
D
SER
L &

RELEASeD
REsearch Lab on software Evolution And 

software Development technology
Prof. Kim Mens

Co-evolving program code & design Dr. Johan
Reverse engineering & program understanding

Dr. Johan
Brichau

Software     Program querying Sebastián

Evolution     Source code mining and aspect mining GonzálezEvolution
Enforcing program & design regularities Diego

Diagnosing & resolving detected inconsistencies Ordóñez

Language engineering (AOP, COP, AmI) Sergio

Software Program transformation Castro

Development Generative programming Alfredo
Cádiz

Development
Declarative metaprogramming

Cádiz

Programming technology, languages, formalisms and tools
for

Programming technology, languages, formalisms and tools
for software development, maintenance and evolution

Programming technology, languages, formalisms and tools 
maintenance and evolution



Mining Source Code
for design regularities

(work in progress)
Kim Mens
RELEASeD group

Département d’ingénierie Informatique
Université catholique de Louvain

Andy Kellens
Programming Technology Lab

Vakgroep Informatica
Vrije Universiteit Brussel



Mining Source Code
for design regularities

(work in progress)
Kim Mens
RELEASeD group

Département d’ingénierie Informatique
Université catholique de Louvain

Andy Kellens
Programming Technology Lab

Vakgroep Informatica
Vrije Universiteit Brussel

(Gabriela Arevalo, La Plata)



Context: Intensional Views

all subclasses of 
abstract factory 

class

Factories

Products
creates

∀

∀
all subclasses 

of abstract product 
class



Context: Intensional Views

Products



Context: Intensional Views

Products



Motivation: Documenting and Verifying 
Design Regularities

• Context: Intensional views

• Document & verify design regularities in source code

• Hard to document all regularities “by hand”

• Need for automation

• program comprehension techniques to discover these 
views and regularities

• Source code mining techniques in particular



Challenge: extracting design regularities 
from source code

• How to extract views & regularities from code?

• Need for automated code mining techniques

• Similar to aspect mining

• Based on data mining / code analysis / program 
understanding techniques

• FCA, clustering, clone detection, program slicing ...

• Extra difficulty: extract intension, not only extension

• not only the elements but also why they are related



Ongoing experiment

• A clever combination of

• Formal concept analysis (FCA)

• Intensional views

• alternative views

• parameterized views (to generate views from a 
template description)

• Automated classification and filtering

• Manual analysis, validation and refinement of results



Ongoing experiment: step 1

• Step 1: Formal concept analysis

• (finds groups of “objects” with shared “properties”)

• objects: all classes

• attributes: (we mix 3 kinds of attributes in 1 analysis) 

• have methods with similar name (keyword shared)

• implement same method (selector shared)

• in same hierarchy (parent classes shared)



Ongoing experiment: step 1 (details)

This is the code

that performs the

concept analysis



Ongoing experiment: step 2

• Result step 1 = many potentially interesting “concepts”

• groups of classes that may share similar names, 
selectors and parent classes

• Step 2: generate an intensional view for each of these

• Elements of the view = all the classes in the group

• Alternative 1 : all classes with shared keywords

• Alternative 2 : all classes with shared names

• Alternative 3 : all classes with shared parents



Ongoing experiment: step 2 (details)
Parameterized view with 3 alternatives



Ongoing experiment: step 2 (details)
Analyze the generated views



Ongoing experiment: step 3

• Result step 2 = many views

• some with strongly correlated properties

• others with much less correlation (less interesting)

• Step 3: automatically separate interesting views from 
less interesting ones based on % of correlation

• Step 4: analyse resulting views manually to confirm or 
discard interesting regularities in the source code



Ongoing experiment: step 3 (details)
Automatic classification



Conclusion

• Discovering, documenting design regularities

• scaleable to large industrial software systems

• Requires techniques that mine the source code for 
design regularities

• So that we can codify these regularities intensionally 
and co-evolve them with the source code

• Prior experience with aspect mining and first 
experiments make us hopeful that it can be done


