
Towards Query Formulation and
Visualization of Structural Search Results

Oleksandr Panchenko
Hasso Plattner Institute for

Software Systems
Engineering

P.O. Box 900460, 14440
Potsdam, Germany

panchenko@hpi.uni-
potsdam.de

Arian Treffer
Hasso Plattner Institute for

Software Systems
Engineering

P.O. Box 900460, 14440
Potsdam, Germany

arian.treffer@student.hpi.uni-
potsdam.de

Alexander Zeier
Hasso Plattner Institute for

Software Systems
Engineering

P.O. Box 900460, 14440
Potsdam, Germany
zeier@hpi.uni-

potsdam.de

ABSTRACT
Source code search goes far beyond simple textual search.
One possibility of improving code search is the utilization
of structural information in form of abstract syntax trees
(ASTs). However, developers usually work with the textual
representation of source code and, thus, have difficulties in
expressing their queries as fragments of abstract syntax trees
and in interpreting the results. This paper addresses assis-
tance of query composition and search result visualization.
Query formulation is considered to be an iterative process.
After one query is run, the AST vertices neighbored to the
result vertices are analyzed to propose refinement options
for the next query. Search results are visualized in a tree
view which aggregates all matches in a compact way instead
of showing a small number of ranked matches.

Categories and Subject Descriptors
D.2.6.e [Software Engineering]: Design Tools and Tech-
niques—Programmer workbench

General Terms
Source code search, Abstract syntax trees, XPath, Search
results visualization

Keywords
Program analysis, Visual programming and program visual-
ization

1. INTRODUCTION
Source code documents are of dual nature: they are in

fact texts containing information for developers and they
have explicit structure for compilers and other tools. Sev-
eral structural representations of source code exist: abstract

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SUITE ’10, May 1 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-962-6/10/05 ...$10.00.

syntax tree (AST), call graph, data flow graph, and others.
Until recently, traditional search engines have been used to
search in large source code repositories. These search en-
gines use the textual representation and disregard structural
characteristics of code. Recent efforts added some meta-
data [3], rough structural information [5, 7], and source code
structure in form of ASTs [11] to the search index. Neverthe-
less, existing repositories and query languages lack support
for query formulation and results representation. This paper
aims at bridging this gap.

This paper proposes to use widely accepted XML querying
languages for querying source code structures represented as
ASTs. As any XML document object model, an AST is in
fact a tree. Four simplified examples of ASTs are depictured
in Figure 1. An AST is a detailed tree-based representation
of the syntactic structure of a source code document. Each
vertex of the tree represents a source code entity and belongs
to one of 6 categories: identifier (idf), literal (lit), statement
(s), clause (v), operator (opt), or compound (c). AST vertex
categories are presented in Figure 1 as namespaces. An edge
represents a containment relation between entities. Many
questions about the structure of source code can be answered
by analyzing ASTs. For example, the queries “find all read-
ing accesses to a certain database table” or “find all method
invocations which can be critical for performance because
of passing data by value” are in essence structural patterns
(AST fragments) to be found. Such structural queries can
be formulated as XPath expressions. The obvious advantage
of XPath over keyword-based search and grep is the ability
to expresses fine-grained relations between source code en-
tities. The database schema and the implementation of an
XPath query engine for ASTs was discussed in our previous
work [11].

Since developers usually work with the textual represen-
tation of source code, they have difficulties in formulat-
ing XPath queries for AST and in interpreting the result
matches, which are AST fragments. This paper addresses
these challenges and proposes an approach for XPath query
formulation based on auto-completion and iterative query
refinement. AST vertices, which are neighbored to the re-
sult matches of a query, are analyzed, grouped by their type,
and used to generate refinement advice for the next query.
Moreover, an appropriate result visualization makes search-
ing more efficient.

The examples shown in this paper originate from an en-

terprise system SAP Business Suite1. The language of this
system is ABAP2, which is a fourth-generation programming
language for data processing in commercial applications. In
addition to language elements which are usual for program-
ming languages, ABAP offers functions for background task
scheduling, authority checks, operations with database ta-
bles, arrays, files, user interface elements, strings, date and
time, etc., as language elements. For example, access of a
database table is represented by the SELECT statement,
and reset of a variable to its initial value is provided by
the CLEAR statement. Therefore, the language is very rich
with more than 800 non-reserved keywords and more than
1100 types of AST vertices.

