integration requirements can be iden-
tified. First, schema and ontology languages should be in-
corporated into a programming language to be amenable
to the same search and analysis features that are available
for programming language types. Second, software develop-
ment environments should provide the same search and (just
in time) comprehension tools for external and programming
language type definitions.

2. THE ZHI# PROGRAMMING LANGUAGE
The Zhi# programming language [10] is a proper superset

of ECMA 334 standard C# version 1.0 [6]. The type sys-
tem of the C# programming language implements nominal
subtyping. In nominative type systems, type compatibility
is determined by explicit declarations. A type is a subtype
of another if and only if it is explicitly declared to be so in
its definition. The XML Schema Definition type system ex-
tends nominal subtyping with value space-based subtyping.
An atomic data type is a subtype of another if it is explic-
itly declared to be so in its definition or if its value space
(i.e. the set of values for a given data type) is a subset of
the value space of the other type. The subset relation of
the types’ value spaces is sufficient. The two types do not
need to be in an explicitly declared derivation path. In the
Web Ontology Language, nominal subtyping is augmented
by ontological reasoning. An inferred class hierarchy can in-
clude additional subsumption relations between ontological
concept descriptions. Ontological individuals can be explic-
itly declared to be of a given type and they can be inferred
to be in the extension of further concept descriptions based
on, for example, particular property values or cardinalities.
Some object-oriented programming languages provide a lim-
ited set of isomorphic mappings from XML data types to
programmatic types. In general, however, compilers for pro-
gramming languages such as Java or C# are unaware of the
subtyping mechanisms that are used for XSD and OWL –
and the list of conceivable external type systems and sub-
typing mechanisms can be arbitrarily extended.

In Zhi#, external types can be included using the keyword
import, which works analogously for external types like the
C# using keyword for .NET programming language type
definitions. It permits the use of external types in a Zhi#
namespace such that, one does not have to qualify the use
of a type in that namespace. An import directive can be
used in all places where a using directive is permissible. As
shown below, the import keyword is followed by a type sys-
tem evidence, which specifies the external type system (i.e.
compiler plug-in) that is responsible for the import of the
type definitions in the given external namespace. Unlike us-
ing directives, the alias, which can subsequently be used to
represent the external namespace name, is not optional but
must be specified. Like using directives, import directives do
not provide access to any namespaces that may be nested in
the specified external namespace (based on the namespace
scheme of the external type system).

import type system evidence alias = external namespace ;

In Zhi# program text that follows an arbitrary number
of import directives, external type and property references
must be fully qualified using an alias that is bound to the
namespace in which the external type is defined. In Zhi#,
external type definitions can almost unrestrictedly be used
with almost all C# programming language features (since

Zhi#’s support for external types is a language feature and
not (yet) a feature of the runtime, similar restrictions to the
usage of external types apply as for generic type definitions
in the Java programming language). For example, methods
can be overridden using external types, user defined oper-
ators can have external input and output parameters, and
arithmetic and logical expressions can be built up using ex-
ternal objects. Ponder the following code snippet.

1 import XML xsd = http :// example . org /schema#;
2 import OWL ont = http :// example . org / onto logy#;
3 c l a s s Main {
4 pub l i c s t a t i c void Main () {
5 #ont#Person p = new #ont#Person (”Bill ”) ;
6 p.#ont#hasAge = 54 ;
7 p.#ont#worksFor = new #owl#Thing (”Microsoft ”) ;
8 }
9 }

In line 1 and 2, the Zhi# compiler is instructed to parse
referenced XML schemas and RDF/XML files and import
type definitions of the specified namespaces. Thus, program-
mers are freed from using additional tools to search schema
and ontology files for type and namespace definitions. The
Zhi# compiler reports an error if no types are defined in the
specified namespaces. The Zhi# IDE described in the fol-
lowing section boasts autocompletion for import statements.
In line 5, Person Bill is declared in the ontological knowl-
edge base. The Zhi# compiler reports an error if no such
concept description exists in the specified namespaces. The
Zhi# IDE suggests and autocompletes concept names based
on the typed in namespace prefix. In line 6, the power of the
“.” is used to make a statement about the age of Bill. Note
how types of different type systems can be used coopera-
tively in one single statement. Finally, in line 7, it is stated
that Bill worksfor Microsoft. In OWL, property domain
and range restrictions are not authoritative. Instead, the
range restriction of role worksFor is used at runtime to in-
fer that Microsoft is a Company. Based on the domain
restriction of worksFor one can conclude that Person Bill
is an Employee.

