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SUMMARY

Software visualizations can provide a concise overview of a complex software system. Unfortunately, as
software has no physical shape, there is no ‘natural’ mapping of software to a two-dimensional space. As
a consequence most visualizations tend to use a layout in which position and distance have no meaning,
and consequently layout typically diverges from one visualization to another. We propose an approach
to consistent layout for software visualization, called Software Cartography, in which the position of a
software artifact reflects its vocabulary, and distance corresponds to similarity of vocabulary. We use
Latent Semantic Indexing (LSI) to map software artifacts to a vector space, and then use Multidimensional
Scaling (MDS) to map this vector space down to two dimensions. The resulting consistent layout allows
us to develop a variety of thematic software maps that express very different aspects of software while
making it easy to compare them. The approach is especially suitable for comparing views of evolving
software, as the vocabulary of software artifacts tends to be stable over time. We present a prototype
implementation of Software Cartography, and illustrate its use with practical examples from numerous
open-source case studies. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Software visualization offers an attractive means to abstract from the complexity of large software
systems. A single graphic can convey a great deal of information about various aspects of a complex
software system, such as its structure, the degree of coupling and cohesion, growth patterns, defect
rates, and so on [1–4]. Unfortunately, the great wealth of different visualizations that have been
developed to abstract away from the complexity of software has led to yet another source of
complexity: it is hard to compare different visualizations of the same software system and correlate
the information they present.
We can contrast this situation with that of conventional thematic maps found in an atlas. Different

phenomena, ranging from population density to industry sectors, birth rate, or even flow of trade,
are all displayed and expressed using the same consistent layout. It is easy to correlate different
kinds of information concerning the same geographical entities because they are generally presented
using the same kind of layout. This is possible because (i) there is a natural mapping of position
and distance information to a two-dimensional layout§ and (ii) because by convention North is
normally considered to be on the top¶ .
Software artifacts, on the other hand, have no natural layout as they have no physical location.

Distance and orientation also have no obvious meaning for software. It is presumably for this reason
that there are so many different and incomparable ways of visualizing software. A cursory survey of
recent SOFTVIS and VISSOFT publications shows that the majority of the presented visualizations
feature arbitrary layout, the most common being based on alphabetical order and arbitrary hash-key
order. (Hash-key order is what we get in most programming languages when iterating over the
elements of a Set or Dictionary collection.)
Consistent layout for software would make it easier to compare visualizations of different kinds

of information. But what should be the basis for positioning representations of software artifacts
within a ‘cartographic’ software map?What we need is a semantically meaningful notion of position
and distance for software artifacts, a spatial representation of software in a multidimensional space,
which can then be mapped to consistent layout on the two-dimensional visualization plane.
We propose to use vocabulary as the most natural analogue of physical position for software

artifacts, and to map these positions to a two-dimensional space as a way to achieve consistent
layout for software maps. Distance between software artifacts then corresponds to distance in their
vocabulary. Drawing from previous work [6,7] we apply Latent-Semantic Indexing (LSI) [8] to the
vocabulary of a system to obtain n-dimensional locations, and we use Multidimensional Scaling
(MDS) [9] to obtain a consistent layout. Finally we use cartography techniques (such as digital
elevation, hill-shading and contour lines) to generate a landscape representing the frequency of
topics. We call our approach Software Cartography, and call a series of visualizations Software
Maps, when they all use the same consistent layout created by our approach.
Why should we adopt vocabulary as distance metric, and not some structural property? First

of all, vocabulary can effectively abstract away from the technical details of source code [6] by

§Even if we consider that the Earth is not flat on a global scale, there is still a natural mapping of position and distance
to a two-dimensional layout; see the many types of cartographic projections (e.g., the Mercator projection) used during
centuries to do that. In fact, this is true for a large class of manifolds.
¶The orientation of modern world maps, that is North on the top, has not always been the prevailing convention. On
traditional Muslim world maps, for example, South used to be in the top. Hence, if Europe would have fallen to the
Ottomans at the Battle of Vienna in 1683, all our maps might be drawn upside down by now [5].
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capturing the key domain concepts of source code. Software entities with similar vocabulary are
conceptually and topically close. Lexical similarity has proven useful to detect high-level clones
[10] and cross-cutting concerns [11] in software. Furthermore, it is known that over time vocabulary
tends to be more stable than the structure of software [12], and tends to grow rather than to change
[13]. Although refactorings may cause functionality to be renamed or moved, the overall vocabulary
tends not to change, except as a side-effect of growth. This suggests that vocabulary will be relatively
stable in the face of change, except where significant growth occurs. As a consequence, vocabulary
not only offers an intuitive notion of position that can be used to provide a consistent layout for
different kinds of thematic maps, but it also provides a robust and consistent layout for mapping
an evolving system. System growth can be clearly positioned with respect to old and more stable
parts of the same system.
This paper is an extension of previous work, in which we first proposed Software Cartography for

