Facilitating the Comparison of Software Retrieval Systems

through a Reference Reuse Collection

Oliver Hummel
Software Engineering Group
University of Mannheim
68131 Mannheim, Germany
Phone: +49621/181-39 29

hummel@informatik.uni-mannheim.de

ABSTRACT

Although the idea of component-based software réwzsebeen
around for more than four decades the technologyefieving

reusable software artefacts has grown out of ifanicy only
recently. After about 30 years of basic researchtiith scientists
struggled to get their hands on meaningful numinéreeusable
artifacts to evaluate their prototypes, the “opearse revolution”
has made software reuse a serious practical pligsiblillions of

reusable files have become freely available ancersophisticated
retrieval tools have emerged providing better wafysearching
among them. However, while the development of ssypdtems
has made considerable progress, their evaluatigtilisiargely

driven by proprietary approaches which are all éften neither
comprehensive nor comparable to one another. Hdanc#is

position paper, we propose the compilation of aeresfce
collection of reusable artifacts in order to faeile the future
evaluation and comparison of software retrievalsoo

Categories and Subject
[Information Storage and Retrieval]:
standards.

Descriptors: H.3.7
Digital Libraries -

General Terms. Measurement, Standardization.

Keywords:  Component-based  software
information retrieval, reference reuse collection.

1. INTRODUCTION

Mainly triggered by the “open source revolutionfetresearch
effort spent on the retrieval of reusable softwargfacts has
experienced a tremendous boost in recent yearshoddh

software reuse was identified as a promising aproto

overcome the “software crisis” over four decades Hd, and a
number of seminal publications (such as [10] o) [d&livered
important groundwork for current software retriev@stems,
reuse research struggled to produce practicallples@sults, as
e.g. effective repository systems and integrate@EAools to use

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeighed that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oe finst page. To copy
otherwise, or republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.

SUITE ‘1Q May 1 2010, Cape Town, South Africa.

Copyright 2010 ACM 978-1-60558-962-6/10/05.

development,

them. Previous research identified a lack of relesaktifacts as
one of the main reasons for this dilemma and prego®
overcome this by crawling the WWW and the repogtoof open
source hosting sites for reusable software as$6}s This idea of
internet-scale software search engines clearlyaspr®t only in
the research community that developed search emgineh as
Spars-J [4], Merobase [8], or Sourcerer [11], buindustry as
well (see e.g. the code search engines of Googtelets or
Krugle). Today, there are at least a dozen softwaegch engines
available on the web. They mostly allow users tarce for
reusable source files based upon retrieval algostbf different
sophistication (see e.g. [8] for a more comprehensiverview).
But not only the back-end search functionality iowyed
considerably in recent years, but also the usert feads. While a
web-based “google-style” search interface is pestsayfficient for
occasional users, Ye [14] was amongst the firstaiehers that
realized it would be more effective if software dipers had
proactive tool support directly in the IDEs thew aising for their
development work. His so-called CodeBroker wasptio@eering
tool that monitored the activities of a developed automatically
proposed reuse candidates that it considered apat®p
However, CodeBroker was only based on a rather|smeake
collection. Only Hummel et al.’'s Code Conjurer t¢8] recently
integrated powerful retrieval algorithms, a largemponent
collection and a proactive recommendation engin® ithe
widespread Eclipse IDE. Other noteworthy progrestudes the
work of Inoue et al. [4] that adapted Google's weadpp-based
Pagerank algorithm to software retrieval by priniiig search
results according to the frequency they are useathor artifacts.

However, although all these approaches are ceytaistep in the
right direction and brought new and interestinga&lénto the
community they all share one significant probleno date,
evaluations of these tools are largely based oprtary data
and thus there is currently no way to compare thegults,
making it hard for researchers to give clear recenmhations to
practitioners that might contemplate the use ohsatool. As for
example stressed by Basili [2Proposing a model or building a
tool is not enough. There must be some way ofatidigl that the
model or tool is an advance over current modelstaols”.
Interestingly, this is a problem that is or hasrbskared by other
communities as well. First and foremost, it is dieathe
information retrieval community [12], which is olouisly closely
related with component retrieval anyway, that wagegencing
similar problems. In the early years of this comitythere were
also a lot of new and exiting ideas as well asqiypes around,