A frequent case that can lead to clashes at runtime is
the improper use of disjoint concept descriptions. At first
glance, it may be reasonable to state that Bill worksFor
Chairman, where Chairman shall be a Job. However, in
the given ontology, the range of role worksFor is restricted
to Companys – and concepts Company and Job are declared
to be disjoint. Taking into account such kind of information
does require a significant amount of search that includes
manual lookups of property domain and range restrictions
and related concept descriptions. This search task is accom-
plished automatically by the Zhi# compiler. Search results
are displayed by the Zhi# IDE. The Zhi# compiler considers
search results for type checking. In the following code snip-
pet, an error is reported given the violation of the property
range restriction in line 2.

1 #ont#Person p = new #ont#Person (”Bill ”) ;
2 p.#ont#worksFor = new #ont#Job (”Chairman ”) ;

Zhi#’s extensibility with respect to external type systems
was achieved by an extensible compiler framework. The
Zhi# compiler framework incorporates a full fledged source-
to-source compiler for C# version 1.0 [6] plus the syntactical
Zhi# language extensions. The Zhi# compiler framework
provides the core functionality to type check conventional
C# programs and to transform program text into a pretty

printed form. The core components were implemented such
that, they can use compiler plug-ins for external type sys-
tems. For example, the type table of the Zhi# compiler
framework can handle method signatures that comprise ex-
ternal type definitions without a priori knowledge about the
particular external type systems (e.g., XSD, OWL) that
will eventually be used. On the other hand, compiler plug-
ins for external type systems can be developed without ex-
haustive knowledge about the code structure of Zhi# pro-
grams. Compiler plug-ins can be provided by implementing
two framework extension points for (sub-)typing and pro-
gram transformation. Plug-ins were implemented for XML
Schema Definition and the Web Ontology Language.

3. THE ZHI# IDE
The extensible Zhi# compiler framework lays out the foun-

dation for IDE support for external type systems. The
Eclipse-based Zhi# front end supports an MSBuild-based
build process and facilitates several search tasks that involve
external types. Outline views as shown below display XML
data types and OWL concept and role descriptions that are
contained in the Zhi# project workspace (“What types are
available in my software project?”). Source file outline views
give an overview of the external types that are actually used
in program code (“What types are used in my program?”).

Figure 1: Outline view

The Zhi# source code editor boasts autocompletion for
import directives and external types based on search results.
Developers are freed from searching available namespaces
and type definitions in schema and ontology language files
and manually filtering and organizing search results.

Autocompletion for import directives behaves similarly to
search suggestions in search bars. Furthermore, due to the
closed world nature of project workspaces the Zhi# IDE is
in the position to immediately indicate that no definitions
are available in a typed in namespace name.

The integration of external types with the Zhi# program-
ming language makes it possible to filter search results based
on the current cursor position in program code. For exam-
ple, for an ontological host object (i.e. an OWL individual)
that is known to be in the extension of a particular class
autocompletion may prune ontological roles whose domain
restriction is disjoint with the host object class. At the same
time, ontological roles whose domain is subsumed by the
host object class may be ranked higher in the proposal list

Figure 2: Autocompletion of XML data types

(since it is likely that statements are added to the knowledge
base that do not trigger type inference).

Just in time program comprehension is improved in the
Zhi# source code editor by tool tips that display metadata
about XML data types and OWL concepts and roles when
the programmer hovers with the mouse pointer over these
elements in program text. Thus, one quickly gets insight
into, for example, property domain and range restrictions.

