
Are Java Programmers Transitioning to Multicore?
A Large Scale Study of Java FLOSS

Weslley Torres Gustavo Pinto Benito Fernandes
João Paulo Oliveira Filipe Ximenes Fernando Castor
Informatics Center, Federal University of Pernambuco, Recife, Brazil

{wst, ghlp, jbfan, jpso, fax, castor}@cin.ufpe.br

Abstract
We would like to know if Java developers are retrofitting appli-
cations to become concurrent and, to get better performance on
multicore machines. Also, we would like to know what concurrent
programming constructs they currently use. Evidence of how pro-
grammers write concurrent programs can help other programmers
to be more efficient when using the available constructs. Moreover,
this evidence can assist researchers in devising new mechanisms
and improving existing ones. For this purpose, we have conducted
a study targeting a large-scale Java open source repository, Source-
Forge. We have analyzed a number of FLOSS projects along two
dimensions: spatial and temporal. For the spatial dimension, we
studied the latest versions of more than 2000 projects. Our goal
is to understand which constructs developers of concurrent systems
employ and how frequently they use them. For the temporal dimen-
sion we took a closer look at various versions of six projects and
analyzed how the use of concurrency constructs has evolved over
time. In addition, we tried to establish if uses of concurrency con-
trol constructs were aimed at leveraging multicore processors. We
have downloaded more than two thousand Java projects including
their various versions, in addition to individual analysing about six
well known open-source projects.

Categories and Subject Descriptors: D.1.3 [Software Engineer-
ing]: Concurrent Programming

General Terms: Design, Experimentation

Keywords: Java, Open-Source, Concurrent, Parallel, Multicore

1. Introduction
In order to get real performance advantages of multicore machines,
programmers need to build parallel applications. However, building
this kind of application is a demanding and error-prone task [8, 15].
Many programming languages, e.g., Go, Scala, Java, Erlang, C#,
and Lua, implement their own constructs for concurrent/parallel
programming.

Considering the discrepancies among the many existing ap-
proaches for concurrent programming, we would like to know how
programmers use them, in terms of frequency of use, the system

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SPLASH’11 Workshops, October 23–24, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-1183-0/11/10. . . $10.00

evolution over time, and if programs are becoming more concur-
rent along their versions. More generally, we would like to know
what programming constructs developers actually use to build con-
current systems, and whether programmers are aware about evolu-
tion/transition from single core to multicore.

On the one hand, knowing how commonly programmers use
these constructs may help researchers to design new mechanisms
or improve existing ones, based on development practice. In addi-
tion, knowing how commonly programmers use these constructs,
can point out the real needs of developers, not only in terms of new
or improved mechanisms, but in terms of refactoring and reengi-
neering tools and techniques that can help them to incorporate these
mechanisms into existing systems.

On the other hand, developer awareness about these usage pat-
terns might lead to more efficient use of existing abstractions. Fi-
nally, for both researchers and developers, it is important to under-
stand trends in software engineering and only an empirical study
can gather that kind of information.

In this work we present an empirical study targeting a large-
scale Java open source repository. We try to answer two research
questions by examining a large body of real-world experimental
data. Our main goal is to answer these research questions:

• RQ1 - How often are the Java concurrency constructs employed
in real applications?

• RQ2 - How does open-source software reflect the transition to
multicore?

We obtained the source code of 2097 Java projects from Source-
Forge and performed an automatic analysis, collecting more than
50 different metrics related to concurrency from these projects. Six
other well known open source projects (Apache Tomcat, Lucene,
Mobicents, Backports, Fura and jMonkeyEngine). These projects
comprise approximately 560 million lines of source code spread
throughout more than 15,000 versions. We chose the Java language
because it is a widely used object-oriented programming language.
Moreover, Java includes support for multithreading with both low-
level and high-level mechanisms.