but the proprietary (and often expensive) evaluatiperformed
on them were usually not very helpful and especialbt
comparable with each other. However, this commuwiyg able
to overcome this challenge by defining so-calledersnce
collections basically comprising a large collect@frdocuments, a
number of challenges for retrieval systems and eRkpected
solutions for them (e.g. [15]). The second comnwnitat is
struggling with the comparability of its tools iset rather young
community trying to retrieve and orchestrate (seipnweb
services. It has been trying to compare the systefgheir
contributors by organizing challenges (e.g. htsmg-
challenge.org) where the tools are supposed toesalgiven
exercise by orchestrating a number of servicesamew service.
This is another interesting idea that we shall pipkagain later in
this paper.

1.1 Overview

Given the open issues discussed above, the cénérale of this
position paper is to propose the establishmentrefexence reuse
collection that is intended to offer researcherstandard to
evaluate their retrieval systems. In our view twi#i bring two
significant advantages - first it will simplify ¢hevaluation of new
tools for individual researchers since it will nonger be
necessary for them to gather up an own collectiah aecond, it
of course facilitates the direct comparison of apphes and
tools. The remainder of this paper is structuredodews: First
we very briefly introduce some foundations fromommhation
retrieval that explain how retrieval systems areally evaluated
there before we take a look on the current statdhefart in the
evaluation of software retrieval systems and thEsdhat we have
identified. After that we propose to create a reusterence
collection in order to facilitate the evaluationsafftware retrieval
solutions and briefly discuss some research clgdkemssociated
with this idea. Finally, we conclude our paper with brief
summary of our contribution.

2. FOUNDATIONS

Since software (component) retrieval is based ozasdfrom
general information retrieval (IR) to a large extehmakes sense
to shed some light on the foundations coming frbm area. In
IR, so-called recall and precision are acceptedhasstandard
measures for determining the efficiency of retriesgstems.
Recall is defined as the proportion of all relevdatuments that
have been retrieved from a document collectiorafgiven query
and precision is the proportion of the retrieveduduoents that are
relevant to the query. A more formal descriptiorthefse concepts
is provided by [12], for example. However, thisidéfon makes
one important assumption, namely, that the proportif relevant
documents in the collection is known a priori, @rpguisite
which is unfortunately not valid for queries inentet-scale web
search engines, for instance. In this context, [#sents two
common criticisms that used to plague informatietrieval (IR)
research, namely the lack of a solid formal frantdwvend the lack
of consistent testbeds and evaluation framewonkréstingly,
software engineering in general, and software eedti in
particular, are obviously subject to the same aisithns (see e.g.
the works of Basili [2] resp. Mili et al. [3]).

Due to the inherent psychological subjectiveness@ated with
information understanding by humans, the IR comiyumas only
acted upon the second problem so far: retrievatcgmhes (i.e.

algorithms and tools) for textual information retral are typically
compared via so-called reference collections whpreries are
applied to a well-known collection of documents éinel expected
results are determined by experts. However, uhgl $o-called
TREC (for Text REtrieval Conference) collection [15] with more
than one million documents was established in ity e1990s,
experimentation in information retrieval was alsodnated by
small and proprietary “proof-of-concept” test catiens (often
involving expensive experiments with humans) foanhe thirty
years. As mentioned before, for collections ofgniicant size it
becomes a challenge to identify all relevant doausdor a
query. This, however, is necessary to determieeythality of the
systems under evaluation with the help of recall arecision.
Thus, a trick had to be applied for creating theETRcollection
since its document base is simply too large to beptetely
overseen by humans: only the queries for evaluatiegsystems
were thought out by experts, the list of relevaotuients was
created by selecting only those documents that veeteally
regarded as being relevant by experts out of thelteedelivered
from various IR systems. With this information (ehiis clearly
not perfect, though) it has become much more éflecto
compare various information retrieval approachegh wone
another and to derive recall and precision for thema
comparable way. In turn, this has facilitated timpriovement of
the IR systems themselves as e.g. reported in [15].

