
Towards Integrating E-Mail Communication in the IDE

Alberto Bacchelli, Michele Lanza, Vitezslav Humpa

REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

ABSTRACT
Software developers spend a large part of their working time
using an Integrated Development Environment (IDE). How-
ever, IDEs are usually disconnected from the means of com-
munication programmers use to interact and discuss with
other co-workers. Because of this, many context switches
are required and the existing connection between source code
artifacts and artifacts generated from recorded communica-
tions, such as e-mails, cannot be effectively put to good use.

In this paper, we introduce Remail, an Eclipse plugin to
integrate e-mail communication in the IDE. It allows devel-
opers to seamlessly handle source code entities and e-mails
concerning the source code. We present our preliminary
work on Remail that allows linking source code classes to
the e-mails in which they are discussed, thus providing an
updated and effective documentation.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring, reverse engineering, and reengineering

1. MOTIVATION
In 2006 LaToza et al. reported the results of an extensive

study on developers’ work habits conducted at Microsoft
Corporation [8]. They proposed two surveys to software
developers to understand how their work is conducted. An-
alyzing hundreds of replies and interviewing eleven devel-
opers, they concluded that software documentation is com-
monly inadequate, outdated, and hard to retrieve or link to
actual source code entities. This is due to the fact that de-
velopers create and maintain implicit mental models of the
source code. For this reason, developers who need to un-
derstand source code entities (e.g., to know the design ra-
tionale behind a certain implementation, which is the most
common information need for a developer [7]) have to query
other programmers. Unplanned face-to-face meetings are
the favorite communication means in this kind of situation,
preferred over e-mails or instant messaging (IM) [7].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SUITE ’10, May 1 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-962-6/10/05 ...$10.00.

This way of communication has serious drawbacks: fre-
quent disruption of developers’ attention (workers are inter-
rupted every 7 minutes [10]), concentration of the knowledge
about a part of code in a few developers, and inapplicability
to globally distributed development projects, such as open-
source ones. In addition, the information exchange that
takes place in face-to-face meetings can be neither recorded,
nor traced, so it cannot be used to update and improve exist-
ing written documentation, which will therefore be increas-
ingly outdated and unreliable, generating a vicious cycle.

In their research, LaToza et al. also analyzed how and
where developers used their time to understand, design, and
communicate about source code. To understand some code,
most of developers’ time (more than 60%) is spent on read-
ing, comparing, and debugging. Developers perform all these
actions inside an IDE. To design new parts of the system,
the IDE is still the first used application (being at a consider-
able distance from the second means, i.e., the whiteboard).
When not communicating face-to-face, developers communi-
cate through e-mails. However, no matter how much related
these e-mails are to software development, they are managed
by programs that are external to the IDE, sometimes even
in a web browser, and are completely disconnected from the
software development itself. This is a major problem in a
serious and consistent adoption of e-mails as a means of
communication in software development: Since e-mail com-
munication is not integrated in modern IDEs, developers are
forced to interrupt their programming activities and change
context every time they need to deal with e-mails, and there
is no possibility to easily have traceability links connecting
e-mails with source code entities.

While e-mails cannot substitute other means of commu-
nication (e.g., design documents, commit comments), and
are less pleasant than face-to-face meetings, they offer an
effective way to exchange software development related in-
formation: E-mails are less disruptive for developers’ con-
centration and can be recorded and traced. An integration
of e-mails in the IDEs, the environment in which develop-
ers spend the vast majority of their working time, can offer
these advantages and improve e-mail usage.

In this paper, we present Remail, a plugin for Eclipse1,
an open source IDE, we are devising to integrate e-mail
support in the programming environment. We report our
preliminary work, and we show how -in the context of the
IDE- source code entities can be linked to the related e-mails
fast and effectively, using lightweight linking techniques we
assessed in our previous work [3, 5].

1http://www.eclipse.org/

http://www.eclipse.org/

2. COMMUNICATION
According to Tom De Marco, the principal work of soft-

ware developers is “human communication to organize the
users’ expressions of needs into formal procedure” [9]. We
analyze the communication means used by developers to ex-
change source code related information. We present their
advantages and drawbacks comparing them to e-mail, to give
the grounds to our decision to improve e-mail adoption.