consistent layout of software visualizations [14]. The main contributions of the current paper are:

• Improved algorithm. In our previous work we presented a technique to create software maps
given either as a single release, or all releases of a system at once. In this paper we propose
an improved algorithm for incremental software maps that update as new changes appear.

• Visual stability. In our previous work we introduced Software Cartography as an approach
to achieve consistent layouts for software visualization. In this paper, we evaluate four open
source case studies to investigate the visual stability of our approach over the evolution of a
system.

• Desiderata for spatial representation. We present a generalization of DeLine’s desiderata for
spatial software navigation [15] to spatial representation in general, and complete them with
the desiderata that visual distance should have a meaningful interpretation.

The remainder of the paper is structured as follows. In Section 2 we present our technique for
mapping software to consistent layouts. In Section 3 we discuss the choice of vocabulary as a
distance metric. In Section 4 we illustrate the use of Software Cartography with examples from
numerous open-source case studies. In Section 5 we investigate the visual stability of Software
Cartography over the evolution of three open-source systems. In Section 6 we discuss related work.
Finally, in Section 7 we conclude with some remarks about future work.

2. SOFTWARE CARTOGRAPHY

In this section we present the techniques that are used to achieve a consistent layout for software
maps. We present two variations of Software Cartography, an offline algorithm that requires that all
releases of a software system are available upfront, and an improved online algorithm that updates
the layout incrementally as new releases of the system appear.
The general approach of Software Cartography, as illustrated in Figure 1, is as follows:

1. We parse the vocabulary of source files into term-frequency histograms. All text found in raw
source code is taken into account, including not only identifiers but also comments and literals.

2. We transform the term-frequency histograms using LSI [8], an information retrieval (IR)
technique that resolves synonymy and polysemy.
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LSI MDS Rendering

source files term-document matrix scatter plot thematic map 

Figure 1. Software Cartography in a nutshell: (left) the raw text of source files is parsed and
indexed using Latent-Semantic Indexing; (center) the high-dimensional term–document matrix is
mapped down to two dimensions using MDS; and (right) cartographic visualization techniques are

used to render the final map.

3. We useMDS [9] to map the term-frequency histograms onto the two-dimensional visualization
pane. This preserves the lexical correlation of source files as well as possible.

4. We use cartographic visualization techniques to render an aesthetically appealing landscape.

Possible applications of Software Cartography in the software development process are, . . .

• . . . to navigate within a software system, be it for development or analysis.
• . . . to relate different metrics to each other, e.g., search results and bug prediction.
• . . . to stay in touch with other developers of your team, by showing open files of other devel-
opers.

• . . . to understand a systems domain upon first contact.
• . . . to explore a system during reverse engineering.

We implemented a prototype of our approach, CODEMAP, which is available as an open-source
project. CODEMAP was originally programmed in Smalltalk, in the mean time development has
been moved to Java. CODEMAP is available as an Eclipse plug-in‖.

2.1. Iterative online Software Cartography

In our previous work we presented a technique to create software maps given either a single release,
or all releases of a system at once [14]. In this paper we propose an improved algorithm for
incremental software maps that update as new changes appear.
The offline scenario processes all releases in one pass.

• The offline variation processes all releases of a software system at once, up to and until MDS.
Only then the location data is grouped by release, and an separate map for each release is
rendered. That is both lexical similarity as well as position on the map anticipate all future
evolvements from the first map on, as indexing and scaling take information of all releases
into account. This scenario requires that information about all releases is available, which is
given when performing post-mortem analysis of an existing system.

• The online variation processes the input release by release (or, when integrated into a devel-
opment environment, even change by change). For each release, the current source as well as
information carried over from the previous Software Cartography computation are used. In the
first step, the source files of the current release and of previous releases are processed by LSI.