Mining data from the SourceForge repository poses several
challenges. Some of them are inherent to the process of obtaining
reliable data. These derive from mainly two factors: scale and lack
of a standard organization for source code repositories. Others
pertain to actually transforming the data into useful information.
Grechanik et al. [9] discuss a few challenges that make it difficult to
obtain evidence from source code: for example, getting the source
code of all software versions is difficult because there is no naming
pattern to define if a compressed file contains source code, binary
code or something else. Furthermore, it is difficult to verify that
an error has occurred during measurement, due to the number

123

Figure 1. High-level view to our infraestrucutre.

of projects and project versions. We addressed these challenges
by creating an infrastructure for obtaining and processing large
code bases, specifically targeting SourceForge. Overall, we found
out that most of the medium to large-sized projects employ some
form of concurrency control. Most of them use mainly mutual
exclusion in the form of synchronized blocks and methods. A
surprisingly large amount (more than 25% of all the projects, 50%
of the concurrent ones) employ monitor-based synchronization,
although most of them use it sparsely. Finally, we discovered that
developers are wasting many opportunities to use higher level/more
efficient abstractions.

2. Study Setting
This section describes the configuration of our study: our basic
assumptions, our mining infrastructure, the metrics suite that we
employ, and our research questions.

2.1 Context
We analyzed mature and stable Java projects obtained from Source-
Forge. Due to the release date of Java 1.5 in late 2004, the first
official release of the java.util.concurrent (j.u.c.) library, we
only obtained projects whose latest version update was at least in
2005. We consider a program as concurrent if at least one of its
classes or interfaces extends the Thread class or the Runnable
interface or implements the Runnable interface or employs any
concurrency control mechanism, such as synchronized blocks or
synchronized methods. Beyond projects from SourceForge we
also analyzed three Apache projects because they are known for
high quality implementations, which contrast with the heterogene-
ity of SourceForge.

To crawl projects in the repository we had to define some heuris-
tics. For example, to get source code, the crawler searches for files
whose names include keywords like ‘source’ or ‘src’. In the end,
we obtained 2097 main projects out of 9101 mature and stable Java
projects. The project classification as mature or stable is defined
by the project maintainers at SourceForge. We disregarded many
projects to improve the reliability of our findings. Even then, we
analyzed more than half a billion lines of code.

2.2 Infrastructure
Our infrastructure consists of three major crawlers, and one shell
script (Figure 1). Initially, (a) the first crawler populates the project
repository with Java projects from SorceForge, including their var-
ious versions. In (b) the shell script extracts all compressed files
into our local repository. In (c) the crawler parses the source code,
collects metrics, and stores the results in the metrics repository. In
(d) the crawler generates input, as CSV files, to be analyzed by R
[12].

The crawlers are an extention of Crawler4j1, an open source web
crawler framework. This framework is multithreaded and written
in Java. We also implemented additional scripts to order project
versions based on dated available at SourceForge and to check if

1 http://code.google.com/p/crawler4j/

the target project was ready to be analyzed, fixing its structure when
necessary.

To collect concurrency metrics we used the JavaCompiler
class2 to parse the source code and build parse trees. The trees
are traversed and the metrics are extracted and stored in text files.
The Metrics consist of counting numbers of lines, imports, class
instantiations of the Thread class, method invocations, class ex-
tensions of the Thread class and the Runnable interface, imple-
mentations of the Runnable interface, and uses of some Java key-
words such as synchronized and volatile. Some collected metrics
are: numbers of extends of Thread, implements of Runnable, im-
ports of j.u.c, synchronized methods, synchronized blocks,
Hashtable, HashMap, ConcurrentHashMap, AtomicInteger
and Lines of Code. The full list is available on the website [19].

3. Research Questions
One of the goals of our study is to understand how concurrency
constructs are used in real world applications. In order to an-
swer RQ1 we have analyzed the latest versions of more than 2000
projects, to understand which constructs developers of concurrent
systems employ and how frequently they use them.

Question RQ2 aims to identify some characteristics of how
programmers usually evolve code that requires concurrent skills,
and if they are really moving to multicore.

On the other hand, question RQ2 is extremely complex and
wide, and this paper does not cover it entirely. Moreover, to begin
this study we need to analyze each project individually, looking for
individual transformations of use, or disuse, of the most common
constructs related to concurrency. This task is costly. Therefore, we
manually analyzed about three or four versions of six open-source
Java projects: Tomcat3, jMonkeyEngine4, Lucene5, Blackports6,
Mobicents7 and Fura8. Some of these projects are very large, so we
guided our analysis by searching in the source code for concurrency
keywords and comparing the source code of different versions.