Face-to-face is considered the most effective communi-
cation form by collocated software developers [8]. It pro-
motes camaraderie and no effort is wasted recording design
information that might be outdated before being read [7].
However, if we consider a project in the long-term, face-
to-face communication is not optimal. It is not scalable
and is disruptive for developers: programmers are often in-
terrupted by colleagues asking questions and must spend
much time both to answer them and to regain the lost con-
centration necessary to complete the task they were doing
before they were interrupted. These conversations are not
recorded, thus they cannot contribute to the project doc-
umentation. Finally, this communication form cannot be
applied in a globally distributed development environment.

Design documents span up to high level concerns and
design rationales, which are among the most popular in-
formation needs of developers [7]. However, since design
documents are written before the actual source code im-
plementation and they usually present the software design
at a high level of abstraction, they are more difficult than
e-mails to be linked to the source code entities they are re-
lated to [1, 5]. In addition, developers often regard design
documents as“write-only media” [8], as they are difficult and
cumbersome to evolve along with the rest of the system, and
not all the developers have the right to modify them.

Code comments have the advantage of being already
linked with source code entities they are referring to. How-
ever, source code comments have a very definite and narrow
focus (e.g., they cannot be used to describe design rationale),
and in the case they refer to entities in the source code other
than those which include them, these are linked only in de-
veloper’s mind. Moreover, developers perceive source code
comments as extremely “authoritative” [8]: Adding or mod-
ifying code comments means actually committing a change
in the source code repository, and this automatically labels
the modifier as an “expert” of that piece of code. E-mails,
on the contrary, can be more informal as they report the
individual point of view of the author. Finally, source code
comments cannot be used as a place to conduct discussions.

Commit comments are linked to specific files and ver-
sions. Over code comments, commit comments can have a
broader focus, because they are linked to more than a sin-
gle source code file (i.e., all the committed files). However,
in practice, they are only used for short descriptions about
code changes or fixes. As commit comments, it is not pos-
sible to “reply” to them and start a discussion. In order to
overcome this limitation, modern source code management
systems provide facilities to forward commit notifications
and comments to development mailing lists.

Bug reports: Broadly used issue/bug tracking systems
(e.g., Bugzilla2, Jira3, Mantis4) offer to developers the pos-

2http://www.bugzilla.org
3http://atlassian.com/software/jira
4http://www.mantisbt.org

sibility to not only create and manage issue reports (e.g.,
trough insertion, modification, deletion), but also to com-
municate with the reports in a threaded fashion. Through
pattern matching and heuristics, it is possible to find the
traceability links between bug reports and source code files
with a good precision [6]. However, the communication in
bug reports must be focused to the issue itself and it hardly
crosses these borders: As opposed to e-mails, it is uncom-
mon to find high level concerns or design rationale discussed
in this media. As a confirmation about the reduced focus
of bug reports, new developers are commonly employed to
work on bug fixing, as it requires less design knowledge than
implementing new features [8].

Instant Messaging: Developers exchange synchronous
messages using real-time communication protocols (e.g., Jab-
ber, Internet Relay Client (IRC)). Although this genre of
communication is not much used in collocated industrial set-
tings [7, 8], it is widely employed by communities of open
source developers, for rapid coordination and as a means
to conduct online meeting that discuss development issues
[11]. The advantage of IM consists in almost immediate re-
sponses, the parallel participation of many people, and the
availability of light and effective protocols. Unfortunately,
the synchronous aspect of IM, while improving the dynamics
of interactions, brings also disadvantages when compared to
asynchronous means, such as e-mails: IM causes interrup-
tions to developer concentration (similarly to face-to-face
meeting), it can create difficulties for developers residing in
different time-zones, and it does not allow later-replies (e.g.,
replies to finished online meetings). Moreover, the kind of
jargon used in IM is generally terse, implicit, and noisy, hav-
ing an impact on traceability.

E-Mails: In the surveys by LaToza et al., developers re-
ported that e-mail questions take hours, if not days, to re-
ceive a response, that the e-mail meaning is often misunder-
stood by the reader, and that e-mails are tedious to write [8].
These problems are also common in other means such as de-
sign documents or bug reports, and partially in IM. However,
e-mails offer advantages that make them one of the optimal
choices between all the communication means: They can be
used to discuss issues ranging from low-level decisions (e.g.,
implementation, bug fixing) up to high-level considerations
(e.g., design rationales), they can be written and read by
both software system developers and beta-testers or end-
users, they always come with additional information (e.g.,
time-stamp, thread, author) that can be taken into account,
they can be linked to any source code entity they are related
to, they can be used to study the evolution of a system, and
they can be employed in the prediction of defect-prone en-
tities [2].