Eight ABAP developers were interviewed to detect their
needs in context of code searching. All of them use search
mostly while conducting code reviews, quality checks and
searching for API usage examples. Many of the queries con-
ducted by the developers within these scenarios consist of
identifiers and syntactical patterns. Currently, the develop-
ers use a search engine which is fast but accepts only simple
textual queries; a where-used list for identifiers which is slow
and does not allow distinguishing between different types of
use; and a set of pre-defined checks for violations of program
structure.

2. RELATED WORK
Holmes et al. used a relational database to store source

code and to query it to recommend relevant examples [5].
Nevertheless, this repository stores source code with a coarse
level of detail.

Begel proposed enriching terms stored in an index with
metadata about the role of the term, type of usage, etc. [3].
A similar approach is used by existing code search engines,
e.g., Codase, Google Code Search, Koders, Krugle, and Mer-
obase. Stored metadata does not contain information about
relations between fine-grained entities and, therefore, the
query interface is simple.

Linstead et al. used a relational data model to store data
with a middle level of detail. Information about more fine-
grained characteristics is precomputed and aggregated into
fingerprints [7]. To answer new queries, new fingerprints
should be implemented.

JQuery is a customizable query-based viewer of source
code [10]. Its query language operates on high-level facts
extracted from ASTs.

Chew used a query language for syntax-level analysis of
C/C++ programs based on AST [4].

Serialization of source code in XML format has been dis-
cussed several times. JavaML is a markup language for ref-
erencing source code entities, transforming, and querying
on a higher level of abstraction [1]. srcML provides explicit
markup of syntactic information within source code to sup-
port various program analysis, fact extraction, and reverse
engineering tasks [8]. XSDML uses an XML representation
of source code for manipulation and refactoring [9]. Nev-
ertheless, until now XPath has only been used to address
AST vertices or to sequentially process a list of source code
documents. This paper reports on the usage of XPath for
the querying of many documents in a source code repository
simultaneously. Because of a large number of ASTs in the

1http://www.sap.com/solutions/business-suite/
2http://www.sdn.sap.com/irj/sdn/abap/

repository, and potentially large number of results, current
methods for query formulation and result visualization are
not optimal.

Although some effort has been spent on investigation of
the ranking methods for source code search [6, 7], search
results are still represented as a simple list.

Generally, code search engines have a simple interface but
are used for rough search. Source code query languages are
more expressive, but have complex semantic and are difficult
to use. Although many code query languages exist, their fo-
cus has been on a search for syntactic bugs and other ques-
tionable constructs. In these scenarios it is acceptable to
require a high effort to formulate a query because the num-
ber of such queries is limited and they can be prepared in
advance. However, in order to integrate fine-grained struc-
tural search more closely into daily development activities,
the query formulation should be effortless.

3. SEARCH ASSISTANCE
Users of a search engine work iteratively, entering queries,

analyzing the results and refining the previous query. A very
obvious start is a simple keyword-based query. Whereas
developer defined strings (class names, method names, pa-
rameters, variables, etc.) are placed as leaves of the AST,
other vertices define the roles of the leaves and their inter-
play or context. Therefore, the matches of a keyword-based
search are AST leaves. In contrast to the traditional search
engines, our repository contains a complete AST structure
and therefore the role of the match and its context are easily
obtained at runtime.

The following scenario illustrates the approach. A devel-
oper wants to find a location where a database table named
FILE is read. He starts with a simple keyword-based query:

“FILE” (1)

In background, this query is translated to the following XPath
query:

//idf : FILE (2)

Several matches have been found (Figure 1, Action A1). An
analysis of the found ASTs provides a list of all ancestors
of the matches. This list is used to identify the role of each
match and its context. In the example given in Figure 1,
Action A2, the matches are used: (A) on the left-hand side
of an assignment statement and in a CLEAR statement; (B)
as a container for results of a SELECT statement; (C) as a
parameter value passed to a method, whereby the method
call is inside a loop; and (D) in a WHERE clause of a SE-
LECT statement. These roles are aggregated by type and
proposed to the developer as a list of query refinements:

