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SUMMARY

The histories of software systems hold useful information when reasoning about the
systems at hand or when reasoning about general laws of software evolution. Over
the past 30 years more and more research has been spent on understanding software
evolution. However, the approaches developed so far do not rely on an explicit meta-
model, and thus, they make it difficult to reuse or compare their results. We argue that
there is a need for an explicit meta-model for software evolution analysis. We present
a survey of the evolution analyses and deduce a set of requirements that an evolution
meta-model should have. We define, Hismo, a meta-model in which history is modeled as
an explicit entity. Hismo adds a time layer on top of structural information, and provides
a common infrastructure for expressing and combining evolution analyses and structural
analyses. We validate the usefulness of our a meta-model by presenting how different
analyses are expressed on it.
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1. INTRODUCTION

During the 1970’s it became clear that keeping track of software evolution was important, at
least for very pragmatic purposes such as undoing last changes. Early versioning systems like
the Source Code Control System (SCCS) made it possible to record the successive versions of
software products [1]. This led to the usage of text-based delta algorithms for understanding
where, when and what changes appeared in the system [2]. Some basic services were also added
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to model extra or meta information such as who changed files and why. However only very
rudimentary models were used to represent this information – typically a few unstructured
lines of text to be inserted in a log file.

While versioning systems enabled recording the history of each source file independently,
configuration management systems attempted to record the history of software products as a
collection of versioned source files. Research on configuration management was very active in
the 80’s and 90’s, but the emphasis was still on controlling and recording software evolution.

The importance of modeling and analyzing software evolution started to be recognized
in the early 1970’s with the work of Lehman [3]. Yet, it was only until recent years that
extensive research has been spent on exploiting the wealth of information residing in versioning
repositories for different purposes like reverse engineering or cost prediction. Problems like
software aging [4] and code decaying [5] gained increasing recognition both in the academia
and in the industry.

Various approaches have been proposed to analyze aspects of software evolution for purposes
like identifying driving forces in software evolution, or like reverse engineering. Each of these
approaches typically focuses on only some traits of software evolution, and most of these
approaches rely on ad-hoc models (i.e., models that are not described by an explicit meta-
model), or their meta-model is specific to the goals of the supported analysis.

By a meta-model we understand a specification model for a class of systems under study
where each system under study in the class is itself a valid model expressed in a certain
modeling language [6]. By model we understand a simplification of a system built with an
intended goal in mind [7].

A meta-model describes the way the domain can be represented by the model, that is, it
provides bricks for the analysis. An explicit meta-model allows for understanding those bricks.
Understanding the bricks allows for the comparison of the analyses built on top. Without
an explicit meta-model, the comparison and combination of results and techniques becomes
difficult [8].

The main drawbacks of the current approaches reside in the implicitness of their meta-
model. There is no explicit entity to which to assign the evolution properties, and because of
that it is difficult to combine the evolution information with the version information. Often
no semantical units are represented (e.g., packages, classes or methods), therefore, there is no
information about what exactly changed in a system. For example, it is difficult to identify
large classes which did not change recently, while, as we will show, it is expressible in a simple
fashion with our approach.

In this article we describe our approach to address the problem of providing a meta-model
for software evolution analysis. We define Hismo, a meta-model centered around the notion
of history as a first class entity (i.e., an explicit entity). We show how we build it both for
structural entities (e.g., files, classes) and for structural relationships (e.g., inheritance).
We use the relationships between structural entities (e.g., a class has methods) to build
relationships between the corresponding history entities (e.g., in the history of a class there
were methods with different histories). Furthermore, we also model relationships between
histories based on change conditions (e.g., co-change relationships between modules).

In Hismo, time information is added on top of the structural information: The structural
information can exist without any reference to history but can still be manipulated in the
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context of software evolution. In other words, Hismo can be built on top of any snapshot
meta-model without interfering with the existing meta-model. With Hismo we can reuse the
analyses at structural level and extend them in the context of evolution analysis.

To show the expressiveness of Hismo we describe how several software evolution analyses can
be expressed on it. As a simple use of Hismo, we define different measurements for histories
which describe how software artifacts evolved. We present different examples of historical
measurements and history manipulations and show different reverse engineering analyses we
have built over the years [8, 9]: Yesterday’s Weather [10], History-based detection strategies
[11], and Class Hierarchy Evolution Visualization [12]. Furthermore, we also show how Hismo
can be used to express analyses like historical co-change [13]. Each of these examples exercise
different parts of Hismo.

Hismo is implemented in Van, a tool built on top of the Moose reengineering environment
[14]. Moose supports the integration of different reengineering analyses by making their meta-
model explicit [15]. Van implements several evolution analyses (like those in Section 4). We
briefly sketch the implementation of Van focusing on how the usage of Hismo allows for the
different analyses to be combined from the implementation point of view. For example, we
show how we use two other tools (CodeCrawler and ConAn) for building evolution analysis.

The contributions of this article are: (1) the analysis of the requirements of the different types
of information and their manipulation for evolution analyses, (2) the description of Hismo a
meta-model centered around notion of history as a first class entity, and (3) the validation of
this meta-model to support evolution analyses.

Article structure. In Section 2 we analyze the current state of the art on software evolution
approaches and determine a list of requirements that a meta-model should meet. We introduce
Hismo, our meta-model in Section 3. As a validation for our approach we define measurements
for quantifying changes, and we present some reverse engineering analyses enabled by our meta-
model (Section 4). In Section 5 we discuss how our meta-model compares with the requirements
we gathered. Section 6 deals with the details of our implemented tools. A glossary of terms we
use throughout the article can be found in Section 7.

2. ANALYZING SOFTWARE EVOLUTION APPROACHES AND THEIR
UNDERLYING META-MODELS

In this section we review different approaches for analyzing software evolution, the goal being
to identify the requirements of the different analyses from the point of view of a common
evolution meta-model. The most straight forward way to gather the requirements would be
to analyze the different meta-models. Unfortunately, in most of the cases, the meta-models
are not detailed (most of the time they are not even mentioned). In these cases we infer the
minimal meta-models required for the particular analysis.