2.1 Application to Component Retrieval

Clearly, it is not a new idea to apply recall anegsion to
software retrieval systems, this has already beew é long time
ago. For example, Mili et al. tried to estimatesta@alues for the
various retrieval methods they identified in theiell-known
survey on the topic [3]. However, as stated by dlhors, a
software retrieval process typically involves twideria because a
candidate artifact can indeed fulfil the matchimgndition of one
specific retrieval technique, but may not necebsamatch a
user’s relevance criterion. For example, a simggword-based
search technique might retrieve 20 source filechiag the term
“customer” but only 2 of them might actually fulfthe user’s
requirements for a customer component (perhapsother 18
only have a reference to a customer object etd)tlereby fulfil
his relevance criterion. Obviously, finding a gooelevance
criterion is another challenge for the evaluatioh software
retrieval systems. This becomes even clearer winenbecomes
aware that there are at least five basic softwatieval
techniques (and thus different matching conditioti&gt were
identified by Mili et al. From today’s point of wewe prefer to
consider their sixth (so-called topological) retebmethod as an
approach for ranking results according to theisetess of match
to a given query.

3. PROBLEM STATEMENT

Mature research in software reuse, however, is mgegrs
younger than in information retrieval. Thus, itimportant to
mention again that the notion of relevance is tjedifferent
compared to textual retrieval systems. While thtetgdocuses on
“merely” finding meaningful documents in naturahdmage, the
basis for software retrieval are programming lamggsaand their
more formalized constructs (such as objects or corapts).
Thus, it is possible to define a much tighter dgbn of relevance
in the context of software reuse. In the optimaleca component



can be considered relevant if it matches all reglisyntactical
(i.e. the signature) as well as the semantic {fae.functionality)
properties to 100%. However, while syntactic matghiis
essentially a question of pattern matching, itdsguaranteed that
a syntactic match also delivers relevant resultstarms of
functionality. In contrast, relevance in textualfoimation
retrieval does not require an exact syntactic maghhere exist
various ways to express the same information inrahtanguage.
Actually, this is true for software as well, buttiodately, a
reusable piece of software will only be relevanatdeveloper if it
fully complies with his initial specification.

In other words, the ultimate relevance criteriom $o retrieved
software artifact is that it can be deployed andsed “as is” in a
given context without any manual modification orapthtion.

Thus, potential adapter creation must rather begidhe retrieval
system than another burden for the developer. tnfately, the
few practical evaluation attempts known from litara so far
often did not find a practical means to unambiglospecify

when an artifact is relevant and thus confined geues to check
the matching condition of the underlying retrievagorithm

instead of the relevance criterion. Clearly, tH&anakes it hard
if not impossible to replicate the evaluations &émas to compare
different retrieval algorithms with each other. Bvi@ the high-

profile publication of Inoue et al. [4] the matchinondition used
is not made explicit, but it seems likely that iasvmerely the
appearance of a specific term in the source codenittedly, the

clear specification of software systems and comptmés a

challenge that has been plaguing software engimgdar many

decades and only recently the test-driven developeammunity

[5] has found a simple and practically usable sotuto overcome
it. Their idea of using test cases as a specifindor components
has been picked up and applied by a number of n&sers in a
reuse context, recently [6], [9], [11]. This soledl test-driven
reuse approach seems to be promising for setfing reference
reuse collection as we will discuss in the nextisac

The second central problem that has been bothezsearchers in
the component retrieval community for a long timasvgetting a
large enough software collection in their handsusThearly
research in the 1990s was based on small and ptagpri
collections with merely a few hundred componenez (s.g. [7],
[14]). Even worse, due to the small number of congmis
indexed in these prototypes, the experimental tasksl for the
respective evaluations look very much as if theyewelearly out
of necessity) optimized for the contents of theos{ory. Thus, it
is very difficult to judge whether these tools wabtiave received
the same impressive appraisals in scaled-up enviats
containing millions of artifacts. Only very recentthe growing
amount of open-source software available on thertet allowed
carrying out experiments with larger collectionr Fnstance,
Inoue et al. [4] have experimented on about 150.60
collected in SparsJ, the Sourcerer search engigt lmsLemos et
al. e.g. in [11] has collected about 560.000 fdesl Hummel [8]
and Reiss [9] experimented with the help of thedeangines
Merobase resp. Google Codesearch that each canthiions of
indexed artifacts.