//s : COMPUTE//idf : FILE (3)

//s : CLEAR//idf : FILE (4)

//s : SELECT//idf : FILE (5)

//s : CALL METHOD//idf : FILE (6)

//s : LOOP//idf : FILE (7)

In our interviews with developers, we discovered that state-
ments are typical targets of search while conducting code
reviews or searches for examples. Therefore, the first list
of proposals is restricted to statements. The proposals can
be presented as a list of alternatives if the developer starts

Figure 1: Four AST Examples

with an identifier or literal (usually placed in the right-most
part of the expression) and then adds some conditions at the
beginning of the expression. In this case, unnatural move of
the cursor from the right to the left can be avoided. For
top-down query formulation, if the developer starts with a
statement and specifies the identifier later, it is natural to
provide help while-you-type in the auto-complete function
(Figure 2). The categories of AST vertices are automati-
cally proposed, but can be corrected if necessary.

The developer decides to investigate all SELECT state-
ments and accepts the proposal #5 (Figure 1, Action A3).
Nevertheless, several possibilities still exist. The identifier
FILE stands not only for a container for results of the SE-
LECT statement (Figure 1.B, Action A4), but also for a field
of a table (Figure 1.D, Action A4). The system analyzes pos-
sible ways of refinement based on data in the repository and
makes the following proposals:

//s : SELECT/v : TARGET/idf : FILE (8)

//s : SELECT/v : WHERE//idf : FILE (9)

By selecting option #8 the developer finishes the query for-
mulation. Since the names of AST vertices can differ from
the corresponding keywords in source code, an example of
source code snippet is shown for each option if necessary.
This example is retrieved from the repository at the run-
time. The auto-complete feature for XPath is used quite
broadly and is implemented in numerous tools, e.g., in Al-
tova XMLSpy3. However, these implementations rely on
XML schema which is too complex for fourth-generation
programming languages. Therefore, our prototype uses data
in the database for the advice generation. Moreover, in con-
trast to the XML schema-based approaches, the database
analysis identifies the most used patterns and can sort ad-
vice by frequency. Other possibilities of sorting include al-
phabetic sorting and sorting by frequency of usage in search
queries. Our interviewees were not unanimous at this point,
thus, we left it configurable.

3http://www.altova.com/xmlspy.html

Figure 2: Auto Complete Function

4. RESULT VISUALIZATION
Most search engines operate on documents. Thus, the

result of the search is a set of documents with each document
containing one or more matches for the search expression.
Source code search is no exception to this rule. Therefore,
one part of the result view shows the list of result documents
(left part of Figure 3.A), including the program name, a
content snippet and some metadata.

One aspect of visualization is the ranking of the result
list. The combination of structural and textual information
can improve the ranking. If the search query contains more
than one term, the result hits can be sorted by the distance
between those terms in the result documents. This sorting
criteria works well for natural language documents, but in
software documents two terms that are placed close to each
other may not be related or even belong to different names-
paces. This feature of source code is taken into account
by calculating the tree distance between the corresponding
vertices of the AST.

The role of the keyword also is derived from the AST.
Using this information, matches in class or method names
can be ranked higher than matches in local variable names.

Another metric for ranking documents is the page rank.
The page rank indicates how often a document is referenced
by other documents. It has been shown that the page rank
is applicable to software documents too [6, 7].

However, in many cases the result is large because the
query is not selective enough. Many of our interviewees start
with a simple query instead of spending time for formulation
of a precise query which probably is too restrictive. In this
case, simply showing the result list, even if sorted, is not
sufficient. Instead of looking at the first matches, the user
needs to further restrict the search result.

Here we take advantage of the structural nature of the
result data to provide an overview over a large number of
matches. Additionally, each match is provided with a con-
text that is more expressive and formal than a simple content
snippet.

After the processing of the XPath query, not only the
result vertices themselves, but also all of their ascendants
are returned by the database. Thus, the search result is a
set of sub-trees. Example sub-trees are presented in Figure 1
as chains of dark-grey AST vertices. In these sub-trees all
leaves are matches of the search and all other vertices are
ascendants of one or more matches.

