
Enhancing Static Source Code
Search With Dynamic Data

Reid Holmes and David Notkin
Computer Science & Engineering

University of Washington
Seattle, WA 98195-2350 USA

rtholmes,notkin@cs.washington.edu

ABSTRACT
Developers frequently try to locate references to particu-
lar program elements within their systems; however, these
queries often return an overwhelming number of results.
The result sets for these queries tend to be large because
integrated development environments locate matches using
static search approaches; however, the developer may be
more interested in which references actually happened for a
particular execution, instead of which references could hap-
pen in a hypothetical execution. We posit that dynamic
search approaches can complement customary static search
approaches in the same ways dynamic analysis complements
static analysis. Specifically, in this paper, we hypothesize
that filtering static reference queries with dynamic trace
data can reduce the number of results a developer must con-
sider when performing a query, helping them to focus on a
subset of the static query results. To test our hypothesis, we
filtered the results of the Eclipse find references query with
dynamic trace data for three different projects; our prelimi-
nary evidence demonstrates that dynamic trace data can be
used to effectively filter the result sets of static source code
queries.

1. INTRODUCTION
While being able to statically query for all references to

a specific method is valuable, the number of results a devel-
oper must consider can be overwhelming; in this paper we
provide preliminary evidence demonstrating that dynamic
filtering can significantly reduce the number of results for
these queries. While a sound static approach can identify
all program locations where a method could be called dur-
ing any given execution, a dynamic approach instead fully
captures all program points that a method was called from
in a specific execution. The elements surfaced by a dynamic
approach are particularly suitable for a developer investi-
gating a specific subset of a system (e.g., a specific test or
specific part of a user’s trace).

Finding all of the references to a specific program element

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SUITE ’10, May 1 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-962-6/10/05 ...$10.00.

within an Integrated Development Environment (IDE) is a
frequent activity; a previous study has found that more than
80% of Eclipse developers perform this type of activity [2].
This type of query corresponds well to a conceptual ques-
tion a developer may ask while modifying or investigating a
software system, namely, ‘where is this method called?’ [5].

At least two previous approaches have integrated dynamic
trace data with static search tools. While both approaches
enable developers to search for method references using dy-
namic data, these were minor features in larger systems; the
empirical benefits of applying this approach were not explic-
itly explored.

Ferret [1] consists of a general model for integrating dif-
ferent sources of query data; one of the 27 different queries
Ferret supported enabled developers to query for references
in a dynamic call graph. In a diary study, one of their par-
ticipants specifically noted the value of knowing a result had
been executed: “[seeing] what was actually called was useful
because it eliminated spurious calls made from [other con-
texts].” Alternatively, Hermion [3] uses runtime trace data
to answer source code queries for Smalltalk; this approach
is especially useful for dynamic languages as static search
approaches are not as effective for these languages. The
Senseo [4] Eclipse plug-in adds additional dynamic data to
the Eclipse IDE, particularly in the source code editor, but
does not augment search results with dynamic data.

This paper contributes preliminary evidence demonstrat-
ing that dynamic filtering can effectively reduce the number
of results for static queries which can help developers focus
on specific query results. Section 2 provides a short scenario
describing how a static query can quickly return results that
are overwhelming. A brief overview of our approach is out-
lined in Section 3. Section 4 provides preliminary evidence
for our approach while Section 5 provides discussion and
future work. Section 6 concludes.

2. MOTIVATION
While IDE support for locating references to particular

types, fields, and methods is extremely valuable, oftentimes
the results of these queries can be overwhelming. Figure 1
shows the partial results of a find references request, made
by a developer named Zoe, for a method in their system; in
this example more than 1000 results are returned spanning
84 packages.

In practice, when Zoe queried for the references to getEle-

mentName(), she was working on a specific bug; although
1,076 static results were returned, some guidance to help
her decide which of these to investigate first would be help-

Figure 1: Overwhelming query result.

ful. Applying a dynamic filter based on the last execution
of the system narrows the number of results to 16 (a 98%
reduction), which is more manageable. These results also
make more sense to her as they are in the context of a spe-
cific execution with whose inputs she was familiar.

3. APPROACH
We built our prototype for the Eclipse IDE, collecting

static search results in the same manner the IDE itself does
for finding references to method calls. While identifying type
and field references is also possible, the current version of our
tool only records and analyzes method call relationships.

Instead of performing the queries manually and scraping
the results we instead used the SearchEngine class using the
SearchUtils.GENERICS_AGNOSTIC_MATCH_RULE match rule and
collected the results programmatically.

The dynamic call graph was collected using a custom As-
pectJ aspect that maintained a call stack as the test har-
nesses executed. While the aspect would work with any
execution, we only used it with test harnesses for this appli-
cation.

