Fostering Synergies — How Semantic Web Technology
could influence Software Repositories

Michael Wirsch
wuersch@ifi.uzh.ch

Serge Demeyer>k
demeyer@ifi.uzh.ch

Gerald Reif
reif@ifi.uzh.ch

Harald C. Gall
gall@ifi.uzh.ch

Department of Informatics, University of Zurich
Zurich, Switzerland

ABSTRACT

The state-of-the-art in mining software repositories stores soft-
ware artifacts from various sources into monolithic relational
databases. This puts a lot of querying power in the hands
of the software miners, however it comes at the cost of en-
closing the data and hamper cross-application reuse. In this
paper we discuss four problem scenarios to illustrate that Se-
mantic Web technology is able to overcome these limitations.
However, it requires that the software engineering research
community agrees on two prerequisites: (a) a common vo-
cabulary to talk about software repositories — an ontology;
(b) a strategy for generating unique and stable references to
all software artifacts inside such a repository — a Universal
Resource Identifier (URI).

1. INTRODUCTION

Over the last decade, the software engineering commu-
nity developed various tools which help engineers to spec-
ify, develop, test, analyze, and maintain software. Most of
these tools use proprietary data formats to store their arti-
facts. This hampers tool-interoperability and renders query-
ing difficult, especially when you want to query across tool
domains. Queries such as “In which release was this bug
fixed and which source code modifications where necessary
to fix it?”, however, involve several domains (i.e., static source
code, version control, issue tracking).

The mining software engineering community has tackled
this issue by mirroring software artifacts from various sources
in a central (relational) database [6]. This additional querying
power gave rise to numerous experiments where researchers
successfully mined such databases for interesting patterns
(see [11] for an overview; specific examples can be found
in [3,8,9,16]). Unfortunately, such a central database imposes

*Prof. Demeyer is also affiliated with the Lab On Reengi-
neering — University of Antwerp

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SUITE ’ 10, May 1 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-962-6/10/05 ...$10.00.

a universal data schema onto all contributing tools, turning
the software repository into a rigid and inflexible monolith.
Especially when integrating tools supplied by different re-
search groups, such a software repository is nothing more
than the kind of stovepipe systems we all resent.

Semantic Web technology has been designed as a solution
to such integration problems. In a nutshell, it provides a stan-
dardized, well-established framework that allows data to be
shared and reused across application, enterprise, and com-
munity boundaries. It does so by means of two concepts: (a)
ontologies and (b) Universal Resource Identifiers (URIs). The
former provides the formal vocabulary that applications can
use to exchange semantically rich data, by defining the enti-
ties in the domain of discourse and the relationship between
them. The latter is a unique and stable reference to all pos-
sible entities which enable hyperlinks between semantically-
annotated data in one place with data in other places.

In this paper we argue that the use of Semantic Web tech-
nology enables the construction of highly interlinked and dis-
tributed knowledge bases, which form the basis for flexible
queries and data analysis. Using four scenarios, we demon-
strate several problems with the current state of the art, i.e.,
centralized databases. For each of the scenarios we also show
how Semantic Web technology may come to the rescue. We
conclude the paper with a research agenda which lists the
prerequisites that need to be resolved before these scenarios
can be realized.

2. THE SEMANTIC WEB IN A NUTSHELL

The Semantic Web was designed to be an extension of the
Web as we know it today, enriching it with meta data de-
scribing the semantics of Web pages to make their content
computer-processable. To describe information on Web pages
with meta data accordingly, an ontology has to be defined that
formally describes the concepts (classes) found in the domain
of discourse, the relations between these concepts and the
properties used to describe them [10]. These principles are
not restricted to Web pages but can be applied to any kind
of data. In the software engineering domain, for example,
we can define concepts, such as User, Developer, Bug, Module;
relationships, such as reports bug, fixes bug, and is assigned to
bug. Since the Semantic Web describes this information based
on formal semantics, data can be exchanged among two ap-
plications that support the same ontology, even if they were
not meant to interoperate in the first place.



The Resource Description Framework (RDF) [13] is the data-
model for representing meta data in the Semantic Web. The
RDF data-model formalizes meta data based on subject — pred-
icate — object triples, so called RDF statements. RDF triples are
used to make a statement about a resource in the universe of
discourse. A resource can be almost anything: a bug report,
a person, a Web page, a CD, a track on a CD, etc. Every re-
source in RDF is identified by a Uniform Resource Identifier
(URI) [2].