For all these reasons, we consider e-mail as one of the best
candidates to improve the communication between develop-
ers. Our goal is to support in a seamless way e-mail com-
munication within integrated development environments.

3. REMAIL
In this section we present the architecture of Remail, the

Eclipse plugin we are developing to integrate e-mail commu-
nication in the IDE. Remail allows a developer, without ever
exiting from the Eclipse IDE, to select a Java class, auto-
matically retrieve all the related messages from a specified
e-mail archive, and read them in a convenient way.

http://www.bugzilla.org
http://atlassian.com/software/jira
http://www.mantisbt.org

I

II

III

Figure 1: The Remail Eclipse plugin

3.1 E-Mail archive
The current implementation of Remail relies on an exter-

nal database managed by the DBMS PostgreSQL5, which
stores all the e-mails pertaining to the chosen software sys-
tem, and it is used by Remail to retrieve the e-mails related
to the chosen class with a specific technique.

A Remail compatible database, containing mailing lists
from thousands of open source projects, can be generated
through Miler, a tool infrastructure we devised to analyze
mailing lists [4]. Using Miler, it is possible to import any
mailing list offered by the free service MarkMail6 and store
it in a database as requested by Remail. For example, while
developing our plugin, we used the free-software project
Freenet7 as a case study. The complete source code repos-
itory for this project is easy to access and to import, but
the mailing list archives are only accessible from web pages
that do not offer any concrete importing functionality. Us-
ing Miler, we imported and stored, in a Remail-compliant
database, the org.freenetproject.devl mailing list, which
contains discussions concerning the Freenet development.

3.2 Eclipse integration
Figure 1 shows how Remail is integrated in the Eclipse

IDE. First of all, the menu in the “Package Explorer”, a
panel that is commonly used to navigate through the classes
of a Java project (Figure 1, Point I), has been extended with
a new entry: When a developer selects and right-click on a
class she is offered the option “E-mail Recommender”. As
shown in Figure 2, it contains a sub-menu that allows the
user to select the preferred class-to-mails linking technique.

5http://www.postgresql.org/
6http://markmail.org/
7http://freenetproject.org/

Figure 2: Linking Technique Selection

The six lightweight approaches proposed to find the class-
to-mails link were assessed in previous work [3]. The sub-
stantial difference between the methods is the average pre-
cision and recall when finding the links they recommend.
Precision and recall are widely-known metrics used in the
Information Retrieval field: the latter specifies how many
links between all those present are retrieved by the tech-
nique, while the former measures how many links are cor-
rect over all the links recommended by the technique. For
example, the “Class name, Case Insensitive” method offers,
on average, a high recall, but a low precision: this technique
finds more links compared to the others, but many of them
can be not relevant. The method “Strict Regular Exp.”, in-
stead, recommends less links (i.e., with a low recall), but
more relevant (i.e., with a high precision).

Once a technique is clicked, after a few seconds, the users
is notified with the number of mails retrieved, and the “E-
mails” panel is filled as shown in Figure 1, Point II. E-mails
are sorted by date and their subject is visible. As opposed to
what we did in our previous work [3], we did not remove from

http://www.postgresql.org/
http://markmail.org/
http://freenetproject.org/

the e-mail archive all the messages automatically generated
by the source code management system, in this way e-mails
containing commits and commit comments related to the
chosen class can be retrieved.

From the “E-mails” panel, the user can double-click on
any e-mail and see the content in the “E-mail content” panel
(Figure 1, Point III). The panel also contains the e-mail
subject, the author’s e-mail address, the date, and the list
in which it was submitted. Thanks to the format in which
e-mails are imported by Miler, it is also possible to show
the e-mail content using different colors according to the
quotation level (as usually done in popular mail clients).
Finally, as shown in the figure, the name of the class from
which the searching started is red colored, making it easier
to find parts of the content specifically referring it.

4. RELATED WORK
Holmes and Begel devised Deep Intellisense, a Visual Stu-

dio IDE plugin that links a number of artifacts (e.g., bug re-
ports, e-mails, code changes) to source code entities. It uses
an implicit query system [12] to find links and offer them in
an inverted chronological order. Our work focus on e-mail
communication, and offers different linking techniques to be
used according to developers’ needs. In addition, we plan
to completely integrate e-mail communication in the IDE to
avoid any context switch, while Deep Intellisense relies on
external applications to handle the different artifacts.

