Searching APl Usage Examples in Code Repositories with
Sourcerer APl Search

Sushil Bajracharya

Joel Ossher

Cristina Lopes

Donald Bren School of Information and Computer Sciences
University of California, Irvine
{sbajrach, jossher, lopes}@ics.uci.edu

Categories and Subject Descriptors

D.2 [Software Engineering]; H.3, H.5 [Information Systems]:
Information Storage and Retrieval, Information Interfaces and Pre-
sentation

Keywords

Search Driven Development, Software Information Retrieval, API
search, Exploratory Code Search, Search User Interface

ABSTRACT

We present Sourcerer API Search (SAS), a search interface to find
API usage examples in large code repositories. SAS facilitates find-
ing API usage examples by providing three unique features: (i)
code snippets view for each result that shows the portions of code
where APIs are used; (ii) Tag-cloud view of popular words to fa-
cilitate query reformulation, and (iii) filtering results using APIs to
narrow search results. Furthermore, SAS uses a code index where
each code entity is indexed with terms not only found in the entity
but also in other entities having similar API usage. These features
make SAS a novel search interface to find API usage examples in
code repositories.

1. INTRODUCTION

Developers often learn to work with APIs by looking at exist-
ing examples [14]. Large code repositories host thousands of
projects where many instances of API usage can be found. These
instances of API usage can serve as examples from which devel-
opers can learn about using APIs to solve particular programming
tasks. Existing Code search engines allow developers to search
in large amount of underlying source code (for summary of code
search engines, see [11]), but it is difficult to use these code search
engines to find examples of API usage. Two factors contribute
to this problem. First, source code compared to natural language
text, has a scarcity of words that describe the entities defined and
used in the code. This makes it more prone to the vocabulary mis-
match problem [6]. Second, a code entity (such as a file, class or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SUITE ’ 10, May 1 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-962-6/10/05 ...$10.00.

a method) returned from a code search engine often is too coarse-
grained and large in size. When such entities are returned in search
results, it if often difficult to locate the right position where one
can see the relevant APIs being used. Code search engines often
include snippets of code in the results page that allow users to see
if the returned result is relevant, but such snippets often do not in-
clude code parts that use APIs of interest.

This paper presents Sourcerer API Search (SAS), a novel code
search interface built on top of Sourcerer infrastructure, that makes
searching for API usage examples in code repository easier for de-
velopers. In particular, SAS incorporates the following features:
(1) Uses a code index that harvests more words for a code entity by
seeding its index field with terms from similar entities, (ii) Gener-
ating and showing code snippets showing API usage, (iii) Aiding
query reformulation by showing Tag-cloud of popular words for
the current query, and (iv) Using popular APIs as filters to narrow
down results.

In the rest of the paper we first illustrate how the features of
SAS facilitate locating API usage examples by walking through a
scenario where a developer is interested in finding examples for
copying clipboard data in Eclipse framework. Second, we discuss
how usage information available in SourcererDB [13], the program
fact database in Sourcerer, is leveraged to implement the features
used in SAS. Third, we discuss related work. Finally, we conclude
by discussing future directions for SAS.

2. SOURCERER API SEARCH - SAS

To demonstrate the features of SAS, we will use a scenario where
a developer wants to learn about the APIs to copy data from the
clipboard in the eclipse framework !. Figure 1 shows the search
interface of SAS. When a user enters a query such as “copy data
from clipboard”, SAS presents three major information as results:

e Tag-cloud: On top is a list of popular words found in the
results in a Tag-cloud format. This Tag-cloud is generated
by analyzing the names of the top code entities in the results
(hits), the names of top APIs used by the hits, and the names
of entities that have similar API usage as the hits.

e Hits with Snippets: Below Tag-clouds, on the right hand side
is a list of code entities that match the query. The fully qual-
ified name and a code snippet extracted from the source file
of the code entity is shown as a hit. The code snippet is a col-
lection of code lines preceded with a comment that indicates
what API is used in the following line.

e Top APIs: Below the Tag-cloud and to the left is the list of
popular (top) APIs that are used in the hits. This list serves

'Current version of SAS is tied to an underlying repository that
contains source code of the Eclipse framework

SOURCERER ¢ copy data from clipboard|

Popular Words (click to add to query)

drag transfer drop contents instance perform

validate text debug handle ui constants swt selection
plugin event project

Top APIs (Click to filter results) Results (Click for detail

+ Interfaces

org.eclipse.ui,

-
\

Classes run

TextTransfer org.ecli
Transfer org.eclipse.s
DND org.eclipse.swt.dn
ResourceTransfer o
MarkerTransfer org.