From our literature survey we identified two major categories of approaches depending on
the granularity level of information representation: version-centered approaches and history-
centered approaches.

Version-centered approaches consider version as a representation granularity, while the
history-centered approaches consider history as representation granularity. For example, a
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Figure 1. The evolution chart shows a property P on the vertical and time on the horizontal. It is
suitable to use it to look at one property evolution in one entity (left side), but it is difficult to use it

for comparisons of multiple property evolutions (right side).

graphic plotting the values of a property in time is a version-centered approach; on the other
hand, a measure of how old is a file is a history-centered approach.

Following, we discuss these approaches and we summarize at the end of the section with a
list of requirements for an evolution meta-model.

2.1. Version-centered approaches

The version-centered analyses use a version as a representation granularity. They have as target
answering the question of when something happened in the history. In the next paragraphs
we take a look at several such approaches and focus on three representative approaches: Two
Version Comparison, the Evolution Chart, and the Evolution Matrix.

2.1.1. Two versions comparison

Comparing two versions is the base of any evolution analysis. We enumerate here three
approaches that focus on finding different types of changes.

Demeyer et al. used the structural measurements to detect refactorings like rename method,
or move method [16]. They represented each version with a set of metrics, and then identify
changes based on analyzing the change in the measurements.

Xing and Stroulia detected several types of changes between two versions [17]. They
represented each version of the system in an XMI format and then applied UML Diff to
detect fine-grained changes like: addition/removal of classes, methods and fields; moving of
classes, methods, fields; renaming of classes, methods, fields. Several applications have been
based on this approach [17, 18, 19]. We discuss them in Section 2.2.3.

Antoniol and Di Penta used the similarity in vocabulary of terms used in the code to detect
refactorings like: rename class, split class, or merge class [20]. They represented versions of
classes with vectors holding the relevance of the different terms used in the system for the
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particular class, and they compare the distance between the vectors of different versions to
detect the refactorings.

Requirement: An evolution meta-model should provide detailed information at different
levels of abstraction for understanding the changes.

2.1.2. Evolution chart

Since 1970 research is spent on building a theory of evolution by formulating laws based on
empirical observations [21, 22, 3, 23, 24]. The observations are based on the interpretation of
evolution charts which represent some property on the vertical axis (e.g., number of modules)
and time on the horizontal axis (see Figure 1). Gall et al. employed the same kind of approach
while analyzing the continuous evolution of the software systems [25]. Recently, the same
approach has been used to characterize the evolution of open-source projects [26, 27, 28].

This approach is useful when we need to reason about the evolution of a single property,
but it makes it difficult to reason in terms of more properties at the same time, and provides
only limited ways to compare different property evolutions (by property evolution we denote
how a particular property evolved in an entity). That is why, typically, the charts are used to
reason about the entire system, though the chart can represent any type of entity.

Requirement: An evolution meta-model should provide for comparison of property
evolutions.

In Figure 1 we give an example of how to use the evolution charts to compare multiple
entities. In the left part of the figure we display a graph with the evolution of a property P
of an entity – for example it could represent number of methods in a class (NOM). From the
figure we can draw the conclusion that P is growing in time. In the right part of the figure we
display the evolution of the same property P in 12 entities. Almost all graphs show a growth
of the P property but they do not have the same shape. Using the graphs alone it is difficult to
say which are the differences and if they are important. Furthermore, if we want to correlate
the evolution of property P with another property Q, then we have an even more difficult
problem, and the evolution chart does not ease the task significantly.

Requirement: An evolution meta-model should provide for combination of property
evolutions.

2.1.3. Evolution Matrix visualization

Visualization has been also used to reason about the evolution of multiple properties and to
compare the evolution of different entities. Lanza and Ducasse arranged the classes of the
history in an Evolution Matrix shown in Figure 2 [29]. Each rectangle represents a version of
a class and each line holds all the versions of that class (the alignment is realized based on the
name of the class). Furthermore, the size of the rectangle is given by different measurements
applied on the class version. From the visualization different evolution patterns can be detected
such as continuous growth, growing and shrinking phases etc.

With this visualization, we can reason in terms of two properties at the same time, and we
can compare different evolutions. The drawback of the approach resides in the implicitness of
the meta-model: there is no explicit entity to which to assign the evolution properties. Because
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Figure 2. The Evolution Matrix shows versions nodes in a matrix. The horizontal position is given by
the version number, and the vertical position is given by the name of the entity. The size of the nodes

is given by structural measurements.

context Class

/* should return true if the class is large and if it was detected as being growing */
derive isGrowingLargeClass: self.isLargeClass() & self.wasGrowing()

Figure 3. Example of a historical query written in OCL.

of that it is difficult to combine the evolution information with the version information. For
example, we would like to know if the growing classes are large classes.

The code in Figure 3 written in the Object Constraint Language (OCL), shows how we
would like to be able to put in one single automatic query, both evolution information
(self.wasGrowing()), and structural information (self.isLargeClass()). We would only be able to
express this if self would know both about the structure and about the evolution.

Requirement: An evolution meta-model should provide for combination of property
evolutions and snapshot properties.

Another drawback here is that the more versions we have, the more nodes we have, the more
difficult it gets to detect patterns when they are spread over a large space.
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2.1.4. Other version-centered approaches

Other analyses are based on similar implicit meta-models and they require the same features
from a meta-model.

Burd and Munro defined a set of measurements to quantify the dominance relations
which are used to depict the complexity of the calls. They correlated the changes in these
measurements with the types of maintainability activities [30].

Taylor and Munro visualized file changes with a technique called revision towers [31]. The
purpose of the visualization was to provide a one-to-one comparison between changes of two
files over multiple versions.

Rysselberghe and Demeyer used a scatter plot visualization of the changes to provide an
overview of the evolution of systems and to detect patterns of change [32]. Jingwei Wu et al.
used the spectograph metaphor to visualize how changes occur in software systems [33]. They
used colors to denote the age of changes on different parts of the systems.

Jazayeri analyzed the stability of the architecture by using colors to depict the changes [34].
From the visualization he concluded that old parts tend to stabilize over time. Eick et al.
proposed multiple visualizations to show changes using colors and third dimension [35].