Among this set of projects, Tomcat, jMonkeyEngine and Fura
were individually selected because they are successful open-source
projects. The reason we did this was to analyze projects that are
mature and widely used, both in the open source community and
commercially. We applied a random algorithm to choose the last
three projects that we downloaded from source forge.
Tomcat: Apache Tomcat is a web container, or application server,
enabling Java code to run in cooperation with a web server. Tomcat
is the official Reference Implementation for the Java Servlet and the
JavaServer Pages (JSP) specifications. Note that Tomcat represents
a group of projects, here we consider only the ‘Catalina’ subproject,
which implements the actual servlet container.
jMonkeyEngine: jMonkeyEngine (JME) is a game engine, made
especially for game developers who want to create 3D games with
modern technology standards. It is written entirely in Java, intended
for wide accessibility and quick deployment.
Lucene: Lucene is a high-performance, full-featured text search
engine library. It is a technology suitable for nearly any applica-
tion that requires full-text search, especially cross-platform. It is
supported by the Apache Software Foundation.
Backports: The goal of this project is to provide a concurrency
library that works with uncompromised performance on all Java

2 http://download.oracle.com/javase/6/docs/api/javax/tools/JavaCompiler.html
3 http://tomcat.apache.org
4 http://www.jmonkeyengine.com
5 http://lucene.apache.org
6 http://backport-jsr166.sourceforge.net/
7 http://sourceforge.net/projects/mobicents
8 http://fura.sourceforge.net

124

#Projects (subprojects included) 2.343
#Small concurrent projects 1.300
#Small non-concurrent projects 489
#Medium concurrent projects 635
#Medium non-concurrent projects 32
#Big concurrent projects 199
#Big non-concurrent projects 0
of LoC of the last version of the biggest project) 1.702.972
Size on disk (all versions of all projects) 124GB

Table 1. General information about the projects.

platforms currently in use, allowing development of fully portable
concurrent applications. More precisely, the target scope is Java 1.3
and above, and some limited support is offered for Java 1.2.
Mobicents: Mobicents is the leading Open Source VoIP Platform.
It is the First and Only Open Source Certified implementation of
JSLEE 1.1 (JSR 240), and SIP Servlets 1.1 (JSR 289). Mobicents
also includes a powerful and extensible Media Server.
Fura: Fura is a self-contained grid middleware that allows the grid
deployment and distribution of applications on heterogeneous com-
putational resources. Fura’s component based plug-in architecture
allows grid services to be extended or replaced, and new services
can be developed reusing existing components.

4. Study Results
This section presents the results of the measurement process. The
presentation is organized in two parts. Section 4.1 addresses RQ1
and Section 4.2 addresses RQ2.

Initially, projects were divided into three categories, small
projects (more than 999LOC and less than 20KLOC), medium
projects (between 20KLOC and 100KLOC) and big projects (more
than 100KLOC), some projects can be in more than one category
because they can have one version with less than 20KLOC and
another version with more than 20KLOC. Table 1 presents some
general metrics for the projects we have downloaded. We analyzed
2343 project (subprojects included) in total, but only 1830 are con-
sidered concurrent and only 439 use the j.u.c. library. The number
of projects that use j.u.c. is lower than we expected, since we only
got projects whose latest update occurred after the release of j.u.c.
as part of the JDK. Moreover, this library had been available for
general use for at least five years before it was incorporated into the
JDK. The largest project we analyzed is the Liferay Portal9, with
about 1.7 million LoC, followed by Rental Portal10, with about 1.5
million LoC. The smallest project we analyzed is Gomoku11, with
exactly 1000 lines of Java code. Note that the concurrent projects
are, on average, considerably larger than the non-concurrent ones.
This is expected: most complex projects involve concurrency at
some level.