Static results can be extracted directly from the SearchEngine
results; the dynamically filtered results comprise those re-
sults that intersect both the static results and the dynamic
call graph. While in some cases elements may be present
in the dynamic call graph and not the static call graph, we
do not currently consider these elements. Some of these
elements arise due to reflection, others due to annotations
(e.g., @Test indicates a JUnit test will be executed whereas
the edge from JUnit to the test will not appear statically).
While our system can match static search results with ele-
ments from the dynamic call graph with fairly high precision
it is not perfect and some matches may be missed in this
process.

4. PRELIMINARY EVIDENCE
We were interested in gathering evidence for two main

questions: (1) Can dynamic filtering effectively reduce the
number of results for queries that might otherwise be over-
whelming (Section 4.1)?; and (2) In aggregate, how much
can dynamic filtering reduce the number of results for a
source code query (Sections 4.2 and 4.3)?

We tested our prototype on three open-source systems
that contained JUnit test harnesses. While the test har-
nesses were not required, the test harnesses ensured we could
test our filtering on consistent execution data. Our test sys-
tems were JodaTime, the Google Visualization Library, and

a reference implementation for RFC-24451. These projects
comprise 76 KLOC, 17 KLOC, and 7 KLOC and contain
2,525, 365, and 171 tests respectively.

To evaluate our approach we collected the static search
results and dynamic call graph for each of the systems we
investigated. To collect the static search results, we pro-
grammatically invoked the Eclipse find references command
on every method in each system and recorded the results;
we configured the workspace to ensure that only the project
being searched and its required libraries were present to re-
duce the chances of incorrect results being returned. The
dynamic call graph was collected by executing the complete
test harness for each system and recording the execution’s
dynamic call graph.

4.1 Addressing Overwhelming Queries
Developers will investigate a limited number of query re-

sults before giving up or researching [6]. In light of this,
while decreasing the number of query results from 4 to 2 is
a 50% reduction, filtering a different query from 15 to 10 can
have more value if a relevant result was in the subset they
would not have otherwise investigated. As such, from a de-
veloper’s perspective, we expect reducing query result sizes
below their threshold of patience may be more important
than the overall reduction rate.

level JodaTime Visualization RFC-2445 Average

5
10
15
20
25

50.8% 32.35% 55.56% 46%

59.6% 53.97% 72.50% 62%

62.2% 63.44% 82.86% 70%

63.6% 76.71% 90.63% 77%

64.3% 79.10% 90.63% 78%

level Static
Results

Filtered
Results

JodaTime % Queries
over

threshold

5
10
15
20
25
SIZE

1132 557 50.8% 22.4%

836 338 59.6% 16.6%

683 258 62.2% 13.5%

557 203 63.6% 11.0%

468 167 64.3% 9.3%

5047

level Static
Results

Filtered
Results

Visualization % Queries
over threshold

5
10
15
20
25
SIZE

204 138 32.4% 18.7%

126 58 54.0% 11.5%

93 34 63.4% 8.5%

73 17 76.7% 6.7%

67 14 79.1% 6.1%

1093

level Static
Results

Filtered
Results

RFC-2445 % Queries
over threshold

5
10
15
20
25
SIZE

54 24 55.6% 13.0%

40 11 72.5% 9.6%

35 6 82.9% 8.4%

32 3 90.6% 7.7%

32 3 90.6% 7.7%

416

0%

25%

50%

75%

100%

5 10 15 20 25

R
e
d

u
c
ti
o

n

Threshold Level

JodaTime Visualization RFC-2445

% of over-threshold queries reduced below
threshold for varying threshold levels

0%

8%

15%

23%

30%

5 10 15 20 25

9%10%
12%

15%

21%

P
ro

p
o

rt
io

n
 o

f
Q

u
e
ri
e
s

A
b

o
ve

 L
e
ve

l

Level

Figure 2: Percentage of over-threshold queries re-
duced below threshold by dynamic filtering.

Figure 2 reflects how many queries, over various thresh-
olds, are reduced below the threshold level by dynamic filter-
ing. For example, for a threshold of 10 (e.g., for all queries
where the number of static results is greater than the thresh-
old level), applying dynamic filtering reduces the number of
results to below the threshold for more than 50% of these
over-threshold queries. As the queries that return a large
number of results most require filtering, Figure 2 shows that
dynamic filtering can effectively help reduce the number of
results for a large proportion of these queries.

1http://code.google.com/p/google-visualization-java/,
http://joda-time.sf.net, http://code.google.com/p/google-
rfc-2445/.