Chuah and Eick proposed a three dimensional visualizations for comparing and correlating
different evolution information like the number of lines added, the errors recorded between
versions, number of people working etc. [36]. Holt and Pak proposed a detailed visualization
of the old and new dependencies between modules [37]. Gulla proposed visualizations of C
programs to detect changes in structure and in dependencies [38].

2.1.5. Discussion of version-centered approaches

The version-centered models allow for the comparison between two versions, and they provide
insights to when a particular event happened in the evolution (e.g., a class grew instantly).
The visual technique is to represent time on an axis and place different versions along this axis
and make visible where the change occurred (e.g., using color, size, position).

Some of the analyses also used version-based techniques to compare the way different entities
evolved over time. For example, the evolution chart was used to compare the evolution of
different systems to detect patterns of change like continuously growing systems. The Evolution
Matrix was also used to detect change patterns like growing classes or idle classes (i.e., classes
that do not change). A major technical problem is that the more versions we have the more
information we have to interpret.

Furthermore, when patterns are detected, they are attached to structural entities. For
example, the authors said that they detected growing and idle classes. If we take a closer
look at the Evolution Matrix, we see that it is conceptually incorrect because a class is just
one rectangle while growing and idle characterize the entire line and not just one rectangle.
That is, we can say a class is big or small, but growing and idle characterize the way a class
evolved. From a modeling point of view, we would like to have a reification to which to assign
the growing or idle property: the history as an encapsulation of evolution.
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2.2. History-centered approaches

History-centered approaches have history as an ordered set of versions as representation
granularity. In general, they are not interested in when something happened, but they rather
seek to answer what happened and where it happened. In this approaches, the individual
versions are no longer represented, they are flattened.

The main idea behind having a history as the unit of representation is to summarize the
evolution according to a particular point of view. History-centered approaches often gather
measurements of the history to support the understanding of the evolution. However, they
are often driven by the information contained in the repositories like Concurrent Versioning
System (CVS), and lack fine-grained semantical information (see https://www.cvshome.org/).
For example, some approaches offers file and folder changes but give no semantical information
about what exactly changed in a system (e.g., classes or methods).

We present briefly three approaches characterizing the work done in the context of history-
centered evolution analyses.

2.2.1. Manipulating historical properties: history measurements

The history measurements aim to summarize what happened in the evolution from a particular
point of view. Examples of history measurements are: age of an entity, number of changes in
an entity, number of authors that changed the system etc.

Ball and Eick [39] developed multiple visualizations for showing changes that appear in the
source code. For example, they show what is the percentage of bug fixes and feature addition
in files, or which lines were changed recently. Collberg et al. use graph-based visualizations
to display which parts class hierarchies authors change [40]. They provide a color scale to
distinguish between newer and older changes. Xiaomin Wu et al. visualize the change log
information to provide for an overview of the active places in the system as well as of the
authors activity [41]. They display measurements like the number of times an author changed
a file, or the date of the last commit. Chuah and Eick present a way to visualize project
information through glyphs. Their infobug glyph’s parts represent data about software [36].
They use glyphs for viewing project management data (i.e., evolution aspects, programming
languages used, and errors found in a software component) and they present time wheel to
show the evolution of a given characteristic over time.

Typically, in the literature we find measurements which are very close to the type
of information available in the versioning systems. As versioning systems provide textual
information like lines of code added/removed, the measurements too only measure the size
of the change in lines of code. Even though lines of code can be a good indicator for general
overviews, it is not a good indicator when more sensitive information is needed. For example,
if 10 lines of code are added in a file, this approach does not distinguish whether the code was
added to an existent method, or if several completely new methods were added.

Requirement: An evolution meta-model should provide detailed information at different
levels of abstraction for understanding the changes.

Requirement: An evolution meta-model should provide for comparison of property
evolutions.
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Figure 4. The Release History Meta-Model shows how Features relate to the CVSItem.

2.2.2. Manipulating historical entities: Hipikat and Release History Meta-Model

Fischer et al. modeled bug reports in relation to version control system (CVS) items [42].
Figure 4 presents an excerpt of the Release History meta-model. The purpose of this meta-
model is to provide a link between the versioning system and the bug reports database.
This meta-model recognizes the notion of the history (i.e., CVSItem) which contains multiple
versions (i.e., CVSItemLog). The CVSItemLog is related to a Description and to BugReports.
Furthermore, it also puts the notion of Feature in relation with the history of an item. The
authors used this meta-model to recover features based on the bug reports [43]. These features
get associated with a CVSItem.

The main drawback of this meta-model is that the system is represented with only files and
folders, and it does not take into consideration the semantical software structure (e.g., classes
or methods). Because it gives no information about what exactly changed in a system, this
meta-model does not offer support for analyzing the different types of change. Recently, the
authors started to investigate how to enrich the Release History Meta-Model with source code
information [44].

C̆ubranić and Murphy bridged information from several sources to form what they call
a “group memory”[45]. C̆ubranić details the meta-model to show how they combined CVS
repositories, mails, bug reports and documentation [46].

Draheim and Pekacki presented the meta-model behind Bloof [47]. The meta-model is similar
to CVS: a File has several Revisions and each Revision has attached a Developer. They used
it for defining several measurements like the Developer cumulative productivity measured in
changed LOC per day.

Requirement: An evolution meta-model should provide for relationships between histories.

2.2.3. Manipulating historical relationships: historical co-change

Gall et al. aimed to detect logical coupling between parts of the system [13] by identifying
the parts of the system which change together. They use this information to define a coupling
measurement based on the fact that the more times two modules were changed at the same
time, the more they were coupled.
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Figure 5. Historical co-change example. Each ellipse represents a module and each edge represents a
co-change relationship. The thickness of the edge is given by the number of times the two modules

changed together.

Hassan et al. analyzed the types of data that are good predictors of change propagation,
and came to the conclusion that historical co-change is a better mechanism than structural
dependencies like call-graphs [48]. Zimmermann et al. defined a measurement of coupling based
on co-changes [49].

Zimmermann et al. aimed to provide a mechanism to warn developers about the correlation
of changes between functions. The authors placed their analysis at the level of entities in the
meta-model (e.g., methods) [50]. They presented the problems residing in mining the CVS
repositories, but they did not present the meta-model [51].