List of top APIs
canbeusedto ,
filter results

Hide Advance

Tag-cloud suggests

editor foreground col

Showing 1 to 10 of 98 results

s) Navigate ist| < -

views.navigator.PasteAction,

ResourceTransfer,getInstance|

e
. Code Snippet Preview

* Implementation of method defined

FileTransfer org.eclips - -

Clipboard org.eclipse.swt.dn rel public void run() { hlghllghts APIS used
< - // try a resource t E

=TT ResourceTransfer resTransfer = Resource rgetInstance();
getInstance org.eclipse.swt.dnd. TextTransfer.getins!
setContents org.eclipse.swt.dnd.Clipboard.setConten PR o I
getInstance org.eclipse.swt.dnd.FileTransfer.getlnst: IRes;:;;e‘[:‘:]—{::;;;i:;r‘);:;—C;i f;z;;gsi;;???o:ii;board
getInstance org.eclipse.ui.part.ResourceTransfer,get .getContents(resTransfer);
getInstance org.eclipse.ui.part.MarkerTransfer.getln

Figure 1: Sourcerer API Search - Features

transfer contents from clipboard

SOURCERER

API Filters Applied (click to remove)

Popular Words (click to add to query)

Hide Advanced

getContents org.edipse.swt.dnd.Clipboard.getContents{org.eclipse.swt.dnd. Transfer)

Clipboard org.eclipse.swt.dnd.Clipboard
TextTransfer org.eclipse.swt.dnd. TextTransfer

Top APIs (Click to filter results) Results (Click for details)

+ Interfaces

S org.e

or clip: . di

Classes

Clipboard org.eclipse.swt.dnd.Clipboard
TextTransfer org.eclipse.swt.dnd. Text]

if (clipb
* e

see http

curre.

Snippet View

dispose org

Navigate

copy paste can widget text

API Filters help
narrow down

execut

ist| < | > Showing 1 to 3 of 3 résults

oardData != null) {

xt widget sets

t.dnd.Transfer)

Object textData= clipboard.getContents(TextTransfer,getInstance());

Figure 2: Using top APIs to filter results

two purpose: (i) it immediately shows the important APIs
that are required to solve the programming task addressed by
the query, and (ii) By clicking on a particular API element in
the list, the search result can be filtered to all those entities
that use that API element.

Upon getting a search result as shown in Figure 1, a user can
modify the query to “transfer contents from clipboard”, based on
the popular words shown in the Tag-cloud. A user can further filter
the results to those that use three top API elements getContents(..),
Clipboard, and TextTransfer. The result obtained after this in-

teraction is shown in Figure 2. It can be seen that the results have
been narrowed down to 2 from 98 (as in Figure 1), and the code
snippet shows the usage of all of the three selected APIs.

This scenario shows how SAS is different from existing code
search engines. SAS focuses on finding API usage examples, and
facilitates interaction that allows exploratory search for finding API
usage examples in the underlying code repository. Such interaction
has been shown to be effective in overcoming the vocabulary prob-
lem in search [9]. The prototype shown in the above figures is
available for use, along with the source code. Please refer to [1]
for further details.

3. IMPLEMENTATION

SAS has been implemented on top of the Sourcerer infrastruc-
ture. Sourcerer consists of set of tools and accompanying data to
analyse and search large amount of source code. Details on the in-
frastructure is available in existing references [2, 13]. SAS sends
the query given by a user to Sourcerer’s search service. The search
service is provided by Solr %, a front end to the Lucene * index that
is created from information stored in Sourcerer’s file repository and
SourcererDB [13].

3.1 Seeding Code Entity with Terms from Sim-
ilar Entity

SAS uses a code index that includes a field for each code entity
that contains terms extracted form other entities that are similar to
it. Using such an index has shown to be effective in increasing
retrieval performance in searching API usage examples [3]. Full
details of this indexing technique is out of scope for this paper. We
briefly present the idea here.

Computing Similar Entities based on Usage

A notion of similarity can be defined for code entities based on
their common usage profile. For example, the Eclipse framework
provides the method getDebugoption inside the class p1at form lo-
cated in the package org.eclipse.core.runtime. This method can
be used to retrieve a value from a file storing a list of key/value
pairs related to enabling options while running a Plugin in the de-
bug mode. Some methods in the Eclipse framework that call this
API have names such as: configurePluginDebugOption, start,
startupComplete, initDebugTracing, initializeJFace, €lC. Each
of these methods is similar to the rest based on their functionality
of retrieving a value for a debug option. Inspecting the names of
these methods show that the names of the methods that use a com-
mon API method are made up of words having similar meaning;
for example, ‘start’, ‘init’, ‘startup’, and ‘initialize’. These exam-
ples suggest that using API usage similarity, we can harvest similar
words to describe code entities.