4.1 How Often the Java Concurrency Constructs are
Employed in Real Applications?

This section presents the results summarized in Table 3 for the
basic Java concurrency control mechanisms divided into categories
according to size of projects. Table 2 presents general results, like
the number of implementations of Runnable, the number of classes
extending Thread and the number of Thread methods invocations.
We also count the number of synchronized blocks and methods.
We collected the metrics for the concurrent projects, considering
all the versions of each one. These results only account for projects
whose value in each metric is at least 1. Otherwise, for some

9 http://www.liferay.com
10 http://sourceforge.net/projects/rentalportal/
11 http://gomoku.sourceforge.net

metrics, many of the results would be 0. To avoid confusion, the
last column of the table also presents the number of projects whose
value for the metric is greater than 0. The complete results of the
study are available on the website[19].
Synchronized modifier. We broke the analysis for the synchro-
nized modifier in two, based on its two forms. synchronized
blocks are present in 709 of 1300 small concurrent projects, 541
of 635 medium concurrent projects and 189 of 199 big concurrent
projects. The standard deviation for synchronized block is 22.56,
65.88 and 189.73 respectively. This indicates that there is a small
number of projects that have a strong impact on the overall results.
For example, there is a single project that uses synchronized
blocks 1401 times. This is a recurring phenomenon. Most of
the metrics have a standard deviation higher than the mean.
Synchronized methods are present in 72,84% of small concur-
rent projects, 93,22% of medium concurrent projects and 98,49%
of big projects which indicates that almost all big projects use
synchronized methods.
Thread and Runnable. We have collected two metrics pertain-
ing to the Thread class: number of classes extending Thread
and number of calls to Thread methods. We can see that 63,77%
of the medium concurrent projects and 76,38% of the big con-
current projects extend Thread, small projects only 40,46% ex-
tend Thread. More than 85% of small concurrent projects invoke
Thread methods and almost 100% of medium and big projects
invoke Thread methods. We have also measured the number of
classes that implement the Runnable interface and the number
of interfaces that extend the Runnable interface. In accordance
with our intuition, implementing Runnable is the most popular ap-
proach, with higher median, mean, and 3rd quartile. As expected, a
small number of projects have interfaces which extend Runnable.
Use of j.u.c. This metric represents the sum of all related j.u.c
library metrics. Overall, 15,46% concurrent small projects, 32,44%
concurrent medium projects and 49,24% concurrent big projects
are using the library. As expected, big projects are the ones which
use j.u.c. the most. For example, there is a big project that uses j.u.c.
740 times.
Atomic data types and concurrent collections. Contrary to our
intuition, few projects employ atomic data types, 3% of small
concurrent projects, 11,02% of medium concurrent projects and
23,61% of big concurrent projects. We assumed that these con-
structs would be more widespread due to their ease of use and
great similarity with their non-thread-safe counterparts. On the
other hand 6,61% of small concurrent projects, 15,27% of medium
projects and 30,65% of big projects use concurrent collections.

4.2 Are developers transitioning to multicore?
This section presents the studied data from a temporal perspective.
It is important to notice this question is extremely complex and part
of the effort of this paper is to start to answer it. Therefore, we have
analyzed a small number of systems to gather information that will
provide us insight about the answer. We have broken this question
into three more:

• During software evolution, how did the use of concurrent con-
trol constructs changed throughout the version of the same sys-
tem?

• Have threads been used to improve concurrency or parallelism?
• Are developers wasting opportunities to use j.u.c.?

4.2.1 The most common use/evolution of concurrent
constructs.

Concurrent constructs are used in many different ways, although
most of the concurrency effort is to lock and release resources.
To that end, basic constructs like the synchronized keyword,

125

2*metrics Median Mean Std. Dev. %Projects
S M L S M L S M L S M L

synchronized blocks 4 14 51 11.27 39.47 119.7 22.56 65.88 189.73 54,53 85.19 94.97
synchronized methods 6 24 90.5 12.63 50.53 152.3 20.07 74.02 188.66 72.84 93.22 98.42
classes extending Thread 1.5 3 6 2.41 4.8 9.46 2.17 6.07 11.32 40.46 63.77 76.38
uses of Thread methods 7 27 82.5 13.96 52.51 277.68 22.23 94.19 1699.72 86.38 97.48 98.49
implementing Runnable 2 3 6 2.71 6.38 13.04 3.02 10.3 17.8 46.30 66.45 84.42
interfaces extending Runnable 1 2 1 1.91 2.86 6.05 1.24 3.60 14.17 0.92 2.36 8.54

Table 2. Projects metrics by categories (small/medium/big projects, respectively), for basic Java concurrency control mechanisms, consid-
ering only concurrent projects. This table includes metrics for mutual exclusion based on synchronized blocks and basic use of threads.