4. SOLUTION OUTLINE

As comparability and reproducibility are the tenets good
research [2], it is certainly important that oumgounity joins
forces in order to define a reference collectiontf® evaluation

of software retrieval tools and algorithms. At fisgght, it looks as
if we have all ingredients ready: millions of scaifdes are freely
available from the Internet, new technologies available to

better assess the relevance of reusable artifadtsva should be
able to use seminal ideas from the informationees and web
service communities as a basic blueprint for ofartf. Thus, our
initial proposal for a reuse reference collectionludes indexing
a larger number of open source projects in ordegstablish the
base collection. Second, a survey of previous ®@luations
should be carried out in order to identify usahhel @xpressive
enough reference examples that can be used wihhicdllection
and to create new ones if necessary. Last but ewdt,| clear
criteria need to be established when a component lma
considered as relevant for a given query. Given tbeent
experience with test-driven reuse, it seems promisd use test
cases as the final relevance criterion, as, tokaowledge, test-
driven reuse is the software retrieval techniquectwhcomes
closest to the demand of being a precise relevamiterion

(assuming of course that the test cases are “gomdigh”).

Furthermore, it is even usable with a reasonableuammof effort.

However, this clearly is an important decision s televance
criterion needs to be carefully chosen in ordealtow it to be

used with any other retrieval approach as well[18] we were

able to show that it is indeed possible to deriverigs for older
search techniques (such as keyword or signaturehmat [3])

from test cases with little effort. Based upon thisting

prototypes, it thus seems feasible to identify miial set of

relevant components for each query in the referatkection

which could later be extended if better systemaighéind more

reusable candidates. Once this has been accomplistganizing
challenges for retrieval systems similar to the wsdrvice

community is a logical consecutive step.

4.1 Open Challenges

Query definition, however, is not the only seriaygestion that
needs to be addressed; there are a number of faitters that
make the creation of a reference collection inveafe retrieval
even more challenging than it was in informatiotriegal about
twenty-five years ago. One important differencensen the two
areas is the fact that source files can not onlgdmed in various
human languages, which is a similar challenge tat tm
information retrieval, they can also we written irarious
programming languages for various platforms. Tlituis, an open
question whether e.g. Java can be accepted adinged franca”
of such a reference collection and the insightsegiwith it can
be easily transferred to other programming langsiaae well.
Even worse, software can appear in source or birfiarm,
whereas the latter is typically much less suited domponent
retrieval since there is fewer metadata (such asceocode or
comments) available to facilitate e.g. keyword-blasearches. In
the extreme case, software might even be delivased service
where, by definition, no introspection is possibte thus no use
of any kind of additional “internal” information gossible.

A second very fundamental issue is the questiontat kinds of
software should be supported by the reference ataite So far
we have implicitly talked about software artifadtsat exhibit
functionality only via well-defined interfaces. Ehiclearly
includes classes and operations in object-oriel@aduages and
(web) services, but it is not yet clear how to deh and how to
specify class assemblies and larger components sash
subsystems, for example. Another issue that aviséssoftware



is that it can have various dependencies on otttiéaas, which
means that a component might consist of multipléd-su
components or classes and also might require addlti
components (i.e. libraries) to function. A thirdgmsificant
difference between documents and software is that latter
typically keeps evolving even after a first versibas been
published. Hence, if we assume that we will purthesfirst naive
approach of crawling various open source projestthea starting
point for a reference collection, it is an open sjign whether it
should remain static and thus may contain a snapelith
unfinished and faulty files forever or whetherhtibsild be updated
on a regular basis. The second option will, howexast likely
alter the set of relevant components for the qeeggch time an
update is performed. Furthermore, if we allow adaph of
retrieval results it must be asked how much admptathould be
allowed resp. required. In other words, may an stagmply be
a 1:1 wrapper or should it be possible that a fe¢sigle adapter
can compose a number of pieces into a larger whole?