4. CONCLUSION & OUTLOOK
Schema and ontology languages are increasingly used in

software development. Searching schema and ontology lan-
guage files cannot be accomplished with generic text search
utilities but requires type system specific tools. In the Zhi#
programming language, external type systems are first class
citizens. The incorporation of XML data types and onto-
logical concept and role descriptions into a programming
language lays the ground for improved search capabilities,
which are an integral part of the described integration ap-
proach. The Zhi# Code DOM inherently contains struc-
tured information about the use of external types in program
code. Thus, external types are amenable to the same brows-
ing, searching, and querying techniques that can be used for
programming language types. In the Zhi# source code edi-
tor, context sensitive search based on the cursor position in
program code accomplishes automatic filtering and ordering
of search results such as, for example, available ontological
roles. As for programming language types, the just in time
presentation of search results in form of autocompletion can
greatly improve productivity. Given the importance of the
source code editor as the programming language front end
it is crucial that both the compiler as well as the IDE pro-
vide the same level of integration of external types. It is
conceivable that the presented approach to extend software
development tools with support for external type systems
becomes generally accepted. Murphy et al. [9] found out
that developers are extending their development environ-
ments with additional third party tools.

A variety of opportunities exists for further search capa-
bilities based on the integration of schema and ontology lan-
guages with a programming language. The Web Ontology
Language itself can be used as a query language to retrieve
concept and role descriptions of interest (e.g., ”All subcon-

cepts of a given concept that contain a property value restric-
tion”). Natural language processing along with standardized
[1] label annotations on OWL concepts and roles in form of
tagged RDF literals (e.g., ”home”@en, ”casa”@es) could fa-
cilitate search and reuse of domain knowledge in software ap-
plications. Improved search capabilities for schema and on-
tology languages and the incorporation of these formalisms
into software development environments are two sides of the
same medal that will eventually lead to improved precision
and recall of software information systems.

5. ACKNOWLEDGMENTS
The extensible Zhi# compiler framework and the Zhi#

IDE were part of the FP6 CHIL project (FP6-506909), par-
tially funded by the European Commission under the In-
formation Society Technology (IST) program. The author
acknowledges valuable help and contributions from all part-
ners of the project. Current research is performed under the
University of Pretoria Post-doctoral Fellowship Program.

6. REFERENCES
[1] H. Alvestrand. RFC 3066 - Tags for the Identification

of Languages. Technical report, Network Working
Group, January 2001.

[2] F. Baader, D. Calvanese, D. McGuiness, D. Nardi,
and P. F. Patel-Schneider. The Description Logic
Handbook. Cambridge University Press, Cambridge,
United Kingdom, 2003.

[3] D. Beckett and B. McBride. RDF/XML Syntax
Specification (Revised). Technical report, World Wide
Web Consortium (W3C), February 2004.

[4] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Extensible Markup Language (XML)
1.0 (Fourth Edition). Technical report, World Wide
Web Consortium (W3C), August 2006.

[5] D. C. Fallside and P. Walmsley. XML Schema Part 0:
Primer Second Edition. Technical report, World Wide
Web Consortium (W3C), October 2004.

[6] A. Hejlsberg, S. Wiltamuth, and P. Golde. C#
Language Specification Version 1.0. Technical report,
ECMA International, 2002.

[7] D. L. McGuinness and F. van Harmelen. OWL Web
Ontology Language Overview. Technical report, World
Wide Web Consortium (W3C), February 2004.

[8] Microsoft Corporation. Microsoft Visual Studio, 2007.

[9] G. C. Murphy, M. Kersten, and L. Findlater. How are
Java software developers using the Eclipse IDE? IEEE
Softw., 23(4):76–83, 2006.

[10] A. Paar. Zhi# – Programming Language Inherent
Support for Ontologies. PhD thesis, Universität
Karlsruhe (TH), 2010.

[11] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil.
An examination of software engineering work
practices. In CASCON ’97: Proceedings of the 1997
conference of the Centre for Advanced Studies on
Collaborative research, page 21. IBM Press, 1997.

[12] The Eclipse Foundation. Eclipse, 2005.

[13] World Wide Web Consortium (W3C). Document
Object Model (DOM), 1998.

[14] A. Zeller. Why Programs Fail: A Guide to Systematic
Debugging. Morgan Kaufmann, October 2005.

	Introduction
	The Zhi# Programming Language
	The Zhi# Integrated Development Environment
	Conclusion & Outlook
	Acknowledgments
	References