2*metrics Median Mean Std. Dev. %Projects
S M L S M L S M L S M L

Uses of j.u.c 5 8 16 9.62 30.38 64.07 14.32 75.27 122.32 15.46 32.44 49.24
Atomic data types 2 3 6 3.07 9.05 16.02 2.71 16.16 21.63 3 11.02 23.61
Concurrent collections 2 3 4 3.17 7.12 13.07 4.12 11.17 21.01 6.61 15.27 30.65
Locks 1 2 4 2.32 7.17 6.77 3.48 17.91 8.70 3.30 12.91 26.63
Barriers 3 2 2 4.66 7.32 14.07 6.01 14.87 21.21 1.15 4.88 14.57
Futures 2 2 2 3.80 3.61 2.88 3.83 3.79 2.26 2.38 6.61 13.06

Table 3. Projects metricts by categories (small/medium/big projects, respectively), for concurrency abstractions that the j.u.c. library
implements.

can often be safely retrofitted to high level libraries, like j.u.c.,
providing more flexibility. Figure 2 synthesizes the code evolution
for three projects (due to page limits, the other results are present
only on the website[19]), comparing the use of synchronized.

We can observe many differences among the projects. JMon-
keyEngine, for example, uses j.u.c. since its first analyzed version,
but the number of uses of j.u.c only started to increase significantly
at version 2.1. At the same time, the use of synchronized did
not decrease. A quick investigation of the source code reveals that
about 40% of the j.u.c constructs are present in test case classes.
Looking forward, the use of the j.u.c constructs in test case classes
seems to be common in open source projects, including three of
the six projects that we have analyzed. The use of Executors and
ExecutorService during the test execution revealed a new be-
havior of software developers, i.e. despite the large number of test-
ing frameworks, programmers still prefer to use j.u.c. constructs to
conduct some testing activities.

We observed that the Fura project showed a different pattern.
We observed that the use of synchronized keyword increased
about 37%. But, when we analyzed the rate of synchronized
keyword per 100KLOC it almost did not increase. On the other
hand, the rate of j.u.c per 100KLOC quadrupled from the first
version to the last version.

Finally, the last project reveals yet another pattern. The use of
synchronized methods and blocks decreased and the use of j.u.c
increased. In the Backport source code we can find and compare
this fact. For example, many methods used the synchronized
keyword in an early version and in the next one use the Lock and
ReentrantLock classes. Backport is the project that takes the most
advantage of j.u.c. constructs, in terms of the number of uses of j.u.c
per lines of code.

Moreover, analyzing data structures, it is interesting to note
that the use of HashTable decreased along all the project versions
while HashMap and concurrent collections increased. Perhaps pro-
grammers are aware of the inefficiency of HashTable and have
chosen other collections to increase application performance: a po-
tential indication that they are worried about the transition to mul-
ticore.

4.2.2 Threads for concurrency or threads for parallelism?
Since threads are a general purpose construct it can be difficult to
understand their usage. We sorted threads into two groups: threads

1 private class ParallelTask extends Thread {
2 @Override
3 public void run() { try {
4 int n = task.runAndMaybeStats(letChildReport);
5 if (anyExhaustibleTasks) {
6 updateExhausted(task); }
7 count += n;
8 } catch (NoMoreDataException e) {
9 exhausted = true; } catch (Exception e) {

10 throw new RuntimeException(e); } } }

Figure 3. An example of threads for parallelism in Lucene.

that handle I/O operations (like read/write operations, network in-
put/output, database access, etc.), and threads that perform com-
putationally expensive operation (like mathematical calculations,
graphics rendering, search/sorting algorithms, etc.).

The selection of these groups was related to the fact that ap-
plications that use threads to accomplish simultaneous operations
are not necessarily related to parallelism. Threads can improve re-
source usage but, at the same time, waste CPU cycles. In turn, the
second group is directly related to the performance impacts of the
transition to multicore. Thus, we would like to compare the growth
of the second group with regard to the first one.

