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ABSTRACT
We focus on the problem of searching components based
on semantic queries on their provided interface. Although
semantics-based search has long been advocated as a key
enabler in the context of component-based software devel-
opment and, more recently, service-oriented computing, no
practical and scalable approach has been proposed yet. This
paper presents a promising model-based search technique
for interface behaviors based on operational specifications,
called behavioral equivalence models (Bems). Semantic que-
ries are expressed equationally, following an algebraic speci-
fication style. The search engine tries to match specifications
against queries. This can be done quite efficiently by encod-
ing Bems into relational models and queries into relational
logic formulae, whose satisfiability is checked with the SAT-
based constraint solver KodKod. We can report on an initial
very promising assessment of the proposed technique, which
has been applied to searching components in Java libraries
providing container functionalities.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Storage and Re-
trieval

General Terms
Documentation

Keywords
Behavior Models, Component Retrieval

1. INTRODUCTION AND MOTIVATIONS
The problem of effective artifact reuse has long been ad-

vocated as a crucial one from the software engineering com-
munity. It is viewed as a key factor to advance software
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to a mature enginering discipline. Reuse can in fact reduce
the costs of software development and can improve the stan-
dardization of solutions and their overall dependability.

Software reuse has recently taken a new flavor in the con-
text of service-oriented computing (SOC) [6]. Services may
in fact be viewed as components that independent owners
implement and run on demand, on behalf of possible clients.
Their interface is exposed publicly for possible direct use
and components are made accessible via some standard-
ized protocols. This enables a new application development
paradigm, which consists of integrating existing services to
build complex service-based applications. Web services rep-
resent the perhaps best known practical instance of SOC.

Component reuse can be supported effectively by provid-
ing facilities for component search, that is, some technique
to identify which components implement a specific function-
ality within the available ones. The most important critical
aspect of component search is related to identifying compo-
nent features and being able to query the component library,
obtaining significant results. Many different techniques have
been proposed to resolve this issue. For space reason, we
cannot discuss and cite all the state of the art; for example,
many approaches [8, 10] have addressed this problem by con-
sidering some kind of components behavior description, for
example by using formal specifications as a representation of
components exposed functionalities. However, most of these
methods require complex reasoning involving specifications,
for example by means of theorem proving. Conversely, re-
cent research about the same problem casted within the con-
text of SOC – that is, service discovery [2, 3] – mainly use
keyword-based and ontology-based reasoning on signatures.

In this paper we explicitly address the problem of compo-
nent search – even if the approach could be easily applied as
well to service discovery – by means of using formal specifica-
tions for both the component description and functionality
querying. In particular, we exploit finite state-like mod-
els for component behaviors, playing the role of the search
base for the component search approach. Queries are in-
stead expressed with an algebraic specification style. Both
the models and the queries are encoded in relational logic,
and the relational solver KodKod [9] is used to check the
satisfiability of queries. The inspiration for the approach we
present here came from both the experience we had in speci-
fication recovery [4] and from a recent work about specifica-
tion consistency checking [5]. In this paper, the theoretical
framework we used for consistency checking is exploited for



α = ArrayDeque; Ξ = {Object, Integer}
Φ = {ArrayDeque :→ ArrayDeque,

push : ArrayDeque×Object→ ArrayDeque,

addF irst : ArrayDeque×Object→ ArrayDeque,

addLast : ArrayDeque×Object→ ArrayDeque,

pop : ArrayDeque→ ArrayDeque,

peek : ArrayDeque→ Object ∪ {Exception},
pollLast : ArrayDeque→ ArrayDeque,

peekLast : ArrayDeque→ Object ∪ {Exception},
pollF irst : ArrayDeque→ ArrayDeque,

peekF irst : ArrayDeque→ Object ∪ {Exception},
size : ArrayDeque→ Integer}

Figure 1: The signature of ArrayDeque

component search. The paper is organized as follows. First,
in Section 2, we briefly illustrate Bems and algebraic spec-
ifications, together with their encoding in relational logic.
Section 3 illustrates some example queries we actually sup-
port. Finally, Section 4 outlines conclusions and possible
improvements of the proposed approach.