Official support to communication has started to be fea-
tured by different IDEs: Eclipse, NetBeans8, and IntelliJ
IDEA9 offer an integration to issue tracking systems and IM
communication. NetBeans and IntelliJ offer new IM proto-
cols with features thought for software development, such
as “code pointers” –references to a particular point in a file,
and visualization of differences between files opened by two
developers that are messaging each other.

IBM Jazz10 offers a framework, built on top of Eclipse, to
support collaborative software development. It features IM
communication in the IDE, and uses the concept of “work
items” to track and coordinate development tasks and work-
flows. Each work item is connected to other artifacts (e.g.,
builds, defect reports, change sets, or source code entities).
While Jazz advises the use of a brand new technology, we
decided on harnessing the power of e-mails, a pre-existing
popular communication means successfully adopted by de-
velopers of a vast majority of software projects.

5. CONCLUSION
We introduced Remail, an Eclipse plugin we are develop-

ing to integrate e-mail communication in the Eclipse IDE.
We motivated our work through an analysis of developers’
communication habits. We showed how we integrated Re-
mail in Eclipse and how it offers class-to-emails traceabil-
ity. Finally, we presented how current work towards com-
munication in IDE is related to ours. As our future work,
we plan to extend Remail (1) allowing developers to use e-
mail archives in different formats, (2) offering mail-to-classes
traceability (i.e., access the source code of classes mentioned
in e-mails), (3) enabling developers to write e-mails from the

8http://netbeans.org/
9http://www.jetbrains.com/idea/

10http://jazz.net/

IDE, making it easy to annotate them with references to se-
lected classes, (4) adding a not-intrusive notifier that tracks
new e-mails about classes in which a developer is interested.

Acknowledgments We gratefully acknowledge the fi-
nancial support of the Swiss National Science foundation
for the project “DiCoSA” (SNF Project No. 118063).

6. REFERENCES
[1] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia,

and E. Merlo. Recovering traceability links between
code and documentation. IEEE Transactions on
Software Engineering, 28(10):970–983, 2002.

[2] A. Bacchelli, M. D’Ambros, and M. Lanza. Are
popular classes more defect prone? In Proceedings of
FASE 2010 (13th International Conference on
Fundamental Approaches to Software Engineering),
pages xxx–xxx, 2010.

[3] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes.
Benchmarking lightweight techniques to link e-mails
and source code. In Proceedings of WCRE 2009 (16th
IEEE Working Conference on Reverse Engineering),
pages 205–214. IEEE CS Press, 2009.

[4] A. Bacchelli, M. Lanza, and M. D’Ambros. Miler - a
tool infrastructure to analyze mailing lists. In
Proceedings of FAMOOSr 2009 (3rd International
Workshop on FAMIX and Moose in Reengineering),
2009.

[5] A. Bacchelli, M. Lanza, and R. Robbes. Linking
e-mails and source code artifacts. In Proceedings of
ICSE 2010 (32nd International Conference on
Software Engineering), pages xxx–xxx, 2010.

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In Proceedings of ICSM 2003 (19th
IEEE International Conference on Software
Maintenance), pages 23–32. IEEE CS, 2003.

[7] A. J. Ko, R. DeLine, and G. Venolia. Information
needs in collocated software development teams. In
Proceedings of ICSE 2007 (29th ACM/IEEE
International Conference on Software Engineering),
pages 344–353. IEEE CS, 2007.

[8] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits. In
Proceedings of ICSE 2006 (28th ACM International
Conference on Software Engineering), pages 492–501.
ACM, 2006.

[9] T. D. Marco. Peopleware - Productive Projects and
Teams. Dorset House, 1999.

[10] G. Mark, V. M. Gonzalez, and J. Harris. No task left
behind?: examining the nature of fragmented work. In
Proceedings of CHI 2005 (SIGCHI Conference on
Human Factors in Computing Systems), pages
321–330. ACM, 2005.

[11] E. Shihab, Z. M. Jiang, and A. E. Hassan. Studying
the use of developer irc meetings in open source
projects. In Proceedings of ICSM 2009 (25th IEEE
International Conference on Software Maintenance),
pages 147–156. IEEE, 2009.

[12] G. Venolia. Textual allusions to artifacts in
software-related repositories. In Proceedings of MSR
2006 (International workshop on Mining software
repositories), pages 151–154. ACM, 2006.

http://netbeans.org/
http://www.jetbrains.com/idea/
http://jazz.net/

	Motivation
	Communication
	Remail
	E-Mail archive
	Eclipse integration

	Related Work
	Conclusion
	References