4.2 Aggregate Results
We gathered aggregate results to see if dynamic filtering

data decreased the number of results a developer would have
to consider for any method in a system. Table 1 shows the
results for each of our evaluated systems. The second col-
umn represents the total number of results for the static
search queries for every method in the system that executes
at runtime. The third column represents the total number
of results for this same set of methods when the static re-
sults are filtered by the dynamic results; the fourth column
contains a percentage representation of this information re-
duction.

Project Executed Static Filtered %
Methods Results Results Reduct.

JodaTime 5,047 94,230 17,616 84%
Visualiz. 1,093 18,167 2,761 87%
RFC 2445 416 12,791 732 95%

Table 1: Aggregate query result reduction.

While these findings seem positive, examining the results
manually we noticed that while the dynamic filtering made
huge improvements for some queries, for many others it did
not seem to make any difference at all. To investigate this,
we further broke down the results by method to determine
how much the search results were reduced for each method.
We split the reduction into four buckets: no improvement,
0 < reduction ≤ 33%, 33% < reduction ≤ 66%, and 66% <
reduction ≤ 100%. These results are shown in Figure 3.

Figure 3 shows that while a significant proportion of meth-
ods results do not receive any benefit from dynamic filtering,
some methods do benefit strongly from the dynamic filter-
ing approach. In combination with Table 1, this indicates
that those methods that do benefit experience very large
reductions while other methods do not benefit at all.

Two main factors account for the difference between Ta-
ble 1 and Figure 3. First, dynamic filtering can make a huge
difference for some methods. In some instances, methods
that have a common signature or a part of a popular inter-
face (e.g., equals(Object), get(Object), and add(Object))
are often matched by the conservative static analysis, even
if they are not called in practice. Secondly, many methods
have very specific names that don’t match any results in the
static search. These methods exist by the hundreds in these
systems: most of the test suite methods have unique names
like testQueryDoesntRuinDataSourcePatterns(); these meth-
ods contribute to the high proportion of ‘no reduction’ meth-
ods. Inspecting the ‘no reduction’ partition more closely
shows that the Eclipse find references command returns no
static results for 49.9% of the methods, precluding any fur-
ther reductions using dynamic filtering. While the dynamic
call graph may contain actual results for the methods that
have no static results, our evaluation has concentrated only
on refining static results, not adding new results that are
not statically observable.

4.3 Partial System Results
Developers performing a task typically only work on a

subset of the system, as such we were interested to see if
the results of applying dynamic filtering were different when
applied to a constrained portion of the system. To do this,

0
JodaTime 1183

Static Only With Dynamic
Filter

Not Executed Executed Total
Recommenda

tions
JodaTime 94230 17616 2882 5047 111846

0%

25%

50%

75%

100%

JodaTime Visualization RFC-2445

5.4%
13.2%15.8%

94.6%
86.8%84.2%

% Results Returned

Static Only
With Dynamic Filter

0%

25%

50%

75%

100%

JodaTime Visualization RFC-2445

12.2%
6.5%

23.4% 2.4%12.0%

16.9%

6.8%

13.5%

10.8%

78.5%
68.0%

48.9%

Distribution of Information Reduction

No Reduction
0 -> 33% Reduction
33%->66% Reduction
> 66% Reduction

Figure 3: Amount of query result reduction per
queried method;

we decided to select three unit test classes at random from
each project, applying dynamic filtering only to the subset
of methods that were executed by the tests. Figure 4 shows
the clustering for these nine cases.

The partial-system results seem more promising than the
whole-system results. For each task the majority of meth-
ods received some amount of reduction when the dynamic
filtering was applied and the proportion of methods that
received a large amount of filtering increased. While the
test methods (that do not benefit from filtering) are still
executed and included, they only comprised a subset of the
executed methods. These results also highlight another po-
tential use for applying dynamic data in an IDE: a developer
could specify that they are working on a specific test class
and the IDE could then provide them with a ’working set’
that is pre-populated with the methods that are executed
by that test class to help them identify the subset of the
system that may be relevant to their task.

5. DISCUSSION

5.1 Validity
While our preliminary evaluation showed that dynamic

filtering could reduce result sizes, this preliminary evidence
should be more rigorously augmented. The largest threat to
the validity of our preliminary investigation is that we have
not validated whether relevant results are elided by dynamic
filtering; this remains for future investigation. The three
systems we evaluated with were from different domains, but
to enhance the external validity of our filtering result, test-
ing this approach on additional, larger, systems would be
beneficial.