2. SPECIFYING COMPONENTS AND QUE-
RIES

In this paper, we will focus on components with an inter-
nal state that behave as data abstractions. In these compo-
nents, the internal state is hidden and the component inter-
action is available only through the exposed operations. As
we already mentioned, our proposed semantics-based search
technique for software components is based on two formal
notations. The former is the specification language used to
formally define component interfaces, which is based on be-
havioral equivalence models (Bem)s. The latter is the query
language used to search for behaviors, which is based on
algebraic specifications. Such specifications are particularly
suitable for data containers; our initial assessment focuses on
this kind of components and their behavior. We introduce
Bems and we briefly describe algebraic specifications below.
Both specifications are defined over a signature, which de-
scribes the external interface available to the users.

A signature Π is a tuple 〈α,Ξ,Φ〉, where α is the data
abstraction defined by the signature, Ξ is the set of external
data abstractions used in the signature, and Φ is a set of
functional symbols which describe the signature of the op-
erations exposed by the data abstraction interface. Figure 1
shows the signature of the container ArrayDeque, which rep-
resents a subset of the homonymous container included in
the Java container library, and implements a double-ended
queue. Each functional symbol φ ∈ Φ identifies an exposed
operation. Each operation has a domain and a range. In
this paper, we consider a particular class of signatures, the
linear signatures. Within this class, operations can be clas-
sified as constructors, modifiers or observers. An operation
is a constructor when the domain is empty and the range
is α; there is exactly one constructor in the signature. A
modifier is an operation where the domain is not empty and
the range is α. Finally, an operation is an observer when
the domain is not empty and the range is in Ξ. Exactly one
type in the domain of observers and modifiers must be α; all

the other types are the parameters of the operation. When
a method plays both the role of an observer and a modifier,
we consider those behaviors as two different functional sym-
bols in Φ. Moreover, we model exceptions as special values
of the range of observers.

2.1 Behavioral Equivalence Models
A Bem describes the behavior of a data abstraction within

a precise and limited scope. The Bem is essentially a finite
state machine where each transition is labeled with modifier
invocations, each state is labeled with observer return values
and the constructor determines the initial state. The model
can be finite state because we constrain the specification in
a limited scope. The scope of a Bem is defined by fixing a fi-
nite set of values for method parameters, that is, by defining
the so-called instance pools to define every possible object
belonging to external data abstractions in Ξ. The other
scope limitation is related to the defined data abstraction
α, which is determined by limiting the maximum number of
states of the Bem. Figure 2 shows a Bem for the ArrayD-
eque data abstraction. The scope is defined by using a and b
as two possible Object values and by limiting the number of
states such that the Bem of Figure 2 models the behavior of
the data abstraction only up to size 2. Bems can be gener-
ated from a complete specification of the data abstraction,
the intensional behavior model [4], which describes all the
possible Bems – and thus all the possible behaviors – with
a grammar-like formalism. Alternatively, Bems can also be
automatically extracted with dynamic analysis [4].

Formally, a Bem over a signature Π is a tuple BΠ =
〈Q, I, δ, q0,Ψ〉, composed of a set of states Q, an initial
state q0, an input set I, a transition function δ, and a set
Ψ of state labelling functions representing observer return
values. The input set of the Bem is the set of modifiers
I = M̄Π instantiated within the Bem scope. The set Ψ
is composed as follows: for every observer φo ∈ Φ, there
is a Ψφo : Q × ŌΠ → ξnt , which is a state labelling func-
tion representing return values for the set of observers ŌΠ

instantiated within the Bem scope.
The sets of instantiated modifiers M̄Π and observers ŌΠ

are set of tuples, defined in function of the Bem scope. For
example, in the case of the Bem of Figure 2, the set of instan-
tiated modifiers contains the tuples 〈push, a〉 and 〈push, b〉,
representing all the possible invocations of the push modi-
fier. Similar tuples are included for the other modifiers. In
this case, observers do not have parameters, so ŌΠ contains
one singleton tuple for each observer, e.g., the 〈peek〉 tuple.
A complete formalization can be found in [5].