In each project we identify whether threads aim at improving
concurrency or parallelism. Following theses steps:

• For each project, seek thread constructs in source code by
textual search.

• Inspect the code comments and the code and try to understand
what that code does.

• Do the same with the other versions.

As a result, we consider Backport and Lucene as projects that
use more parallelism. Particularly, Lucene is a project that has cared
about parallelism since the first version that we analyzed. This is
stated in block comments, method and class names, and so on.
Figure 3 shows an example using the ParallelTask class.

Tomcat is a project that takes advantage of threads and concur-
rency in general, as expected (remember that we are only consider-
ing the subproject called Catalina). Nevertheless, its use of threads
is weakly associated with parallelism, due to the fact of Tomcat is

126

Figure 2. Temporal evolution of synchronized methods and blocks and j.u.c

an application service, and much of its work is to handle HTTP
requests and responses, or socket communications.

4.2.3 Are developers wasting opportunities to use j.u.c.?
One of our questions is whether developers are using high-level
libraries, like j.u.c, to make the transition to multicore. One of
the basic assumptions of this study is that it is better to use high-
level mechanisms than low-level ones. Besides abstraction, the for-
mer have more concrete advantages, such as the impossibility of
deadlocks and some performance optimizations. In addition, they
simplify the task of programming by promoting reuse of recur-
ring solutions. Therefore, considering that only a limited number of
projects use the j.u.c. library, it makes sense to ask whether devel-
opers are wasting opportunities to reap the benefits of this library.
To answer this question, we randomly chose 100 projects out of all
the 1523 concurrent projects. For each one, we randomly collected
1–3 examples of the use of the synchronized keyword. For each
example, we manually analyzed the use of synchronized in that
block or method to see if it would be feasible to replace it with con-
current collections or atomic data types. Dig et al. [6] present a list
of code templates for situations where uses of synchronized can
easily be replaced by uses of atomic data types. That list served as
a basis for the manual inspection.

We analyzed 276 examples of synchronized usage. Some sys-
tems had fewer than 3 occurrences of synchronized and, in these
cases, we selected every one of them. We found 28 cases where
the use of synchronized could be avoided in 25 projects. It is
noteworthy that 40% of these projects already use j.u.c. somehow.
We noticed that, in most cases, the synchronized keyword cannot
be removed because of the complexity of the operations. Figure 4
presents an illustrative example involving accesses to many vari-
ables. In this scenario, it is difficult to determine whether atomic
data types and concurrent collections would be useful. It would re-
quire in-depth knowledge about the application and about concur-
rency control mechanisms.

Figure 5 presents an example where it is easy to remove
the synchronized keyword and use an atomic data type. One
could change the type of variable s lastResquest from int
to AtomicInteger. It would then be possible to remove the
synchronized modifier. Instead of using the increment (++) oper-
ator for s lastRequest, one should use the getAndIncrement()
method. The latter works as a thread-safe increment operator for
atomic integers. This is a simplistic approach (the one adopted by
Dig et al. [6]): a more reasonable one would be involve tracking
uses of the shared variables.

5. Limitations and Threats to Validity
In a study such as this, there are always many limitations. Firstly,
to download the source code of the projects, we assumed that the
sources were packaged in a file with the keywords “src” or “source”

1 public synchronized void atualiza(long tempoPassado) {
2 if (frames.size() > 1) { tempoAnim += tempoPassado;
3 if (tempoAnim >= tempoTotal) {
4 tempoAnim = tempoAnim % tempoTotal;
5 frameAtual = 0; }
6 while(tempoAnim>((Integer)(tempos.get(frameAtual))).intValue()) {
7 frameAtual++; } } }

Figure 4. An example of source code of Javagamelibrary project

1 ...
2 private static int s lastRequest = 0;
3 ...
4 public static synchronized int getNextSequenceNumber() {
5 return s lastRequest++; }

Figure 5. An example of source code of Opensubsystems project

in its name. This is common practice in open source reposito-
ries. Nonetheless, it is not a rule and some projects are bound to
adopt different naming conventions. We have ignored such projects.
Moreover, we assume that most of the projects contain either ver-
sions or subprojects in each directory. However, a small number of
projects contain both in the same directory. It is difficult to infer this
automatically if no conventions are followed or if the conventions
are unknown. Hence, it is possible that some of the subprojects
were analyzed as versions of the main project and some versions
were analyzed as subprojects. We stress that previous studies with
similar scope [9] do not address this issue and may exhibit a much
larger bias as a consequence.