‖http://scg.unibe.ch/codemap.
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This allows removed and added topics to be detected. In the next step, the lexical similarity
of all current source files is fed into MDS—together with the positions on the previous map
as starting points, thus leading to more visual stability.

Given a series of releases both variations yield a visually stable sequence of maps. Maps generated
with the iterative algorithm are less stable over time compared with the post-mortem approach. The
instability of the iterative approach decreases over time, as the amount of accumulated historical
data increases with each release. In general, the iterative algorithm is less sensitive to the addition
or removal of entire topics between releases, such changes are better observed by performing
post-mortem analysis. Please refer to the evaluation in Section 5 for more details.

2.2. Lexical similarity between source files

As motivated in the introduction, the distance between software entities on the map is based on the
lexical similarity of source files. Lexical similarity is an IR technique based on the vocabulary of
text files. Formally, lexical similarity is defined as the cosine between the term-frequency vectors of
two text documents. That is, the more terms (i.e., identifiers names and operators, but also words
in comments) two source files share, the closer they are on the map.
First, the raw source files are split into terms. Then a matrix is created, which lists for each

document the occurrences of terms. Typically, the vocabulary of source code consists of 500–20 000
terms. In fact, studies have shown that the relation between term count and software size follows a
power law [16]. For this work, we consider all text found in raw source files as terms. This includes
class names, methods names, parameter names, local variables names, names of invoked methods,
but also words found in comments and literal values. Identifiers are further preprocessed by splitting
up the camel-case name convention, which is predominantly used in Java source code. Note that as
our approach is based on raw text, any programming language that uses textual source files might
be processed.
In a next step, LSI [8] is applied to reduce the rank of the term–document matrix to about 50

dimensions. LSI is able to resolve issues of synonymy and polysemy without the use of predefined
dictionaries. This is advantageous for the vocabulary of source code that often deviates from common
English usage. For more details on LSI and lexical similarity, please refer to our previous work on
software clustering [6].

2.3. Multidimensional scaling

In order to visualize the lexical similarity between software entities, we must find a mapping that
places source files (or classes, or packages, depending on our definition of a document) on the
visualization pane. The placement should reflect the lexical similarity between source files.
We use MDS in order to map from the previously established multidimensional term–document

matrix down to two dimensions. MDS tries to minimize a stress function while iteratively placing
elements into a low-level space. MDS yields the best approximation of a vector space’s orientation,
i.e., it preserves the distance relation between elements as best as possible. This is good for data
exploration problems.
Note that MDS is not a force-based graph layout algorithm. MDS does not operate on a graph of

vertices and edges. MDSmaps elements from a high-dimensional metric space to a low-dimensional
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Figure 2. Construction steps: (left) MDS placement of files on the visualization pane; (middle)
circles around each file’s location, based on class size in KLOC; (right) digital elevation model with
hill-shading and contour lines. (Sidebox on digital elevation model) Each file contributes a Gaussian
shaped basis function to the elevation model according to its KLOC size. The contributions of all

files are summed up to a digital elevation model.

metric space. In this work, the high-dimensional space is a term–document matrix using Pearson-8
as metric∗∗ and the low-dimensional space a visualization pane with Euclidian metric.
This work applies High-throughput MDS (Hit-MDS), which is an optimized implementation

of MDS particularly well-suited for dealing with large data sets [17]. The algorithm was origi-
nally designed for clustering multiparallel gene expression probes. These data sets contain thou-
sands of gene probes and the corresponding similarity matrix dimension reflects this huge data
amount. The price paid for fast computation is less accurate approximation and a simplified distance
metric.

2.4. Cartographic visualization techniques

Eventually, we use hill-shading [18] to render an aesthetically appealing landscape. Figure 2 illus-
trates the final rendering steps of Software Cartography. On the final map, each source file is
rendered as a hill whose height corresponds to the entity’s KLOC size.
Hill-shading uses a digital elevation model (DEM) to render the illumination of a landscape. The

DEM is a two-dimensional scalar field. Each entity contributes a Gaussian-shaped basis function
to the elevation model. To avoid that closely located entities occlude each other, the contributions
of all files are summed up as shown in Figure 2.
A map without labels is of little use. On a software map, all entities are labeled with their name

(class or file name). Labeling is a nontrivial problem, as an algorithm is needed to ensure that labels
do not overlap. Also labels should not overlap important landmarks. Most labels approaching are
semi-automatic and need manual adjustment, an optimal labeling algorithm does not exist [19].
For locations that are near to each other, it is difficult to place the labels so that they do not

overlap and hide each other. For software maps it is even harder due to often long class names

∗∗When computing the lexical similarity between text documents, it is important to use a cosine or Pearson distance metric.
The standard Euclidian distance has no meaningful interpretation when applied to term–document vector space!