Similar work was carried out by Ying et al. [52]. The authors applied the approach on two
large case studies and analyzed the effectiveness of the recommendations. They concluded
that although the “precision and recall are not high, recommendations can reveal valuable
dependencies that may not be apparent from other existing analyses.”

Xing and Stroulia used the fine-grained changes provided by UML Diff to look for class
co-evolution [18, 19]. They took the type of changes into account when reasoning, and they
distinguish between intentional co-evolution and “maintenance smells” (e.g., Shotgun Surgery
and Parallel Inheritance).

Eick et al. used the number of files changed in the same time as an one indicator of code
decay [5]. They reported on a large case study that changes are more dispersed at the end of
the project, which they interpreted as a sign of code decay.

In general, the result of the co-change analysis is that two entities (e.g., files) have a
relationship if they were changed together. Gall et al. provided a visualization, as in Figure 5,
to show how modules changed in the same time [53]. The circles represent modules, and
the edges represent the co-change relationship: the thicker the edge, the more times the two
modules were changed in the same time. In this representation the structural elements from
the last version (i.e., the modules) are linked via a historical relationship (i.e., the co-change
relationship).

As in the case of the Evolution Matrix (e.g., where classes were said to be growing), here
too there is a conceptual problem from the modeling point of view: co-change actually links
the evolution of the entities and not a particular version of the entities. In this case too we
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would like to have a reification of the evolution (i.e., history), to be able to relate it to the
co-change relationship (see Section 4.5).

Requirement: An evolution meta-model should provide for relationships between histories.

2.2.4. Discussion

While in the version-centered analyses, the approach was to present the version information
and let the user detect the patterns, in the above examples, the aim is to summarize what
happened in the history according to a particular point of view.

For example, an evolution chart displays the versioning data and the user can interpret it in
different ways according to the point of view: she can see whether it grows or not, she can see
whether it fluctuates or not and so on. As opposed to that, the history measurements encode
these points of view and return the values that summarize the evolution. In this case, it is not
the reengineer that has to identify the trends or patterns in the history, with the possibility of
missing important information. In general, history measurements automate the analysis.

In general, the analyses are influenced by the types of information available. For example, as
versioning systems offer information related to the changes of the lines of code, the analyses,
too, use addition/deletion of lines code as an indicator of change. While this might be suitable
for general overviews, it is not enough for detailed analyses. For example, if we want to detect
signs of small fixes, we might look for classes where no method has been added, while only the
internal implementation changed.

2.3. Requirements for an evolution meta-model

An evolution meta-model should allow the expression of all of the above analyses and more.
Based on the analysis of their underlying meta-models, an evolution meta-model should have
the following properties:

Different abstraction and detail levels. The meta-model should provide information at different
levels of abstraction such as files, packages, classes, methods for each analyzed version.
For example, CVS meta-model offers information about how source code changed (e.g.,
addition, removals of lines of code), but it does not offer information about additions or
removals of methods in classes.

The meta-model should support the expression of detailed information about the
structural entity. For example, knowing the authors that changed the classes is an
important information for understanding evolution of code ownership.

Comparison of property evolutions. The meta-model should offer means to easily quantify and
compare how different entities evolved with respect to a certain property. For example,
we must be able to compare the evolution of number of methods in classes, just like we
can compare the number of methods in classes. For that, we need a way to quantify how
the number of methods evolve and afterwards we need to associate such a property with
an entity.
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snapshot0..1

0..1
/succ

/pred
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Version

rank: integer
date: Date Snapshot

{
ranks = self.HasVersion.rank->sortedBy( i | i )
ranks->for(r1,r2 | r1 < r2 implies versions[r1].date < versions[r2].date
}

1 history 0..1 versions

HasVersion
1*

{
rank = self.history.rank
}

AbstractEntity

History
ranks[*]: integer
filter[0..1]: Predicate

Figure 6. Details of the relationship between the History, the Version and the Snapshot. A History
has a container of Versions. A Version wraps a Snapshot and adds evolution specific queries.

Combination of different property evolutions. The meta-model should allow for an analysis
to be based on the evolution of different properties. Just like we reason about multiple
structural properties, we want to be able to reason about how these properties have
evolved. For example, when a class has only a few methods, but has a large number of
lines of code, we might conclude it should be refactored. In the same line, adding or
removing the lines of code in a class while preserving the methods we might conclude
the change was a bug-fix.

Selectability. The analysis should be applicable on any group of versions (i.e., we should be
able to select any period in the history).

Navigation. The meta-model should provide relations between histories to allow for
navigation. For example, we should be able to ask our model which methods ever existed
in a particular class, or which classes in a particular package have been created in the
last period of time.

3. HISMO: MODELING HISTORY AS A FIRST CLASS ENTITY

In this section we introduce Hismo, our solution of modeling history to support software
evolution analysis: explicitly model history as a ordered set of versions. The core of Hismo
is based on three entities: History, Version and Snapshot. Figure 6 shows the relationships
between these entities in a UML 2.0 diagram:
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Snapshot. This entity is a placeholder that represents the entities whose evolution is studied
i.e., file, package, class, methods or any source code artifacts. The particular entities are
to be sub-typed from Snapshot as shown in Figure 8.

History. A History holds a set of Versions. The relationship between History and Version is
depicted with a qualified composition which depicts that in a History, each Version is
uniquely identified by a rank. From a History we can obtain a sub-History by applying
a filter predicate on the set of versions.

Version. A Version adds the notion of time to a Snapshot by relating the Snapshot to the
History. A Version is identified by a time-stamp and it knows the History it is part of. A
Version can exist in only one History. Based on its rank in the History, Version has zero
or one predecessor and zero or one successor.

In Hismo, we add time information as a layer on top of the snapshot information. As such,
the snapshot data can exist without any reference to history but can still be manipulated in
the context of software evolution. Because of this, Hismo can be built on top of any snapshot
meta-model without interfering with the existing meta-model. There are many meta-models
describing structural information, and many analyses are built on this meta-models. With our
approach of we can reuse the analyses at structural level and include them in the evolution
analysis.