In an RDF statement the subject is the thing (the resource)
we want to make a statement about. The predicate defines
the kind of information we want to express about the subject.
The object defines the value of the predicate. The data-model
of RDF is a graph where the subject and object are the nodes
and the predicate is a labeled, directed arcs pointing from the
subject to the object. The query language SPARQL [15] can
be used to query such RDF graphs.

3. SCENARIOS

In the following, we list typical problem scenarios in the
context of software analysis and software repository infras-
tructure. For each problem, we identify the key challenges it
brings and elaborate on traditional solutions and their short-
comings, before we outline how the Semantic Web could re-
solve the issue. In Section 4, we set up a research agenda our
community needs to work on.

Scenario 1: A Shared Vocabulary

Description: Alice has just started a Ph.D. having the working ti-
tle “On the Influence of the Programming Language on the Occur-
rence of Bugs in Open Source.” In particular, she is curious about
whether certain language features are misleading developers to in-
troduce defects. After a thorough discussion with her promoter, she
realizes that she needs to build up a query-able knowledge base con-
taining a substantial amount structural information about source
code of various open source project, as well as related bug reports.
She plans to investigate projects written in Java and C# first, as
the languages share many similarities. She reasons about a suit-
able meta model to represent her data and whether there are already
existing parsers that she could adapt, so that she would not need to
start from scratch.

Key Challenges: One of the critical design aspects when
building a knowledge base is to define a meta model that
describes the data in an adequate level of detail. To share
data among different tools and knowledge bases, they need
to understand the same vocabulary.

Traditional Approaches: In practice, there are a number
of meta models, for example for source code, that define the
same concepts, but name them differently. For example, C++
Data Model [5] of Chen and the FAMOOS Information Exchange
Model (FAMIX) of Tichelaar et al. [17] can both be used to
describe source code written in C++. Although they share
many commonalities, tools written to work on FAMIX can
not process instances of Chen’s model and vice versa. Fur-
ther, the meta models are often implemented in terms of a re-
lational database schemas. Exchanging schemas among dif-
ferent databases, however, is relatively uncommon, due to
vendor-specific implementations of data definition languages.
Instead, and despite the advent of specialized exchange for-
mats, such as XMI [14] or GXL [18], data is often serialized
into plain XML or a comma separated value (csv) format.
These formats are not semantics-preserving and therefore of

limited use.

The Semantic Web Approach: The Semantic Web provides
a framework to structure data so that it becomes machine
processable. The Web ontology language OWL is used to
model the vocabulary of a domain [7] by describing proper-
ties and classes; for example, relations between classes (e.g.,
inheritance relationships, disjointness), cardinalities, equal-
ity, or characteristics of properties (e.g., inverse, symmetry).
These vocabularies are called ontologies and have explicit
formal semantics. While it is uncommon to exchange rela-
tional database schemas, ontologies were explicitly designed
to be shared. They can be serialized using the RDF/XML
standard and exchanged without the loss of data semantics.

Scenario 2: Linked Data

Description: When Alice presents her first workshop paper, she
rans into Bruce who is a Ph.D. student too. Bruce is focussing on
bug prediction and has also put online a knowledge base, already
containing hundreds of systems written in Smalltalk. Alice realizes
that the work of Bruce is likely to provide complementary insights
on her own research and convinces her promotor to set-up a one
week research visit to investigate whether it would be possible to
merge the two databases.

Key Challenges: To interlink repositories on the Web, a
flexible data model is needed that allows to expose references
to data stored within a repository to the outside. It further
should provide means to describe relationships between en-
tities stored in different locations. These references need to
remain stable over time to guarantee data consistency across
the repositories.

Traditional Approaches: With classical relational database
technology alone, synergies between research tools are hard
to exploit. For example, we cannot simply establish connec-
tions between data stored in EVOLIZER [9] and Sourcerer [1],
as it is not possible to set a link from one repository to an-
other — relations are local, not universal. Cross-domain que-
ries spanning multiple repositories are impossible.