Following the same approach as used by Bruch et al. in [4], us-
age information for each code entity is encoded as a binary vector.
After obtaining this binary feature vector for each code entity, a
neighborhood of similar users is obtained using various similarity
measures for binary vectors. The FQNs of top 45 entities from such
a neighborhood are extracted and stored back in SourcererDB for
each code entity. This information is later retrieved during index-
ing a code entity to fill the respective usage similarity fields with
the short names extracted from the FQNs of similar entities. For
the purpose of SAS, we used the Tanimoto Coefficient [18] simi-
larity as it turned out to be the best in terms of increasing retrieval
performance in our evaluation [3].

Zhttp://lucene.apache.org/solr/
3http://lucene.apache.org

3.2 Listing Top APIs

To list the top APIs, SAS fetches top-k hits from the results re-
turned by the Sourcerer’s search service (served via Solr server).
And, for each hit in the top-k list, it queries SourcererDB for the
used entities. Among these used entities, all entities that are used
by more then 3 entities in the hits are included in the top APIs list
*_This process is shown in Algorithm 1.

input : hits = top ‘k’ hits returned as search results; where, k
= max_of(10, 10% of total hits)

output: top_used = list of top used entities

begin

list_eid = all entity ids from hits;

/* getTopApis(..) selects top 5 non-JSL (Java Standard
Library) entities of each type (Interface, Method,
Constructor, Classes) from SourcererDB such that they
are used by at least 3 entities in the hits ¥

top_used = getTopApis(hits);

end
Algorithm 1: Getting the list of top used entities

3.3 Snippet Extraction Details

The search results from Sourcerer’s search service is a ranked
result of code entities (hits) found in the index. The search tool
also returns the total number of entities in the index that match the
query. For each hit the corresponding ‘entity_id’ is available. Fur-
ther details about the code entity can be queried from SourcererDB
using the ‘entity_id’. Snippet extraction proceeds in two steps.
First, given a set of hits, a list of top used entities is generated as
discussed earlier and shown in Figure 1. Second, a code snippet is
extracted from a code entity, given the list of top used entities and
the entity id. The algorithm for this process is shown in Algorithm
2.

3.4 Tag-cloud generation

To generate the Tag-cloud SAS uses a list of words extracted
from the short names of the fully qualified names of code entities
extracted from: (i) top-k entities in the result, (ii) top APIs used by
top-k entities, and (iii) 30 * k similar entities, 30 for each entity in
top-k hits. The weight of each word is proportional to the frequency
of the word in the list, thus popular words appear bigger and earlier
in the Tag-cloud.

4. RELATED WORK

The search interface of SAS is largely motivated by MICA [15],
a search interface that allows developers to find APIs using Google.
One contribution of SAS is that it demonstrates how an exploratory
code search interface can be built solely based on information ex-
tracted in source code (unlike MICA). The technique to extract
code snippets and top APIs is based on finding popular APIs among
their users. This is similar to the work done in finding API hotspots
[17]. Commenting code snippets with used APIs is motivated by
the “Rationale” view in Strathcona that shows similar information
about the code example it returns [10]. The idea of using API calls
to improve retrieval has been explored before. SNIFF is a tool that
improves retrieval by indexing client code with API documentation
[5]; Exemplar is an application finding tool that uses API usage in-
formation to find relevant applications in a code repository [7]. Fi-
nally, the idea of providing interactive feedback using Tag-clouds

“We set ‘k’ to maximum of (10, 10% of total hits) after some ex-
perimentation

input : eid = entity id, top_used = top used entities

output: snip = an annotated code snippet

begin

snip = empty string;

forall used_entity IN top_used do

/* getPosition(..) returns the position in the file for
entity_id using SourcererDB */

position = getPosition(entity_id);

/* createRationale(..) selects relation type and FON of
used entity and creates a rationale as a comment */

rationale = createRationale(used_entity,entity_id);

/* extractFragment(..) extracts the surrounding
expression in a code entity from position ¥

snip_fragment = extractFragment(entity_id,position);

/* Below, append(a,b) returns a new string by
appending string ‘b’ to ‘a’. Condition is true if
rationale and snip_fragment do not already exist in
snip. ¥

if append(rationale,snip_fragment) ¢ snip then

snip = append(snip,rationale);
snip = append(snip,snip_fragment);
end

end
end
Algorithm 2: Snippet Extraction

and filtering based on APIs is motivated by the work in exploratory
code search [12], in particular WordBars [9], and faceted-search

[8].