Accuracy of measurement represents another threat to validity.
Due to the large number of complex projects, it is impossible to
automatically resolve all the dependencies on external libraries.
As a consequence, we have to rely on purely syntactic analysis.
This is sufficient to measure occurrences of synchronized and
uses of monitor-based synchronization. However, to accurately col-
lect some of the metrics, type information is necessary. To verify
whether this purely syntactic approach would produce too many
false positives, we have manually inspected samples comprising
100 randomly-selected projects. We did not find any metric for
which more than 2% of the projects exhibited false positives.

6. Related Work
To the best of our knowledge, there are no large-scale studies that
have attempted to gather data pertaining to the use of the con-
currency constructs available in a programming language in the
construction of real-world systems. Howison et al. [11] made a
collaborative data and analysis repository, called FLOSSMole. It
was designed to gather, share, and store comparable data and anal-
yses of open-source projects. The major difference of our study
from this approach is that it gathered project metadata (e.g. project

127

topics), whereas we collect and analyze information at the source
code level. Grechanik et al. [9] collected and analyzed the data at
the source code level of OSS projects in large repositories. They
described an infrastructure for conducting empirical research in
source code artifacts and obtained insight into over 2,080 Java
applications. While they randomly chose those Java applications
to study, we focus on mature, stable, and recently updated Java
projects. This previous study analyzed only basic Java constructs
and does not focus on any specific software characteristic. Ba-
jracharya et al. [3] statically analyzed 2.852 Java projects using
SourcererDB, an aggregated repository of statically analyzed and
cross-linked open-source Java projects. This work differs from ours
because it does not focus on concurrent applications and performs
only lexical analysis of source code.

These previous studies complement ours because they have ex-
amined the documentation of the processes that developers follow
to build concurrent systems. On the other hand, our study investi-
gates the products of these processes, the actual concurrent systems
and try to answer if Java programmers are transitioning to multi-
core. In addition, we can work at a much larger scale, because we
analyze artifacts that were written in a programming language.

Dig et al. [2] analyzed five open source projects, including
Apache Tomcat, and presented some metrics such as the number
of synchronized blocks. Although we also have studied Apache
Tomcat, it was not possible to reproduce the results obtained by
them, and the values do not match with ours. Even making a text
search in the Tomcat source code, the values are much smaller than
what they showed in their paper.

7. Concluding Remarks and Future Work
This paper presents an empirical study of a large-scale Java open
source repository. We found out that developers employ mainly
simple mutual exclusion constructs. Almost 88% of the concur-
rent projects include at least one synchronized method. At the
same time, approximately 23% of the concurrent projects employ
higher level abstractions implemented by the j.u.c. library. We have
noticed a tendency, albeit weak, of growth in the use of the j.u.c.
library.

This study has revealed many opportunities for researchers
working on program restructuring approaches. We have identified
that developers waste a large number of opportunities to use high
level constructs for concurrent programming, in favor of lower-
level, more error-prone constructs.

We also intend to investigate the organization of concurrency
code in the analyzed projects. To achieve this goal, we will employ
a number of metrics that aim to quantify tangling and scattering
of code pertaining to specific concerns. Furthermore, we intend to
analyze more specific issues. One that holds particular interest for
us is the extent to which exception handling constructs complicate
concurrent/parallel programming.

8. Acknowledgments
We would like to thank the anonymous referees and our shepherds
Caitlin Sadowski and Neha Rungta, who helped to improve this
paper. Fernando is supported by CNPq/Brazil (308383/2008-7 and
475157/2010-9) and FACEPE/Brazil (APQ-0395-1.03/10). João is
supported by FACEPE/Brazil. Weslley and Filipe are supported by
CNPq/Brazil. Gustavo is supported by CAPES/Brazil. This work is
partially supported by INES (CNPq 573964/2008-4 and FACEPE
APQ-1037-1.03/08).