The Semantic Web Approach: While the Semantic Web
is no panacea, one of its driving forces is the basic assump-
tion that data becomes more useful the more it is interlinked
with other data. The simple but powerful concept of state-
ments represented by triples of URIs can be used to build
an internet-scale graph of information because it enables us
to link and query data that is stored in different locations.
Queries on this graph are also possible, thanks to the query
language SPARQL.

Let us assume that we build our repositories the way that
they generate and expose an URI for every software artifact
that they store, and that these URIs are also dereferenceable
over the Internet. Then consider a Java class called Foo to be
stored in one repository — maybe Sourcerer, a search engine
for open source code — together with other classes and data
about the relationships between them. Assume further that
a particular bug report with the number 124 is hosted in a
completely independent repository, for example, a Bugzilla
or Jira issue tracker, along with other reported bugs, infor-
mation on their interdependencies, severity and priority, at-
tachments and related discussion threads from bug reporters
and developers, and so on. A statement stating that the bug
#124 affects the Foo class can then be stored in a third repos-
itory, possibly our release history database called EVOLIZER.
The following s-p-o triple shows how such a statement could
look like:



http://bugzilla.myProject.org/bugs/nrl24
http://myBugOntology.org/affects
http://sourcerer.ics.uci.edu/myProject/Foo. java.

Given this triple, client applications, as well as humans,
can easily follow the links to access the raw resources and use
either the subject, object, or even the predicate as an input for
further SPARQL queries.

Scenario 3: Traceability of Results

Description: Alice is working together with Bruce on her first
journal publication describing an empirical study that they have
conducted together. To allow other researchers to replicate their re-
sults they describe precisely which system releases they used for
their study, using the sentence “To demonstrate that our novel
approach shows good prediction performance, we selected the five
most recent releases from ArgoUML ...”. Moreover, Alice stores
all the data, as well as the detailed results, into a comma separated
file, places it on a Web server. In her paper, she lists a link referring
to the replication package.

Key Challenges: The origin of scientific results should be
traceable and independently replicable. It has to be made
clear what data has been analyzed, i.e., meta data needs to
be supplied along with the results. For example, which Java
classes were analyzed in particular? Which versions were
considered? Was only code on the trunk of a version con-
trol system considered, or code in all branches equally? The
analysis itself needs to be described in similar detail. What
preprocessing steps were applied? Was there any filtering
necessary? How did the queries look like exactly?

Traditional Approaches: Publications on empirical stud-
ies or machine learning applications in the context of soft-
ware evolution usually list releases of systems being investi-
gated. In addition, authors often provide input and output
files for statical tools, such as R (http://www.r-project.
org/). On the one hand, these files do not contain any raw,
but rather preprocessed — and therefore potentially biased
— data. This makes it harder to extend studies of other re-
searchers, because, while preprocessing, subtle differences
due to implementation issues can accumulate. On the other
hand, the provided input and output files are in the xml or
csv format and, as such, do not contain any semantics. This
potentially makes them harder to reuse in other tools.

The Semantic Web Approach: In mature scientific fields,
authors of publications are requested to provide enough in-
formation to allow their findings to be replicated by some-
one else working independently. Same counts for software
engineering research and the Semantic Web may contribute
in that respect. RDF statements and URIs describe data un-
der analysis more accurately than sentences like “To demon-
strate that our novel approach shows good prediction performance,
we selected the five most recent releases from ArgoUML ...” In
addition, authors can make the SPARQL queries public that
they have used in their analysis and, since the results are rep-
resented again as RDF statements, they can directly be pro-
cessed in other tools for further investigations, e.g., as input
for another query.

Scenario 4: Relations

Description: Alice has finished her Ph.D. and managed to build
an integrated repository to store and query vast information about
source code, related bugs, and — thanks to a couple of busy master’s

students — also requirements documents, such as use case descrip-
tions, and even data about developers, e.g., their code ownership
and social network connections. Bruce is more than impressed and
starts to explore the repository by querying. In particular, he is
interested in finding all kinds of relations between developers and
particular Java classes.

Key Challenges: The quality of a meta model has direct
impact on the effectiveness of search interfaces: the meta
model (as well as the query language used to query the model)
needs to be expressive to allow a broad range of queries and
its structure needs to be simple to keep the complexity of
common queries, as well as the cost of executing them, low.