History, Version and Snapshot are abstract and generic entities, and as such, the core of
Hismo is not tied to any meta-model. These concepts are generic and can be applied to any
kind of entities such as packages, classes, methods or any entity related to the system that we
want to study as shown by Figure 8.

3.1. Building Hismo based on a snapshot meta-model

In this section we show how to apply the generic concepts of History, Version and Snapshot
to specific snapshot meta-models.

We start by taking a detailed look at Hismo applied to Packages and Classes (see Figure 7).
There is a parallelism between the version entities and the history entities: Each version entity
has a correspondent history entity. Also, the relationship at version level (e.g., a Package
has more Classes) has a correspondent at the history level (e.g., a PackageHistory has more
ClassHistories).

Figure 8 shows an overview of the history meta-model based on a larger source-code meta-
model. Here we use FAMIX, a language independent source code meta-model [54]. The details
of the full meta-model are similar to the one in Figure 7.

The snapshot entities (e.g., Method) are wrapped by a Version correspondent (e.g.,
MethodVersion) and the Versions are contained in a History (e.g., MethodHistory). A History
does not have direct relation with a Snapshot entity, but through a Version wrapper as shown
in Figure 6. We create Versions as wrappers for SnapshotEntities because in a Version we store
the relationship to the History: a Version is aware of the containing History and of its position
in the History (i.e., it knows the predecessor and the successor). Thus, we are able to compute
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Figure 7. Hismo applied to Packages and Classes.
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Figure 8. An excerpt of Hismo as applied to FAMIX, and its relation with a snapshot meta-model:
Every snapshot entity is wrapped by a corresponding Version and a set of Versions form a History.

We did not represent all the inheritance relationships to not affect the readability of the picture.
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properties for a particular Version in the context of the History. For example, having a Version
we can navigate to the previous or the next Version.

A problem raised in the literature is that of what we call entity identity (it can also be found
as origin analysis [20, 55, 56]). The most common way to recover the identity is by the name of
the entity, that is if we have two entities with the same name and the same type in two versions,
then they are considered to be two versions of the same entity. Of course, such approaches
miss refactorings like renaming or moving. Different approaches have been proposed to solve
this problem: using information retrieval techniques [20], using string matching or entities
fingerprints [55, 56].

In our definition, the history is a set of versions, therefore, it also encapsulates the entity
identity. We did not specify the algorithm to be used when determining entity, because it is the
responsibility of the implementation to determine how the identity is defined. For example, it is
possible to first determine the histories based on names and then detect renaming refactorings
and merge the histories that are detected as being renamed.

3.2. Mapping Hismo to the Evolution Matrix

In this section we describe how Hismo maps to the Evolution Matrix (see Figure 9). In the
upper part of the figure we represent Hismo applied to Packages and Classes where a package
contains several classes, while in the lower part we show two Evolution Matrices. As described
by Figure 2 (Section 2.1.3), a row represents the evolution of an entity, here a class and a
column all the entities of one version i.e., a package. Therefore in Figure 9 each cell in the
matrix represents a ClassVersion and each column represents a PackageVersion.

In Hismo a history is a sequence of versions. Thus, each line in an Evolution Matrix
represents a ClassHistory (left matrix). Moreover, the whole matrix is actually a line formed
by PackageVersions (right matrix), which means that the whole matrix can be seen as a
PackageHistory (left matrix).

In the upper part we also represent the relations we have between the entities. On the right
part we show that a PackageVersion has multiple ClassVersions, while on the left side we show
that in a PackageHistory there are multiple ClassHistories.

4. USING HISMO FOR SOFTWARE EVOLUTION ANALYSIS

In this section we show examples how Hismo meets the requirements we described in the
previous section. These examples serve as validation of the expressiveness of our meta-model,
as each of them exercise different characteristics of Hismo.

First, we introduce some history measurements (Section 4.1) and then we use them in three
reverse engineering applications:

• Definition of complex historical measurements [10] (Section 4.2);
• Definition of automatic queries which combine different evolution characteristics with

version information to improve the detection of design flaws [11] (Section 4.3);
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Figure 9. Mapping Hismo to the Evolution Matrix. Each cell in the Evolution Matrix represents a
version of a class. Each column represents the version of a package. Each line in the Evolution Matrix

represents a history. The entire matrix displays the package history.

• Visualization of different historical measurements to determine patterns of evolution and
to determine correlations between different kinds of changes [12] (Section 4.4).

Furthermore, in Section 4.5 we show how Hismo can be used for co-change analysis.

4.1. History measurements and properties

As discussed in Section 2.2.1, history measurements quantify the changes in the history
according to a particular interest. The benefit of the historical measurements is that we
can understand what happened with an entity without a detailed look at each version – i.e.,
the measurements summarize changes into numbers which are assigned to the corresponding
histories.

The problem with most of the existing measurements is that they do not take into account
the semantical meaning of the system structure, but they usually rely on primary data like
lines of code, files and folders. Such measurements are of limited use when we need fine grained
information.

Figure 10 gives an example how we can use the detailed information in Hismo to define
historical measurements:
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rank
History

/EP: real
/LEP:real
/EEP: real
minRank: integer
maxRank: integer
filter[0..1]: Predicate

Version
/EP: real

{ EP = Sequence {minRank+1..maxRank}->collect(i | self.versions[i]. EP)->sum()
  LEP = Sequence {minRank+1..maxRank}->collect(i | self.versions[i]. EP*2.exp(i-maxRank))->sum()
  EEP = Sequence {minRank+1..maxRank}->collect(i | self.versions[i]. EP*2.exp(minRank-i+1))->sum() }

1 
history

versions
0..1 *

{ EP = (prev.value(P)-self.value(P)).abs() }

DerivedFrom
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*

root

subHistories
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Figure 10. Examples of history measurement definitions. The Snapshot has structural numerical
properties denoted here with P (e.g., P can be the number of methods in a class). Based on these

properties we can define history measurements (e.g., in this case we show EP, LEP and EEP).

• Evolution of a property P (EP) – this measurement is defined as the sum of the absolute
difference of P in subsequent versions. This measurement can be used as an overall
indicator of change.