Copyright 2010 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2010; 22:191–210
DOI: 10.1002/smr



SOFTWARE CARTOGRAPHY 197

and clusters of closely related classes. This work uses a greedy brute-force algorithm for labeling.
Labels are placed in order of hill size, i.e., the name of the largest file is placed first, and so on. If
a to-be placed label would overlap with an already placed label, the to-be placed label is omitted.
Thus, the labels of smaller files are typically omitted in favor of the labels of larger files.

3. ON THE CHOICE OF VOCABULARY

The decision to use a distance based on lexical similarity does, indeed, create a distribution of
distances that should not change a lot in time. This is because programmers will not use a completely
new set of lexical tokens in each new version of the software. In fact, it has been shown that over
time vocabulary tends to be more stable than the structure of software [12]. However, this also will
create software maps that naturally only can show how items are similar from a lexical point of
view.
The map layout as presented in this work can, of course, be used to see how items are related

from the point of view of some other distance, such as considering structural similarity, similarity
with regard to a complexity or testability metric. In that case, the distance may vary a lot over
time during the evolution of a product, and this will create unstable layouts. The focus of this
work, however, is the creation of maps that help programmers to establish a stable mental model
of their software system under work. In any case, if maps based on other metrics are ever to be
used in conjunction with vocabulary-based Software Cartography maps, we strongly recommend
to visually distinguish them by using another rendering scheme. This helps to reduce the likeliness
that programmers confuse the spatial layout of these other maps, with the mental model acquired
through the use of Software Cartography maps.
As mentioned in the introduction, Software Cartography is vocabulary-based because vocabulary

can effectively abstract away from the technical details of source code [6] by capturing the key
domain concepts of source code. The assumption being that software entities with similar vocabulary
are conceptually and topically close. Consider, for example, programming languages and software
where name overloading is applied. Even though overloaded methods differ in their implementation
strategy, they will typically implement the same concept using the same vocabulary. In fact, lexical
similarity has proven useful to detect high-level clones [10] and cross-cutting concerns [11] in
software.
Owing to name scoping, semantically different scopes can have identical names with different

meanings. Consider, for example, two large functions having mostly identifiers such as i , j , prev,
next, end, stop, flag, etc.; the one does some matrix computations, while the other is a hash-table
implementation. Without the application of LSI (Section 2.2) the two would be classified as being
very similar, while this is clearly not true from a developer’s perspective. LSI, however, can identify
words that have different meaning depending on their context. LSI has the ability to resolve certain
synonymy and polysemy [8].
Although refactorings may cause functionality to be renamed or moved, the overall vocabulary

tends not to change, except as a side-effect of growth [13,16]. Consider the example of a rename
refactoring. Two effects may occur. In the first case, all occurrences of a symbol are replaced with
new symbol. This will not affect the map, as both lexical similarity and LSI are based on statistical
analysis only. Replacing all occurrences of one term with a new term is, from the point of these IR
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technologies, a null operation. In the second case, some occurrences of a symbol are replaced with
another symbol that is already used. This will indeed affect the layout of the map. Given that the
new name was well chosen by the programmer, the new layout constitutes a better representation of
the system. On the other hand, if the new name is a bad choice, the new layout is flawed. However,
what constitutes bad naming is not merely a matter of taste. Approaches that combine vocabulary
with structural information can indeed assess the quality of naming. Please refer to Høst’s recent
work on debugging method names for further reading [20].
Not considered in the present work is the relative weight of different lexical tokens. For example,

it seems reasonable to weight local identifiers differently than identifiers in top-level namespaces.
Also, one may treat names coming from library functions different from the ones coming from the
actual user code. Given the absence of evaluation benchmarks, we decided to use equal weighting
for all lexical token. Also, preliminary experiments with different weighting schemes indicate that
relative weights below boost level, i.e., below a factor of 10, do often not significantly affect the
overall layout.