0 0->1/3 1/3->2/3 2/3->1 Sum

JT4

JT3

JT2

C1

C2

C3

C4

C5

V1

V2

V3

V4

V5

JodaTime - 1

JodaTime - 2

JodaTime - 3

RFC-2445 - 1

RFC-2445 - 2

108 14 52 215 389

75 1 12 130 218

92 11 70 299 472

0

0

45 2 35 21 103

18 4 13 9 44

10 1 2 14 27

20 3 5 13 41

39 4 37 21 101

8 1 7 2 18

7 1 1 0 9

30 0 17 50 97

6 0 5 25 36

231 35 82 109 457

27.76% 3.60% 13.37% 55.27% JT4

34.40% 0.46% 5.50% 59.63% JT3

19.49% 2.33% 14.83% 63.35% JT2

40.91% 9.09% 29.55% 20.45% C2

37.04% 3.70% 7.41% 51.85% C3

0%

25%

50%

75%

100%

JodaTime - 1 JodaTime - 2 JodaTime - 3 RFC-2445 - 1 RFC-2445 - 2 RFC-2445 - 3 Visualization - 1 Visualization - 2 Visualization - 3

69.4%

51.5%

11.1%

20.8%

51.9%

20.5%

63.3%59.6%
55.3%

13.9%

17.5%

38.9%

36.6%

7.4%

29.5%

14.8%

5.5%13.4%

0%0%

5.6%

4.0%3.7%

9.1%

2.3%

0.5%

3.6%

16.7%

30.9%

44.4%
38.6%37.0%

40.9%

19.5%

34.4%
27.8%

Distribution of Information Reduction for Individual Test Case Slices

No Reduction
0 -> 33% Reduction
33%->66% Reduction
> 66% Reduction

Figure 4: Amount of query reduction for methods executed by randomly-selected test classes.

5.2 Presenting Filtered Results
Dynamic filtering may not be the right default behaviour

for finding references in the IDE; however, results that match
the dynamic filter could be decorated in a normal result
list (for instance in bold). A toggle to enable the dynamic
filter would be a lightweight addition to the default search
view. An interesting alternative would enable the developer
to choose the execution they want to filter with (e.g., the
last run or the run from two weeks ago) and enable them
to contrast the dynamic filter results between these time
periods (e.g., did the same methods reference this method
last week as are doing so now?).

5.3 Future Work
Our prototype tool does not provide any UI for the user;

before any evaluations involving users are conducted, a UI
integrated with the Eclipse search functionality must be cre-
ated. Extending dynamic filtering to other queries (e.g., field
and type references) is also a logical next step. To better
support this, and to improve the performance of generat-
ing the dynamic data, we are currently working on a new
dynamic tracing approach that is more efficient and better
supports multiple threads.

6. CONCLUSION
In this paper we have demonstrated the utility of filtering

static search results in an Integrated Development Environ-
ment using dynamic data. Dynamic filtering enables the de-
veloper to focus their efforts on those results that are most
likely to be relevant to them. This approach provided signif-
icant reductions in the number of search results a developer
might need to consider. Our preliminary evidence suggests
that for many queries the number of results can be filtered

by greater than two thirds and that dynamic filtering can
reduce over half of queries returning more than ten results
to under that threshold. On the basis of this evidence, fur-
ther investigation into applying dynamic filtering to static
search results in IDEs is warranted.

7. REFERENCES
[1] B. de Alwis and G. C. Murphy. Answering conceptual

queries with Ferret. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
21–30, 2008.

[2] G. C. Murphy, M. Kersten, and L. Findlater. How are
java software developers using the eclipse ide? IEEE
Software, 23(4):76–83, 2006.

[3] D. Rothlisberger, O. Greevy, and O. Nierstrasz.
Exploiting runtime information in the ide. In
Proceedings of the International Conference on Program
Comprehension (ICPC), pages 63–72, June 2008.

[4] D. Rothlisberger, M. Harry, A. Villazon, D. Ansaloni,
W. Binder, O. Nierstrasz, and P. Moret. Augmenting
static source views in ides with dynamic metrics. In
Proceedings of the International Conference on
Software Maintenance (ICSM), pages 253–262, 2009.

[5] J. Sillito, G. C. Murphy, and K. D. Volder. Questions
programmers ask during software evolution tasks. In
Proceedings of the International Symposium on the
Foundations of Software Engineering (FSE), pages
23–34, 2006.

[6] J. Starke, C. Luce, and J. Sillito. Searching and
skimming: An exploratory study. In Proceedings of the
International Conference on Software Maintenance
(ICSM), pages 157–166, 2009.

	Introduction
	Motivation
	Approach
	Preliminary Evidence
	Addressing Overwhelming Queries
	Aggregate Results
	Partial System Results

	Discussion
	Validity
	Presenting Filtered Results
	Future Work

	Conclusion
	References