• Latest Evolution of P (LEP) – while EP treats each change the same, with LEP we
focus on the latest changes by a weighting function 2i−maxRank which decreases the
importance of a change as the version i in which it occurs is more distant from the latest
considered version maxRank.

• Earliest Evolution of P (EEP) – it is similar to LEP , only that it emphasizes the
early changes by a weighting function 2minRank−i+1 which decreases the importance
of a change as the version i in which it occurs is more distant from the first considered
version minRank.

Given a History we can obtain a sub-History based on a filtering predicate applied on the
versions. Therefore, whichever properties we can compute on the History, we can also compute
on the sub-History.

In Figure 11 we show an example of applying the defined history measurements to 5 histories
of 5 versions each.

• During the displayed history of D (5 versions) P remained 2. That is the reason why all
three history measurements were 0.

• Throughout the histories of class A, of class B and of class E the P property was changed
the same as shown by the Evolution of P (EP = 7). The Latest and the Earliest Evolution
of P (LEP and EEP) values differ for the three class histories which means that (i) the
changes are more recent in the history of class B (ii) the changes happened in the early
past in the history of class E and (iii) in the history of class A the changes were scattered
through the history more evenly.
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Figure 11. Example of history measurements.

• The histories of class C and E have almost the same LEP value, because of the similar
amount of changes in their recent history. The EP values differ heavily because class E
was changed more throughout its history than class C.

The above measurements are depend on the P property. For example, P can be the number
of methods of a class (NOM), or the number of lines of code of a method (LOC). As a
consequence, in the case of EP we talk about ENOM, when P is NOM, or about ELOC when
P is LOC.

In a similar fashion, we define other measurements. Here is a non-exhaustive list:

• Age – It counts the number of versions in the history.
• Additions of P / Removals of P – These measurements sum the additions or removals of

a property P. Additions are a sign of increase in functionality, while removals are a sign
of refactoring.

• Number of Changes of P – It counts in how many versions the property P changed with
respect to the previous version.

• Stability of P – It divides the Number of Changes of P by the number of versions - 1
(i.e., the number of versions in which P could have changed).

• History Maximum / Minimum / Average – This measurements the maximum, minimum
or the average value of P over the versions.

• Persistence of a version Condition – It counts the number of versions in which the
Condition is true over the total number of versions.
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Not only measurements can be defined as historical properties. Here are some examples of
boolean properties:

• Persistent – A persistent entity is an entity that was present in all versions of the system.
• Day-fly – Day-fly denotes a history with only one version.
• Removed – A history is removed if its last version is not part of the system history’s last

version

4.2. Yesterday’s Weather: selecting histories and combining property evolutions

The measurements defined above are used to define another measurement: Yesterday’s Weather
(YW) [10]. The YW measurement represents the retrospective empirical observation of the
phenomenon that at least one of the classes which were heavily changed in the recent history
is also among the most changed classes in the near future.

The approach consists of identifying, for each version of a subject system, the classes that
were changed the most in the recent history and in checking if these are also among the most
changed classes in the successive versions. The YW value is given by the number of versions in
which this assumption holds divided by the total number of analyzed versions. If YW raises a
high value, we say it is useful to start reengineering from the classes which changed the most in
the recent past, because there is a high chance that they will also be among the most changed
in the near future.

Figure 12 shows the OCL code for computing YW for a SystemHistory. The code reveals
several features of Hismo:

• We navigate the meta-model by asking a SystemHistory for all the ClassHistories
(self.classHistories).

• classHistories->selectTopLENOMFromVersions(minRank, versionRank-1) returns the class
histories that are in the top of LENOM (Latest Evolution of Number of Methods) in
the period between the first version (minRank) and the version before the wanted version
(versionRank-1). That is, it returns the classes that were changed the most in the recent
history. This predicate implies applying a historical measurement (i.e., LENOM) on a
selection of a history, and then ordering the histories according to the results of the
measurement.

• Similarly, classHistories->selectTopEENOMFromVersions(versionRank, maxRank) returns the
class histories that are the most changed in the early history between the wanted version
(versionRank) and the last version (maxRank).

• The result of versionYW is a boolean showing if the intersection (intersectWith) of
the past changed class histories (yesterdayTopHistories) and the future changed class
histories (todayTopHistories) is not empty. This simple intersection is possible because
the yesterdayTopHistories and todayTopHistories are subsets of all classHistories.
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context SystemHistory

/* returns true if the YW assumption holds for a given version versionRank */
derive versionYW(versionRank):

yesterdayTopHistories = self.classHistories->selectTopLENOMFromVersions(minRank, versionRank).
todayTopHistories = self.classHistories->selectTopEENOMFromVersions(versionRank, maxRank).
yesterdayTopHistories->intersectWith(todayTopHistories)->isNotEmpty().

/* answers the number of versions in which the assumption holds
divided by the total number of analyzed versions*/

derive overallYW:
ywVersionResults = Sequence(minRank+2..maxRank-1)->collect(i | self.versionYW(i).
ywVersionResults->sum() / (maxRank-minRank-2)

Figure 12. The OCL expression for computing Yesterday’s Weather.

4.3. History-based detection strategies: combining snapshot properties with
historical properties

Another usage of history measurements was proposed for improving design flaws detection
by taking the evolution into account [11]. In particular, the work shows how the detection
of DataClasses and GodClasses based on structural measurements can be improved by taking
into account information such as the stability of the entity or the persistence of the flaw during
the lifetime of the entity.

For example, GodClasses are defined as classes that tend to centralize the intelligence of the
system [57]. Marinescu defined measurements-based expressions to detect GodClasses [58, 59].

Originally, the detection strategies only took into account structural measurements. We
used Hismo to extend the detection strategies with the time dimension. For example, we use
the historical information to qualify GodClasses as being harmless if they were stable for a
large part of their history, because being stable means those classes were not a maintainability
problem in the past (e.g., 95%), and that means that they are likely to not be a problem in
the future also. Figure 13 shows the expression we used.

The code shows the predicate isHarmlessGodClass defined in the context of a ClassHistory. The
predicate is an example of how we can use in a single expression both historical information
(i.e., stability of number of methods) and structural information (i.e., GodClass characteristic
in the last version) to build the reasoning.