2.2 Algebraic Specifications
An algebraic specification for a data abstraction is de-

fined over a given signature Π and adds semantic properties
to it, that is, it specifies its behavior by means of a set
E of (possibly conditional) algebraic axioms. Each axiom
is a universally quantified formula expressing an equality
among terms of the signature. For example, a classic axiom
which describes a LIFO behavior for the pair of operations
push and pop in the ArrayDeque container is the follow-
ing: ∀s ∈ ArrayDeque, e ∈ Object | pop(push(s, e)) = s.
Another typical example is the FIFO behavior, which can
be expressed by the following conditional axiom involving
the push and pollF irst modifiers: ∀s ∈ ArrayDeque, e ∈
Object | pollF irst(push(s, e)) = if (s = ArrayDeque())



then s else push(pollF irst(s), e). From a mathematical
aspect, the concept of algebra assigns semantics to signa-
tures and specifications. An algebra is defined as a set, the
carrier set of the algebra, and a family of functions on that
set. Our component retrieval approach is based on the pos-
sibility of interpreting Bems as algebras, as discussed in [5].
In practice, to check if an axiom is consistent with the be-
havior described in Bem, we can interpret it as a property
on the transition function δ of the Bem and the observer
labelling function Ψ. For example, the LIFO axiom we pre-
sented before can be interpred as the following property on
δ: ∀s ∈ Q, e ∈ Object | δ(δ(s, 〈push, e〉), 〈pop〉) = s1 . Those
axioms can be generalized as queries by adding an exter-
nal level of quantification involving operations as follows:
∃A ∈ Φ,B ∈ Φ | ∀s ∈ Q, e ∈ Object | δ(δ(s, 〈A, e〉), 〈B〉).
This query can be read as searching if there exists a pair
of operations which express the LIFO behavior typical of a
Stack container. From now on, for simplicity, we will ex-
press queries as equivalent second-order quantified algebraic
axioms. The query can be expressed as follows: ∃A ∈ Φ,B ∈
Φ | ∀s ∈ S, e ∈ Object | B(A(s, e)) = s. Moreover, we can
also predicate about the signature of operations, for example
in terms of their arity or the type of their parameters.

2.3 Relational Encoding of Bems and Queries
To perform queries, we encode the Bem to a relational

model written in the subset of the Alloy language [7] sup-
ported by the KodKod solver. In the KodKod logic, a prob-
lem can be formulated as a set of relation declarations, a set
of relation bounds and a formula, which contains relations
quantified as variables. Relations in KodKod are not typed.
They assume values that are drawn from the universe of
atoms. With our encoding, the universe of atoms includes
everything defined in the signature and in the Bem, that is,
all the instance pools, the set of states, the functional sym-
bols in Φ, etc. Since the Bem is a finite-state model, the
relational encoding is straightforward: for example, ad-hoc
relations model the transition function δ and the labeling
functions in Ψ. For space reasons, we are not able to in-
clude the encoding details. However, we will show how an
example of how the encoding can be used to perform queries.

A query is encoded as a KodKod formula, that is, an ex-
pression containing quantified variables. Second-order quan-
tifications, used to search for specific operations, become
quantifications bounded with the values of the set operations,
that models the Φ set of the signature. Intuitively, the query
we introduced previously, which searches for a LIFO behav-
ior, can be described as follows. There exist two values A
and B in the set operations, such that for every state s,
and for every possible instantiation of A and B, that is, for
every a ∈ A.instantiations and b ∈ B.instantiations, then
s.delta[a].delta[b] = s. The instantiations relation mod-
els the binding between an operation and its instantiations,
and it’s the critical relation in the encoding that it’s used to
perform queries. We now proceed to present some prelimi-
nary results concerning some possible queries for behaviors
obtained by a prototype tool we developed.

3. QUERYING BEMS
The encoding approach we presented in the previous sec-

1Particular attention must be given because of Bems are
partial, as explained in [5].

tion can be used to perform several kinds of queries for func-
tionalities that can be expressed with algebraic axioms. We
implemented our approach in a prototype tool; in this sec-
tion, we present some basic queries and the results we ob-
tained with our prototype tool [1].

As a case study, we used Bems to model containers in
the Java Collection Framework, such as java.util.{Stack, Ar-
rayList, ArrayDeque}. One of the simplest queries we can
perform is the one which searches for a LIFO behavior, that
is, for a pair of modifiers A and B, which can be used re-
spectively to insert an element and remove the last inserted
element, and an observer O which returns the last inserted
element. We can express the query as follows:

∃A : α×Object→ α,B : α→ α,O : α→ Object |
∀s ∈ α, e ∈ Object | B(A(s, e)) = s ∧ O(A(s, e)) = e

Our tool retrieves several instances of operations which sat-
isfy the specified algebraic equations. The simplest one is
in the java.util.Stack class, where we can find the triplet
〈A = push,B = pop,O = peek〉. More interesting result
are obtained from java.util.ArrayDeque class. In fact, the
deque can be used with a LIFO behavior considering either
the head or the tail; thus, the query results contain two
corresponding triplets, 〈A = addF irst,B = pollF irst,O =
peekF irst〉 and 〈A = addLast,B = pollLast,O = peekLast〉.