4. EXAMPLES

In this section we present examples of Software Cartography. The first example visualizes the
evolution of a small software system. The second example shows an overview of six open-source
systems. As the third example, we provide two thematic overlays of the same software map.

4.1. The evolution of Ludo

Figure 3 shows the complete history of the Ludo system, consisting of four iterations. Ludo is used
in a first year programming course to teach iterative development (please mail the first author to
get the sources). The fourth iteration is the largest with 30 classes and a total size of 3–4 KLOC.
We selected Ludo because in each iteration, a crucial part of the final system is added.

• The first map (Figure 3, leftmost) shows the initial prototype. This iteration implements the
board as a linked list of squares. Most classes are located in the south-western quadrant. The
remaining space is occupied by ocean, nothing else has been implemented so far.

• In the second iteration (Figure 3, second to the left) the board class is extended with a factory
class. In order to support players and stones, a few new classes and tests for future game
rules are added. On the new map the test classes are positioned in the north-eastern quadrant,
opposite to the other classes. This indicates that the newly added test classes implement a novel
feature (i.e., testing of the game’s ‘business rules’) and are thus not related to the factory’s
domain of board initialization.

• During the third iteration (Figure 3, second to the right) the actual game rules are imple-
mented. Most rules are implemented in the Square and Ludo class, thus their mountain
rises. In the south-west, we can notice that, although the BoardFactory has been renamed
to LudoFactory, its position on the map has not changed considerably.

• The fourth map (Figure 3, rightmost) shows the last iteration. A user interface and a printer
class have been added. As both of them depend on most previous parts of the application, they
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Figure 3. From left to right: each map shows an consecutive iteration of the same software system. As all four
views use the same layout, a user can build up a mental model of the system’s spatial structure. For example,
Board/LudoFactory is on all four views located in the south-western quadrant. See also Figures 5 and 6

for more views of this system.

are located in the middle of the map. As the new UI classes use vocabulary from all parts of
the system, the islands are joined into a continent.

The layout of elements remains stable over all four iterations. For example, Board/
LudoFactory is on all four views located in the south-western quadrant. This is due to LSI’s
robustness in the face of synonymy and polysemy; as a consequence most renamings do not
significantly change the vocabulary of a software artifact [6].

4.2. Open-source examples

We applied the Software Cartography approach to all systems listed in the field study by Cabral
and Marques [21]. They list 32 systems, including four for each type of application (Stand-alone,
Server, Server Applications, Libraries) and selected programming language (Java, .NET).
Figure 4 shows the software map for six of these systems: Apache Tomcat, Columba, Google

Taglib, JFtp, JCGrid and JoSQL. Each system reveals a distinct spatial structure. Some fall apart
into many islands, like JFtp, whereas others cluster into one (or possibly two) large contents,
like Columba and Apache Tomcat. The 36 case studies raised interesting questions for future
work regarding the correlation between a system’s layout and code quality. For example, do large
continents indicate bad modularizations? Or, do archipelagoes indicate low coupling?

4.3. Thematic cartography examples

Software maps can be used as canvas for more specialized visualizations of the same system. In
the following, we provide two thematic visualization of the Ludo system that might benefit from
consistent layout. (The maps in this subsection are mockups, not yet fully supported by CODEMAP.)

• Boccuzzo and Gall present a set of metaphors for the visual shape of entities [22]. They
use simple and well-known graphical elements from daily life, such as houses and tables.
However they use conventional albeit arbitrary layouts, where the distribution of glyphs often
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Apache Tomcat Columba Google Taglib

JFtp JoSQL JCGrid

Figure 4. Overview of the software maps of six open-source systems. Each map reveals a distinct spatial structure.
When consequently applied to every visualization, the consistent layout may soon turn into the system’s iconic
fingerprint. An engineer might, e.g., point to the top left map and say: ‘Look, this huge Digester peninsula

in the north, that must be Tomcat. I know it from last year’s code review’.

does not bear a meaningful interpretation. The first map in Figure 5 (on the left) employs
their technique on top of a software map, using test tubes to indicate the distribution of test
cases.