4.4. Characterizing hierarchies evolution: navigating history, and combining
historical properties

Based on Hismo, a visualization has been proposed to detect patterns of hierarchy evolution
[12]. The visualization is based on the polymetric view principle [60]. A polymetric view is a
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context ClassHistory

/* returns true if the ClassHistory is a GodClass in the last version and
it did not change the number of methods in more then 95% of the versions */

derive isHarmlessGodClass: (self.versions->last().isGodClass()) &
(self.stabilityOfNOM > 0.95)

Figure 13. The OCL expression for detecting stable GodClasses.
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Figure 14. Class Hierarchies Evolution View (right hand side) represents class hierarchy histories.
Node width = Evolution of Number of Methods (ENOM); Node height = Evolution of Number of
Statements (ENOS); Node color = Age; Edge width = Age; Edge color = Age; Cyan node or edge =

Removed history.

visualization technique which displays entities as boxes and relationships as edges, where the
size and color of the boxes and edges are given by metric results of the represented entities
and relationships.

Originally, polymetric views were only used for analyzing structural information (e.g., the
hierarchy of classes). Figure 14 shows an example of how the evolution over 5 versions of a
hierarchy (left side) is summarized in one polymetric view (right side). On the left hand side
we represent the hierarchy structure in each version – i.e., classes as nodes and inheritance
relationships as edges. On the right hand side we display ClassHistories as nodes and
InheritanceHistories as edges. The color of each node represents the age of the ClassHistory:
the darker the node the older the ClassHistory. The size of the node denotes how much it was
changed: the larger the node, the more the ClassHistory was changed. Both the thickness and
the color of the edge represent the age of the InheritanceHistory. Furthermore, the cyan color
denotes removed histories.
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A B C

Figure 15. Examples of class hierarchies evolution reavealing different evolution patterns. A is a young
hierarchy. B is unstable. C is an old and stable hierarchy.

Figure 15 shows the visualization applied on the history of three class hierarchies (denoted
with A, B and C). The nodes represent class histories and the edges inheritance histories. Both
the nodes and the edges are annotated with historical measurements. The width of the nodes
is given by the Evolution of Number of Methods (ENOM), the height is given by the Evolution
of Number of Statements (ENOS) and the color is given by the age of the class. The width and
the color of the edges is given by the age of the inheritance. The cyan color denotes remove
classes or inheritances.

From the visualization we can characterize the evolution of class hierarchies. In our example,
hierarchy A has small and white nodes and thin edges which means that it is newly introduced
in the system. Hierarchy C, is an old one and stable because the nodes are small and the
inheritance relationships never changed. In the B hierarchy, there are nodes with different
shapes and colors denoting there were many changes in this hierarchy. Also, we see cyan edges
which denotes removed inheritance due to introduction of super classes in the middle of the
hierarchy.

4.5. Identifying co-change patterns: manipulating historical relationships

Figure 16 shows how to use Hismo in co-change analysis. On the bottom part we represent the
example from Figure 5: On the bottom-left we show 6 versions of 4 modules (A, B, C, D) and
how they changed from one version to the other (marked with gray). On the bottom-right we
show the historical representation. The resulting picture is the same as in Figure 5 only the
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Figure 16. Using Hismo for co-change analysis. On the bottom-left side, we show 6 versions of 4
modules: a grayed box represent a module that has been changed, while a white one represents a
module that was not changed. On the bottom-right side, we show the result of the evolution of the 4

modules as in Figure 5.

meta-model is different. We no longer represent the Modules as ellipses, but ModuleHistories,
and the co-change is an explicit historical relationship (CoChangeModuleHistory).

We used this meta-model to develop an analysis of detecting co-change patterns using Formal
Concept Analysis [8]. Formal Concept Analysis is a generic technique that takes as an input
entities and properties and returns concepts, where each concept contains a set of entities and
a set of properties common to the entities. We aimed to detect parallel inheritance. For that
we used as entities, ClassHistories, and we used as the ith property the fact that a ClassHistory
changed in version i.

5. DISCUSSION: HOW HISMO SATISFIES THE REQUIREMENTS

The above applications show that Hismo satisfies the desired requirements:
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Different abstraction and detail levels. Hismo takes into account the structure of the system.
We gave examples of history measurements which take into account different semantics of
change (e.g., changes in number of methods, number of statements) on different entities
(e.g., packages, classes, methods). As we show Hismo can be applied on any software
entities which can play the role of a Snapshot Entity.

Furthermore, having detailed information about each version, we can also define the
version properties (e.g., number of methods) in terms of history (e.g., number of methods
in version i). Thus, all things we can find out from one version can be found out having
the entire history. This allows for combining structural data with evolution data in the
same expression. For example, we can detect the harmless GodClasses by detecting those
that were stable.

Evolution comparison. History describes the evolution. History measurements are a way to
quantify the changes and they allow for the comparison of different entity evolutions.
For example, the Evolution of Number of Methods lets us assess which classes changed
more in terms of added or removed methods.

Combination of different property evolutions. In the above examples we showed how we can
combine different property evolutions with each other (see Figure 15) or with structural
information (see Section 4.3).

Selectability. Figure 10 shows that given a history we can filter it to obtain a sub-history. As
the defined analyses are applicable on a history, and a selection of a history is another
history, the analyses described in the previous section can be applied on any selection.

Navigation. The Figure 9 shows how based on the structural relationship “a Package has
Classes” we can build the relationship “a PackageHistory has ClassHistories”. This can
be generalized to any structural relationship and thus, at the history level we can ask
a PackageHistory to return all ClassHistories – i.e., all Classes that ever existed in that
Package.

6. IMPLEMENTATION: MOOSE AND VAN

From our experience, when it comes to large systems, it is not enough to have prefabricated
report generators, but it is crucial to have the ability to query and navigate the system under
investigation. Furthermore, the more data we need to analyze, the more analyses we need to
apply, and different analyses are implemented by different people in different tools. Thus, we
focus on dynamism and integration of tools.

