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Motivation: Documenting and Verifying 
Design Regularities

• Context: Intensional views

• Document & verify design regularities in source code

• Hard to document all regularities “by hand”

• Need for automation

• program comprehension techniques to discover these 
views and regularities

• Source code mining techniques in particular



Challenge: extracting design regularities 
from source code

• How to extract views & regularities from code?

• Need for automated code mining techniques

• Similar to aspect mining

• Based on data mining / code analysis / program 
understanding techniques

• FCA, clustering, clone detection, program slicing ...

• Extra difficulty: extract intension, not only extension

• not only the elements but also why they are related



Ongoing experiment

• A clever combination of

• Formal concept analysis (FCA)

• Intensional views

• alternative views

• parameterized views (to generate views from a 
template description)

• Automated classification and filtering

• Manual analysis, validation and refinement of results



Ongoing experiment: step 1

• Step 1: Formal concept analysis

• (finds groups of “objects” with shared “properties”)

• objects: all classes

• attributes: (we mix 3 kinds of attributes in 1 analysis) 

• have methods with similar name (keyword shared)

• implement same method (selector shared)

• in same hierarchy (parent classes shared)



Ongoing experiment: step 1 (details)
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Ongoing experiment: step 2

• Result step 1 = many potentially interesting “concepts”

• groups of classes that may share similar names, 
selectors and parent classes

• Step 2: generate an intensional view for each of these

• Elements of the view = all the classes in the group

• Alternative 1 : all classes with shared keywords

• Alternative 2 : all classes with shared names

• Alternative 3 : all classes with shared parents



Ongoing experiment: step 2 (details)
Parameterized view with 3 alternatives



Ongoing experiment: step 2 (details)
Analyze the generated views



Ongoing experiment: step 3

• Result step 2 = many views

• some with strongly correlated properties

• others with much less correlation (less interesting)

• Step 3: automatically separate interesting views from 
less interesting ones based on % of correlation

• Step 4: analyse resulting views manually to confirm or 
discard interesting regularities in the source code



Ongoing experiment: step 3 (details)
Automatic classification



Conclusion

• Discovering, documenting design regularities

• scaleable to large industrial software systems

• Requires techniques that mine the source code for 
design regularities

• So that we can codify these regularities intensionally 
and co-evolve them with the source code

• Prior experience with aspect mining and first 
experiments make us hopeful that it can be done