S. FUTURE DIRECTION AND CONCLUSION

In this position paper we have demonstrated how usage informa-
tion in code repositories can be leveraged to build an exploratory
interface to find API usage examples. We implemented and demon-
strated SAS as a prototype. Future directions for SAS includes a
better usability study to assess its feasibility. We are interested in
evaluating our hypothesis whether the exploratory interface SAS
offers to find API usage examples can make developers more ef-
fective and efficient while they are searching for information on
working with APIs. We believe features of SAS are complemen-
tary to existing alternatives such as Stratchona [10] and ParseWeb
[16], especially because these tools are not designed to work with
natural language queries. However, these tools provide better facil-
ities for comprehending APIs, we look forward to investigate how
features of SAS can complement such existing tools.

6. REFERENCES

[1] Sourcerer wiki page on sourcerer api search tool
http://wiki.github.com/sourcerer/Sourcerer/sas.

[2] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer: An
internet-scale software repository. In First Intl. Workshop on
Search Driven Development - Users, Infrastructure, Tools
and Evaluation. ICSE 2009, 2009.

[3] S. Bajracharya, J. Ossher, and C. Lopes. Leveraging usage
similarity for effecive retrieval of examples in code

[4

—

[5

—

(6]

[7

—

(8

—_—

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

repositories. Manuscript Under Preparation, 2010.

M. Bruch, M. Monperrus, and M. Mezini. Learning from
examples to improve code completion systems. In
Proceegings of FSE, pages 213-222, Amsterdam, The
Netherlands, 2009. ACM.

S. Chatterjee, S. Juvekar, and K. Sen. SNIFF: A Search
Engine for Java Using Free-Form Queries. In Fundamental
Approaches to Software Engineering, pages 385-400. 2009.
G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T.
Dumais. The vocabulary problem in human-system
communication. Commun. ACM, 30:964-971, 1987.

M. Grechanik, K. M. Conroy, and K. A. Probst. Finding
Relevant Applications for Prototyping. In Proceedings of the
Fourth International Workshop on Mining Software
Repositories, page 12. IEEE Computer Society, 2007.

M. Hearst, A. Elliott, J. English, R. Sinha, K. Swearingen,
and K. Yee. Finding the flow in web site search. Commun.
ACM, 45(9):42-49, 2002.

O. Hoeber and X. D. Yang. Evaluating WordBars in
exploratory web search scenarios. Inf. Process. Manage.,
44(2):485-510, 2008.

R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 117-125, New York, NY, USA,
2005. ACM Press.

O. Hummel, W. Janjic, and C. Atkinson. Code conjurer:
Pulling reusable software out of thin air. IEEE Softw.,
25(5):45-52, 2008.

G. Marchionini. Exploratory search: from finding to
understanding. Commun. ACM, 49(4):41-46, 2006.

J. Ossher, S. Bajracharya, and C. Lopes. SourcererDB: An
aggregated repository of statically analyzed and cross-linked
open source java projects. In MSR 2009: 6th IEEE Working
Conference on Mining Software Repositories, 2009.

M. B. Rosson and J. M. Carroll. The reuse of uses in
smalltalk programming. ACM Trans. Comput.-Hum.
Interact., 3(3):219-253, 1996.

J. Stylos and B. A. Myers. Mica: A Web-Search tool for
finding API components and examples. In Proceedings of the
Visual Languages and Human-Centric Computing, pages
195-202. IEEE Computer Society, 2006.

S. Thummalapenta and T. Xie. Parseweb: a programmer
assistant for reusing open source code on the web. In
Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pages
204-213, Atlanta, Georgia, USA, 2007. ACM.

S. Thummalapenta and T. Xie. SpotWeb: detecting
framework hotspots via mining open source repositories on
the web. In Proceedings of the 2008 international working
conference on Mining software repositories, pages 109—112,
Leipzig, Germany, 2008. ACM.

P. Willett, J. M. Barnard, and G. M. Downs. Chemical
Similarity Searching. Journal of Chemical Information and
Computer Sciences, 38(6):983-996, Nov. 1998.