In our implementation Hismo is built on top of FAMIX, a language independent meta-model
[54]. As an implementation platform we use the Moose reengineering environment [14]. The
architecture of Moose is schematically presented in Figure 17. Moose has a repository that can
store multiple models, thus providing the necessary infrastructure for holding and managing
multiple versions.
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Figure 17. Moose is an extensible reengineering environment. Different tools have been developed on
top of it (e.g., Van is our history analysis tool). The tools layer can use and extend anything in the
environment including the meta-model. The model repository can store multiple models in the same

time. Different languages can be loaded either directly or via intermediate data formats.

Hismo is the foundation of Van, an evolution analysis tool built on top of Moose. Moose
is designed to be extensible from any perspective including the meta-model. Van extends
the meta-model with the notion of history, and when Van is loaded the entire environment
is history-aware. Moose allows for attaching meta-annotations to the entities in the meta-
model. For example, among the annotations is the menu: each entity in the meta-model has
an interaction description which can be interpreted as a menu.

Van uses CodeCrawler for visualizing polymetric views [61]. In Section 4.4 we showed
how we used polymetric views for visualizing hierarchies evolution. In our implementation
it was straight forward to combine Van with CodeCrawler due to the meta-model, because
CodeCrawler can visualize models by interpreting their meta-models.

We also uses ConAn (see Section 4.5), a Formal Concept Analysis tool to detect co-change
patterns [62]. In this case too, the bridge was straight forward, because ConAn manipulates
entities and properties, and we provided with histories as entities and “changed in version i”
as properties.

Figure 18 shows screenshots with three windows: a Hierarchy Evolution Complexity View
in CodeCrawler; a History Inspector showing the details of the selected ClassHistory from
the view, and an Evolution Chart of how the number of methods evolved in the selected
ClassHistory. The figure stresses the dynamic aspect of the environment by showing how the
user can interact with the objects under analysis using contextual menus. When we select an
object, we can invoke the attached menu based on its entity description. Furthermore, each
tool can extend the menu with its own functionality.

By making history an explicit entity in the meta-model, we can attach the any annotation
to it, including the menu.
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Figure 18. Screenshots with Van and CodeCrawler. The entities are interacted with via contextual
menus.

7. CONCLUSIONS

Understanding software evolution is important as evolution holds information that can be
used in various analyses like: reverse engineering, prediction, change impact, or in developing
general laws of evolution.

We have reviewed various approaches used to understand the software evolution. These
approaches typically focus on only some traits of the evolution, and most of them do not
rely on an explicit meta-model. Of course, all analyses developed so far had to have a way of
representing the data to be able to be implemented. Nevertheless, to be able to compare the
results and combine the analyses, we need to make explicit the underlying meta-model.

Based on our investigation of evolution analyses we have gathered requirements for
a general evolution meta-model: (1) different detail and abstraction levels, (2) property
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evolutions comparison, (3) combination of different property evolutions, (4) selectability, and
(5) navigation.

We introduced Hismo, our evolution meta-model which has in its center three explicit
notions: History, Version and Snapshot. In short, a Version places the Snapshot into the
History. Based on these notions we can construct the historical meta-model based on any
snapshot meta-model. In this way, we do not need to change the existing meta-models to
analyze the evolution, and like that we can reuse the analyses at structural level and extend
them in the context of evolution analysis.

We implemented Hismo and several analyses in Van. We briefly sketched the implementation
to show the benefits of having an explicit meta-model when building and combining analysis
tools.

In this article, we modeled history as a sequence of versions which implies a linear version
alignment. In the future, we would like to investigate the implications of modeling history as
a partially ordered set of versions to represent time as a graph.

APPENDIX A: GLOSSARY OF TERMS

For entity, we use the definition as found in the Webster Dictionary:

An entity is something that has separate and distinct existence in objective or
conceptual reality.

For the general terms of model and meta-model we use the following definitions:

A model is a simplification of a system built with an intended goal in mind. The
model should be able to answer questions in place of the actual system [7].

A meta-model is a specification model for a class of systems under study where
each system under study in the class is itself a valid model expressed in a certain
modeling language [6].

Throughout the article we use evolution specific terms: version, evolution, and history. We
define these terms as follows:

A snapshot is the structure of an entity at a particular moment in time.

A version is a snapshot of an entity placed in the context of time.

In the context of CVS, version is denoted by revision.

The evolution is the process that leads from one version of an entity to another.

A history is the reification which encapsulates the knowledge about evolution and
version information.
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Following these definitions, we say that we use the history of a system to understand its
evolution. Furthermore, the evolution refers to all changes from a version of an entity to
another. Sometimes, however, we need to refer to only the change of a particular property of
that entity. That is why we define:

Property evolution denotes how a particular property evolved in an entity.

Historical property denotes a characteristic of a history.

For example, the age of a file in CVS is a historical property.
We use different terms for different types of models and meta-models:

A snapshot meta-model, or a structural meta-model is a meta-model which describes
the structure of a class of systems at a certain moment in time.

Examples of snapshot meta-models are UML or FAMIX.

An evolution model is a simplified view on the evolution of a system.

Examples of evolution models include the date sequence of each release, a chart showing
team allocation over time for a given set of modules, the modifications performed etc.

An evolution meta-model is a meta-model which describes a family of evolution
models.

For instance, in each versioning systems there is an evolution meta-model that specifies
which kind of information is kept about evolution.

A history meta-model is an evolution meta-model which models history as a first
class entity.
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62. Arévalo G. High level views in object-oriented systems using formal concept analysis. Doctoral
dissertation. University of Berne: Berne, 2005; 113 pp.

AUTHORS’ BIOGRAPHIES

Tudor Gı̂rba attained the PhD degree in 2005 at the University of Berne, Switzerland, and since
then he is working as senior researcher at the Software Composition Group, University of Berne,
Switzerland. His interests lie in the area of software evolution, meta-modeling, reverse engineering,
reengineering, information visualization, and quality assurance. He is one of the main developers of
Moose, he developed the Van software evolution analysis tool, and participated in the development of
several other reverse engineering tools. He also offers consulting services in the area of reengineering
and quality assurance.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:207–236
Prepared using smrauth.cls
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