To provide a better overview over this set of sub-trees,
all sub-trees are aggregated into one result tree. Starting
with the roots, vertices of the same type are joined into one
vertex of the final result tree. This view is called a top-down
result tree and is shown on the right-hand side in Figure 3.A.
The number of matches indicates how many sub-trees were
aggregated. This view provides a high-level overview of all

matches grouped by their role and usage context with the
possibility of drilling down to single matches. The chain of
AST vertices between the root of the result tree and the
match corresponds to the chain in the original AST. For
example, here the developer sees that identifier FILE was
used in data definition fragments 42 times (25 times as a
variable name and 17 times as a type name), variable FILE
was reset 3 times and referenced inside a loop 77 times, etc.

Since developers are usually interested in local context
(few nearest ascendants) of the match, we propose addi-
tional layout where the sub-trees are inverted and vertices
are joined starting from the leaves (Figure 3.B). This view
allows exploring the result tree starting with the role of the
match and its local context.

The result view provides a compact yet detailed overview
of all matches and their parents, and also supports the iter-
ative process of query formulation. In both tree views, the
developer double-click on an AST vertex to add it to the
query or right-click on the vertex to see the list of docu-
ments containing this match. It is possible to directly jump
from here to the location in the source code.

Another popular way of visualizing hierarchal data is a
treemap [2], where each vertex is shown as a rectangle. Child
vertices are arranged in a way that they fill the entire rect-
angle of their parent vertex. It is possible to show the entire
tree at once or just a few topmost layers. Then, by clicking
on a vertex, the user can expand parts of the tree. Figure 3.C
shows the METHOD IMPLEMENTATION sub-tree that is
part of the top-down result tree in Figure 3.A. The size in-
dicates the number of result documents and the color shows
the number of matches.

5. CONCLUSION
This paper presents an approach for assisting developers

in query formulation and search result visualization. The
application of this approach will enable effortless and inter-
active source code searching for fine-grained syntactic pat-
terns. With some adaptation, these principles can be applied
to other source code query languages than XPath.

6. REFERENCES
[1] G. J. Badros. JavaML: a markup language for Java

source code. In Proceedings of the 9th international
World Wide Web conference on Computer networks,
pages 159–177, 2000.

[2] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi
treemaps for the visualization of software metrics. In
Proceedings of the Symposium on Software
Visualization, pages 165–172. ACM, 2005.

[3] A. Begel. Codifier: A programmer-centric search user
interface. In Proceedings of the Workshop on
Human-Computer Interaction and Information
Retrieval, pages 23–24, 2007.

[4] R. F. Crew. ASTLOG: a language for examining
abstract syntax trees. In Proceedings of the Conference
on Domain-Specific Languages, pages 18–18, Berkeley,
CA, USA, 1997. USENIX Association.

[5] R. Holmes, R. J. Walker, and G. C. Murphy.
Approximate Structural Context Matching: An
Approach to Recommend Relevant Examples. IEEE
Trans. on Software Eng., 32(12):952–970, 2006.

Figure 3: Visualizations of Query#2 Result

[6] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita,
and S. Kusumoto. Ranking Significance of Software
Components Based on Use Relations. IEEE
Transactions on Software Eng., 31(3):213–225, 2005.

[7] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor,
C. Lopes, and P. Baldi. Sourcerer: mining and
searching internet-scale software repositories. Data
Mining and Knowledge Discovery, 18(2):300–336,
2008.

[8] J. Maletic, M. Collard, and H. Kagdi. Leveraging
XML Technologies in Developing Program Analysis
Tools. In Proceedings of the 4th International
Workshop on Adoption-Centric Software Engineering,
pages 80–85, 2004.

[9] K. Maruyama and S. Yamamoto. Design and
implementation of an extensible and modifiable
refactoring tool. In Proceedings of the 13th
International Workshop on Program Comprehension,
pages 195–204. IEEE Computer Society, 2005.

[10] E. McCormick and K. D. Volder. JQuery: Finding
Your Way through Tangled Code. In Proceedings of the
conference on Object-oriented programming systems,
languages, and applications, pages 9–10. ACM, 2004.

[11] O. Panchenko, H. Plattner, and A. Zeier. Efficient
Storage and Fast Querying of Source Code.
Information Systems Frontiers, Springer, 2010.