• Greevy et al. present a three-dimensional variation of System Complexity View to visualize
a System’s dynamic runtime state [23]. They connect classes with edges representing method
invocation, and stack boxes on top of each other to represent a class’s instances. As System
Complexity Views do not capture any notion of position, the lengths of their invocation edges
do not express any real sense of distance.

Figure 5 (on the right) employs their approach on top of a software map, drawing invocation
edges in a two-dimensional plane. Here the distances have an interpretation in terms of lexical
distance, so the lengths of invocation edges are meaningful. A short edge indicates that closely
related artifacts are invoking each other, whereas long edges indicate a ‘long-distance call’ to
a lexically unrelated class.
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Figure 5. Software maps with thematic overlay: (left) glyphs are drawn on top of the map, to display additional
information. Each test tube glyph indicates the location of unit test case, (right) invocation edges are drawn on

top of the map, showing the trace of executing the RuleThreeTest test case.

5. CASE STUDY

To validate the stability of software maps, we apply our algorithm to the evolution of several large
systems and measure the distance between subsequent software maps. We evaluate four systems
of increasing size and history: JUnit, Struts, Groovy, and Eclipse††. We run the case studies twice,
once using the offline approach and once using the incremental online approach.
We use a modified Hausdorff distance [24] to compare the layout of subsequent software maps.

Hausdorff distance measures the distance between two sets in a metric space. Our modified Haus-
dorff distance, D23, is defined as follows:

D23= d5(A,B)+d5(B,A)

2
d5(A,B)=max

a∈A
d(a,B) d(a,B)=min

b∈B
‖a−b‖

Figure 6 summarizes the case studies in a table. On average, the iterative algorithm yields less
stable maps (D23=0.214, . . . ,0.338) than the offline approach (D23=0.069, . . . ,0.290). However,
the difference between both average values is typically less than the standard deviation of both
stabilities. And over time, the iterative approach tends toward the same stability as the offline
approach.
Figure 7 illustrates the visual stability of the software maps of the JUnit case study. The instability

peak between releases 3.8.2 and 4.0 originates from the removal of the SwingUI classes and the

††Due to performance issues, the Eclipse case study has been conducted at the package rather than the class level.
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Figure 6. Tabular summary of case studies (from left to right): number of releases, total number of classes (C)
or packages (P), total number of terms, stability of offline algorithm, stability of online algorithm.
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Figure 7. Stability chart of JUnit: the peak between release 3.8.2 and release 4.0 originates
from the removal of the SwingUI classes and the addition of annotation processing classes.

The online stability trends toward the offline stability.

addition of annotation processing classes. Thus on the map, the island representing the SwingUI
topic has disappeared and (at another location) an island representing the annotation processing
topic appeared. Between other releases, both vocabulary and maps of JUnit remain comparatively
stable.
Figure 8 illustrates the visual stability of the software maps of the Eclipse case study. There are

five peaks of instability, each of them correlates with a major release (i.e., release 2.1, release 3.0,
release 3.1, release 3.2 and release 3.3). The five peaks appear in both data series.
As observed in all case studies, the stability values of the iteratively generated maps display a

trend toward the values of the maps generated by the offline approach. When generating maps with
the iterative approach, all information up to the current release is taken into account.
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Figure 8. Stability chart of Eclipse: There are five peaks of instability, each of them correlates
with a major release (i.e., release 2.1. release 3.0, release 3.1, release 3.2, and release 3.3). The

online stability trends toward the offline stability.

6. RELATED WORK

Using MDS to visualize information based on the metaphor of cartographic maps is by no means a
novel idea. Topic maps, as they are called, have a longstanding tradition in information visualization
[25]. The work in this paper was originally inspired by Michael Hermann’s and Heiri Leuthold’s
work on the political landscapes of Switzerland [26].
In the same way, stable layouts have a long history in information visualization, as a starting

point, see, e.g., the recent work by Frishman and Tal on online dynamic graph drawing [27]. They
present an online graph drawing approach, which is similar to the online pipeline presented in this
work. Please refer to Section 6.3 for a comparison of graph drawing and MDS.
ThemeScape is the best-known example of a text visualization tool that uses the metaphor of

cartographic maps. Topics extracted from documents are organized into a visualization where visual
distance correlates to topical distance and surface height corresponds to topical frequency [28].
The visualization is part of a larger tool set that uses a variety of algorithms to cluster terms in
documents. For laying out small document sets MDS is used; for larger document sets a proprietary
algorithm, called ‘Anchored Least Stress’, is used. The DEM is constructed by successively layering
the contributions of the contributing topical terms, similar to our approach.
In the software visualization literature, however, topic maps are rarely used. Except for the use

of graph splatting in RE Toolkit by Telea et al. [29], we are unaware of their prior application in
software visualization. And even in the case of the RE toolkit, the maps are not used to produce
consistent layouts for thematic maps, or to visualize the evolution of a software system.
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6.1. Desiderata for spatial representation of software