References
[1] Joe Armstrong. Erlang. Commun. ACM, 53(9):68–75, 2010.

[2] Danny Dig, John Marrero, Michael D. Ernst. How do Programs
Become More concurrent? A Story of Program Transformations. In
International Workshop on Multicore Software Engineering, Hawaii,
USA, 2011.

[3] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. Sourcerer: An
internet-scale software repository. In Proceedings of the 2009 ICSE
Workshop on Search-Driven Development-Users, Infrastructure, Tools
and Evaluation, pages 1–4, 2009.

[4] A. Bernstein and A. Bachmann. When process data quality affects
the number of bugs: correlations in software engineering datasets. In
MSR’2010, Cape Town, South Africa, May 2010.

[5] David R. Butenhof. Programming with POSIX Threads. Addison-
Wesley, 1997.

[6] Danny Dig, John Marrero, and Michael D. Ernst. Refactoring sequen-
tial java code for concurrency via concurrent libraries. In Proceedings
of the 31st International Conference on Software Engineering, pages
397–407, Vancouver, Canada, 2009.

[7] Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav
Garg, Gail C. Murphy, Nachiappan Nagappan, and Alfred V. Aho.
Do crosscutting concerns cause defects? IEEE Trans. Softw. Eng.,
34:497–515, July 2008.

[8] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues.
A study of the internal and external effects of concurrency bugs. In
Proceedings of DSN’2010, Hong Kong, China, June 2010.

[9] Mark Grechanik, Collin McMillan, Luca DeFerrari, Marco Comi,
Stefano Crespi, Denys Poshyvanyk, Chen Fu, Qing Xie, and Carlo
Ghezzi. An empirical investigation into a large-scale java open source
code repository. In Proceedings of the 4th International Symposium on
Empirical Software Engineering and Measurement, Bolzano-Bozen,
Italy, September 2010.

[10] Maurice Herlihy. Linearizability. In Encyclopedia of Algorithms.
Springer-Verlag, 2008.

[11] J. Howison, M. Conklin, and K. Crowston. Flossmole: A collabo-
rative repository for floss research data and analyses. International
Journal of Information Technology and WebEngineering, 1(3):17–26,
July 2006.

[12] Ross Ihaka and Robert Gentleman. R: A language for data analysis
and graphics. Journal Of Computational And Graphical Statistics,
5(3):299–314, 1996.

[13] M. G. Kendall. A new measure of rank correlation. Biometrika, June,
1938.

[14] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard,
Peter W. Jones, David C. Hoaglin, Khaled El Emam, and Jarrett
Rosenberg. Preliminary guidelines for empirical research in software
engineering. IEEE Trans. Softw. Eng., 28(8):721–734, August 2002.

[15] James Larus and Christos Kozyrakis. Transactional memory. Com-
mun. ACM, 51(7):80–88, July 2008.

[16] Doug Lea. The java.util.concurrent synchronizer framework. Sci.
Comput. Program., 58(3):293–309, 2005.

[17] Joel Ossher, Sushil Krishna Bajracharya, and Cristina Videira Lopes.
Automated dependency resolution for open source software. In Pro-
ceedings of the 7th International Working Conference on Mining Soft-
ware Repositories, pages 130–140, Cape Town, South Africa, May
2010.

[18] Dag I. K. Sjoberg, Tore Dyba, and Magne Jorgensen. The future of
empirical methods in software engineering research. In Proceedings
of 2007 Future of Software Engineering, pages 358–378, 2007.

[19] W. Torres, G. Pinto, B. Fernandes, J. Oliveira, F. Ximenes and F. Cas-
tor. How do programmers use concurrency? http://www.cin.ufpe.br/˜
epona, Steptember, 2011.

128

	Introduction
	Study Setting
	Context
	Infrastructure

	Research Questions
	Study Results
	How Often the Java Concurrency Constructs are Employed in Real Applications?
	Are developers transitioning to multicore?
	The most common use/evolution of concurrent constructs.
	Threads for concurrency or threads for parallelism?
	Are developers wasting opportunities to use j.u.c.?

	Limitations and Threats to Validity
	Related Work
	Concluding Remarks and Future Work
	Acknowledgments