Traditional Approaches: There is no consistent way to get
the meaning of a relation in relational databases. In fact, a
query can join tables by any columns which match by data
type — without any check on the semantics. While humans
can often guess the meaning of a relation, computers can not.
They need to be supplied with additional information. It is
therefore necessary to encode a significant amount of implicit
knowledge into our applications to make use of the data. To
search in an existing repository or to build an own tool on
top of it, researchers need to be aware of, and understand
this implicit semantics.

The Semantic Web Approach: The SPARQL query lan-
guage allows, in particular, to query explicitly for relations
among resources. Consider the following example query that
selects all direct relations between a given developer and a
particular Java class:

SELECT ?relation
WHERE {
developer:idl101 ?relation javaclass:DBaccess . }

The basic graph pattern in the example above consists of a
single triple pattern with one variable (?relation). The triple
pattern matches all triples where the subject is the developer
with the id 101 and the object is a Java class called DBaccess,
respectively. Each solution gives one way to bind an RDF
property to the ?relation variable. The SELECT clause spec-
ifies that the ?relation variable is returned as query result.
This example demonstrates a SPARQL query which returns
the relation between two resources.

These kind of queries are impossible in the relational and
in the object-oriented paradigm, unless relationships are ex-
plicitly mapped to tables or, in the case of object-orientation,
modeled as association classes. The latter, however, can make
them difficult to distinguish from “real” classes. Given the
high importance of relationships in software engineering, it
would be preferable to model them as first class objects —
which is exactly what the Semantic Web does.

4. RESEARCH AGENDA

To take advantage of the Semantic Web like envisioned
in the scenarios above, the software engineering community
should address the following challenges.

Challenge 1: Formalize a common vocabulary to describe
software artifacts and their relationships in terms of an on-
tology. It is relatively uncommon to exchange relational da-
tabase schemas among different databases but ontologies were
explicitly designed to be shared. This also means that one
should re-use existing vocabularies whenever possible to en-
able client applications to process and search in data from
many different sources more easily. It is also common prac-
tice to mix terms from existing vocabularies. Several ontolo-



gies for the domain of software engineering already exist.
Some examples are: Description of a Project (DOAP) (http://
trac.usefulinc.com/doap), a vocabulary to describe soft-
ware projects, and in particular open source. The Bug And

Enhancement Tracking LanguagE (baetle) (nttp://code.google.

com/p/baetle/) describes information kept in bug databases
and re-uses, among others, the DOAP ontology. EvoOnt [12]
and our Software Engineering Ontology (SEON) (see http://
evolizer.org/) both define a vocabulary to represent infor-
mation found in version control and issue tracking systems.
They also include an ontology for Java source code. This
non-exhaustive list of existing ontologies can serve as good
a starting point but also needs consolidation and refinement,
driven by real scenarios and applications developed by re-
searchers in our domain. In other words, it is a community
effort to define an ontology, since it manifests the common,
shared data model to represent the data a domain.

Challenge 2: Devise strategies to generate URIs for ar-
tifacts of software projects. While redundancy is generally
less a problem in the Semantic Web, compared to the rela-
tional paradigm, it is crucial that every software artifact can
be uniquely identified — and that these URIs can be deref-
erenced and remain stable over time. Further, a strategy for
generating an URI needs to be deterministic and reproducible
by other tools. This means that if we parse, for example, the
contents of a version control system twice and, in each pass,
generate URIs for the source code artifacts found, then the
URISs of each pass need to be identical.

S. CONCLUSIONS

In this paper, we have explained how Semantic Web Tech-
nology can be used to construct the next generation of soft-
ware repositories. In our vision, software repositories should
blend into a query-able global information space of inter-
linked data about all possible software engineering artifacts.
However, it requires the software engineering community to
agree on two issues: (a) an ontology to describe the software
artifacts and their relationships; (b) a strategy for generating
URISs for such software artifacts.

In the meantime, what should happen to the existing repos-
itories? Indeed, research groups have invested a significant
amount of effort in building these software repositories: it
is unrealistic — but, fortunately, completely unnecessary — to
throw them away. A tutorial on How to Publish Linked Data
on the Web can be found in [4]. The tutorial also features
a section on how to publish existing relational database as
Linked Data and lists several tools to do so. So migration
strategies that allow for an incremental adoption of ontolo-
gies and URIs are entirely feasible, and we encourage the re-
search community to make the necessary preparations.