Finally, another research question arising is wethe proposed
reference collection should focus purely on therieeal of
reusable material as discussed so far? HummelH{a8jdentified
a basic set of further “usage modes” for softwatdeval systems
that might be worth supporting, too. For instandeseems
reasonable to use such a system in order to séaramissing
libraries or to find the source code of a spedifgen source file
more quickly than by browsing the web and checkiraut from
its version control system. However, to our knowledhere is
currently no comprehensive compilation of possiidage modes
for software retrieval systems beyond the preliminaverview
given by Janjic et al. [17] and consequently hasd to tell which
of them should be supported in a reference codlacti

5. CONCLUSION

In this position paper we have explained that tleecgived
significant improvements made with the developmemtd

implementation of component retrieval solutionségent years,
have not yet been backed up by a similar improvenneterms of
their evaluation. We have identified two main obka that
hindered a systematic assessment of retrieval appes in the
past, namely the limited availability of large egbusoftware
collections and the difficulty in defining an expséve relevance
criterion for retrieved reuse candidates. These tpaints

obviously forced researchers in the past to comevitip ad hoc
evaluation approaches that were all too often rmadloto the
retrieval solution they were intended to test. Ehgr the
repeatability of evaluations was, and still is, @hd limited

making the comparison of reuse approaches and reeadations
for their practical usage hard if not impossiblaug, in this paper
we have proposed to develop a software retrievéérance
collection analogue to the collections built by timformation

retrieval community when it was faced with similemallenges
some twenty years ago.

However, while the idea of setting up a referenclection of
reusable components, example queries and expeedts is
straightforward, the road to its implementation filled with

obstacles. Amongst others, we have especially iftkhtthe
challenges of finding and formulating meaningfulference
queries and relevance criteria as the most impbtsks that
need to be tackled in order to create a usefuteaée collection.
Nevertheless, should our community be able to @mecthese

challenges it could benefit considerably from thffort which
might help to pave the way towards robust intesuate
component markets as envisaged by Mcllroy ovey fgetirs ago.

6. REFERENCES

[1] Mcllroy, D.: Mass-Produced Software Components,
Software Engineering: Report of a conference spaksby
the NATO Science Committee, Garmisch, Germany, 1968

[2] Basili, V.: The Experimental Paradigm in Software
Engineering, LNCS 706, Springer, 1993.

[3] Mili, A., R. Mili and R. Mittermeir: A Survey of Stware
Reuse Libraries, Annals of Software Engineeringj%®8.

[4] Inoue, K., R. Yokomori, H. Fujiwara, T. Yamamoto, M
Matsushita, S. Kusumoto.: Ranking Significance af\8are
Components Based on Use Relations, IEEE Transaotion
Software Eng., Vol. 31, No. 3, 2005.

[5] Beck, K. Test-Driven Development by Example, Addiso
Wesley, 2003.

[6] Hummel, O. and C. Atkinson: Extreme Harvesting:tTes
Driven Discovery and Reuse of Software Components,
Proceedings of the Intern. Conf. on Information §eand
Integration, 2004.

[7] Podgurski, A., Pierce, L. Retrieving reusable safenby
sampling behavior. ACM Transactions on Software
Engineering and Methodology (Vol. 2, Iss. 3), 1993.

[8] Hummel, O., Janjic, W., Atkinson, C. Code Conjurer:
Pulling Reusable Software out of Thin Air, IEEE Sdaire
(Vol. 25, Iss. 5), 2008

[9] Reiss, S.P. Semantics-based code search. Proe Iftt
Conference on Software Engineering, 2009.

[10] Zzaremski, A.M., Wing, J.M. Specification Matchinf o
Software Components. ACM Transactions on Software
Engineering and Methodology (Vol. 6, Iss. 4), 1997.

[11] Lemos, O., Bajracharya, S., Ossher, J., MorlalMRsiero,
P., Baldi, P., Lopes, C. CodeGenie using Test-dases
Search and Reuse Source Code. Proc. of the Infef@émce
on Automated Software Engineering, 2007.

[12] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Informati
Retrieval. Addison Wesley, 1999.

[13] Hummel, O.: Semantic Component Retrieval in Sofewar
Engineering. PhD dissertation, Univ. of Mannhei®02.

[14] Ye, Y.: Supporting Component-Based Software
Development with Active Component Repository System
PhD dissertation, University of Colorado, 2001.

[15] Voorhees, E.M., Harman, D.K.: TREC: Experiment and
Evaluation in Information Retrieval. MIT Press, 300

[16] Hummel, O., Atkinson, C.: Using the Web as Reuse
Repository, Proc. of the Int. Conf. on Software &g12006.

[17] Janjic, W., Hummel, O., Atkinson, C.: More Archedyp
Usage Scenarios for Software Search Engines. Bftice
International Workshop on Search-driven Development
Users, Infrastructure, Tools and Evaluation, 2010.