KodKod formulae also support conditional expressions;
for this reason, we are able to perform queries which corre-
spond to conditional axioms, such as the ones that can be
used to express the FIFO behavior of a queue. Suppose that
we want to search for the behavior expressed by a method A
which can be used to insert an element, a method B which
removes the first element, a constructor C which produces
the empty container, and an observer O which returns the
first element. The query can be expressed as follows:

∃A : α×Object→ α,B : α→ α, C :→ α,O : α→ Object |
∀s ∈ α, e ∈ Object |

B(A(s, e)) = if (s = C()) then s else A(B(s), e) ∧
O(A(s, e)) = if (s = C()) then e else O(s)

Not surprisingly, our prototype tool can find several in-
stances of A, B and O in the ArrayDeque class. Since a
deque is, by definition, a double ended queue, we can use
equivalently 〈A = addF irst,B = pollLast,O = peekLast〉
or 〈A = addLast,B = pollF irst,O = peekF irst〉.

3.1 Advanced Queries
In the previous section, we searched for operations which

matched an exact signature of typical container operations.
However, our relational encoding can be used for more gen-
eral queries, which can be used to search for specific behav-
iors obtained by fixing specific values for method parame-
ters. Consider the following example. A class implementing
a list usually have several modifiers in its interface. Usually
its modifiers include some kind of a add : α × Object → α
operation which adds an element to the end of the list. Sim-
ilarly, an observer get : α × Int → Object can be used
to obtain the element in a specific position and a modifier
remove : α × Int → α removes the element in a specific
position. If we query a Bem of a class implementing a list
using the queries we provided previously we are not able to
find any operation that behaves either as a FIFO or a LIFO
observer or modifier. However, the list can be in fact used
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Figure 2: A Bem of ArrayDeque

as a FIFO or LIFO container if we consider some specific
invocations of their operations with fixed parameter values.
Suppose to search of a FIFO behavior in a class implement-
ing a list with the interface we described before. The behav-
ior of the observer returning the head of the queue can be
obtained by calling get(0) on a non-empty list, while the be-
havior of the modifier removing the element on the head of
the queue can be obtained by calling remove(0). Intuitively,
we could formulate the query as follows. The query predi-
cates about the existence of a modifier A : α×Object→ α,
a constructor C :→ α, an observer O with range Object and
with an arity greater than 1, and a modifier B, with range α
and arity greater than 1. Thus, for every state of the Bem
and for every element e ∈ E applied to A, it exist a spe-
cific set of parameters p̄O for O and p̄B for B such that the
container exhibits the FIFO behavior:

∃A : α×Object→ α, C :→ α,

O : range(O) = Object ∧ arity(O) > 1,

B : range(B) = α ∧ arity(B) > 1 | ∀s ∈ α, e ∈ Object |
(∃p̄O ∈ params(O) | O(A(s, e), p̄O) = if (s = C()) then e

else O(s, p̄O)) ∧ (∃p̄B ∈ params(B) |
B(A(s, e), p̄B) = if (s = C()) then e else A(B(s, p̄B), e))

This query is correctly able to retrieve the get(0) and re-
move(0) methods as expected.

4. CONCLUSIONS
We presented a model-based technique to address the prob-

lem of searching component functionalities considering que-
ries on their provided interface. The technique uses opera-
tional specifications, and in particular Bems, as behavioral
descriptions and queries are expressed with an equational
style, generalizing algebraic axioms by existentially quanti-
fying the name of the operations. The search process is en-
coded as a relational problem, and in particular the Bems are
encoded as relational models and the queries are encoded as
relational formulae. The constraint solver KodKod is used
to obtain search results. We illustrated a preliminary as-
sessment where some basic and more advanced queries that
could be performed to retrieve container functionalities from
Bems describing the behavior of real Java library classes. A

complete assessment of the required effort to produce Bems
is part of the future work. However, we believe this is feasible
because Bems can be automatically extracted with dynamic
analysis. Future work also includes a better assessment of
the querying capabilities of the approach, for example by
applying it to components different than containers, and an
evaluation of the required effort to produce queries, which
can be reduced by wrapping the formalism in a more user
friendly notation.
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