6. REFERENCES
[1] Sushil Bajracharya, Joel Ossher, and Cristina Lopes.

Sourcerer: An internet-scale software repository. In
Proc. ICSE Workshop on Search-Driven
Development-Users, Infrastructure, Tools and Evaluation,
pages 1-4, Washington, DC, USA, 2009. IEEE
Computer Society.

[2] Tim Berners-Lee, R. Fielding, and L. Masinter. RFC
2396 - uniform resource identifiers (URI). IETF RFC,
Aug. 1998. http://www.ietf.org/rfc/rfc2396.txt.

[3] Jennifer Bevan, Jr. E. James Whitehead, Sunghun Kim,
and Michael W. Godfrey. Facilitating software

evolution research with Kenyon. In Proc. Joint European
Softw. Eng. Conf. and ACM SIGSOFT Symposium on the
Foundations of Softw. Eng., pages 177-186. ACM, Sept.
2005.

[4] Chris Bizer, Richard Cyganiak, and Tom Heath. How to
publish linked data on the web. http://www4.wiwiss.
fu-berlin.de/bizer/pub/LinkedDataTutorial/,
Last visited Jan. 2010.

[5] Yih-Farn Chen, Emden R. Gansner, and Eleftherios
Koutsofios. A c++ data model supporting reachability
analysis and dead code detection. IEEE Trans. Softw.
Eng., 24(9):682-694, 1998.

[6] Marco D’ Ambros, Harald C. Gall, Michele Lanza, and
Martin Pinzger. Analyzing software repositories to
understand software evolution. In Software Evolution.
Springer-Verlag, Heidelberg, Germany, 2008.

[7] Mike Dean and Guus Schreiber eds. OWL Web Ontology

Language Reference. W3C Recommendation, Feb. 2004.

http://www.w3.0rg/TR/owl-ref/.

Michael Fischer, Martin Pinzger, and Harald Gall.

Populating a release history database from version

control and bug tracking systems. In Proc. Int’l Conf.

Software Maintenance, pages 23-32, Sept. 2003.

Harald C. Gall, Beat Fluri, and Martin Pinzger. Change

Analysis with Evolizer and ChangeDistiller. IEEE

Softw., 26(1):26-33, Jan./Feb. 2009.

[10] Thomas R. Gruber. A translation approach to portable
ontology specifications. Knowledge Acquisition, 5(2):199
-220,1993.

[11] Huzefa Kagdi, Michael L. Collard, and Jonathan I.

Maletic. A survey and taxonomy of approaches for

mining software repositories in the context of software

evolution. J. Softw. Maint. Evol., 19(2):77-131, 2007.

Christoph Kiefer, Abraham Bernstein, and Jonas

Tappolet. Mining software repositories with iSPARQL

and a software evolution ontology. In Proc. Int’l

Workshop on Mining Software Repositories, page 10,

Washington, DC, USA, 2007. IEEE Computer Society.

[13] Graham Klyne and Jeremy ]. Carroll eds. Resource
Description Framework (RDF): Concepts and Abstract
Syntax. W3C Recommendation, Feb. 2004. http:
//www.w3.0rg/TR/2004/REC-rdf-schema-20040210/.

[14] Object Management Group. XML Metadata
Interchange (XMI). Technical Report OMG Document
ad/98-10-05, Feb. 1998.

[15] Eric Prud’hommeaux and Andy Seaborne eds.
SPARQL query language for RDF. W3C
Recommendation, 15 Jan. 2008.
http://www.w3.0rg/TR/rdf-sparql-query/.

[16] Jacek Sliwerski, Thomas Zimmermann, and Andreas
Zeller. When do changes induce fixes? In Proc. Int’l
Workshop on Mining Software Repositories, pages 1-5,
New York, NY, USA, 2005. ACM.

[17] Sander Tichelaar, Stéphane Ducasse, and Serge
Demeyer. FAMIX and XML. In Proc. Working Conf.
Reverse Eng., page 296, Washington, DC, USA, 2000.
IEEE Computer Society.

[18] Andreas Winter, Bernt Kullbach, and Volker Riediger.
An overview of the GXL graph exchange language. In
Revised Lectures on Software Visualization, International
Seminar, pages 324-336, London, UK, 2002.
Springer-Verlag.

—
Q0
[

[©

—_—

[12

—