Robert DeLine’s work on software navigation [15,30] closely relates to Software Cartography. His
work is based on the observation that developers are consistently lost in code [31] and that using
textual landmarks only places a large burden on cognitive memory. He concludes the need for new
visualization techniques that allow developers to use their spatial memory while navigating source
code.
DeLine proposes four desiderata [15] that should be satisfied by spatial software navigation: (1)

the display should show the entire program and be continuous, (2) the display should contain visual
landmarks such that developers can find parts of the program perceptually rather than relying on
names, (3) the display should remain visually stable during navigation (and evolution) and (4) the
display should be capable of showing global program information overlays other than navigation.
An ad hoc algorithm that satisfies the first and fourth properties is presented in the same work.

As distance metric between software entities (here, methods) an arbitrary chosen score is used.
Our work satisfies all above desiderata, and completes them with a fifth desideratum that visual

distance should have a meaningful interpretation. The scope of Software Cartography is broader
than just navigation, it is also intended for reverse engineering and code comprehension in general.
We can thus generalize the five desiderata for spatial representation of software as follows:

1. The visualization should show the entire program and be continuous.
2. The visualization should contain visualization landmarks that allow the developers to find

parts of the system perceptually, rather than relying on name or other cognitive causes.
3. The visualization should remain visually stable as the system evolves.
4. The visualization should be capable of showing global information overlays.
5. On the visualization, distance should have a meaningful interpretation.

6.2. Other layout approaches used in software visualization

Most software visualization layouts are based on one or multiple of the following approaches: UML
diagrams, force-based graph drawing, tree-map layouts and polymetric views.
UML diagrams generally employ no particular layout and do not continuously use the visualiza-

tion pane. The UML standard itself does not cover the layout of diagrams. Typically a UML tool
will apply an unstable graph drawing layout (e.g., based on visual optimization such as reducing
the number of edge crossings) when asked to automatically layout a diagram. However, this does
not imply that the layout of UML diagrams is meaningless. UML diagrams are carefully created by
architects, at least those made during the design process, so their layout do have a lot of meaning.
If you change such a diagram and reshow it to its owner, the owner will almost suddenly complain,
as he invested time in drawing the diagram a certain way. Alas! this layout process requires manual
effort.
Gudenberg et al. have proposed an evolutionary approach to layout UML diagrams in which

a fitness function is used to optimize various metrics (such as number of edge crossings) [32].
Although the resulting layout does not reflect a distance metric, in principle the technique could be
adapted to do so. Andriyevksa et al. have conducted user studies to assess the effect that different
UML layout schemes have on software comprehension [33]. They report that the layout scheme
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that groups architecturally related classes together yields best results. They conclude that it is
more important that a layout scheme convey a meaningful grouping of entities, rather than being
aesthetically appealing. Byelas and Telea highlight related elements in a UML diagram using a
custom ‘area of interest’ algorithm that connects all related elements with a blob of the same color,
taking special care to minimize the number of crossings [34]. The impact of layout on their approach
is not discussed.
Graph drawing refers to a number of techniques to layout two- and three-dimensional graphs

for the purpose of information visualization [25,35]. Noack et al. offer a good starting point for
applying graph drawing to software visualization [36]. Jucknath–John et al. present a technique to
achieve stable graph layouts over the evolution of the displayed software system [37], thus achieving
consistent layout, while sidestepping the issue of reflecting meaningful position or distance metrics.
Unlike MDS, graph drawing does not map an n-dimensional space to two dimensions, rather it

is concerned with the placement of vertices and edges such that visual properties of the output are
optimized. For example, algorithms minimize the number of edge crossings or try to avoid that
nodes overlap each other. Even though, the standard force-based layouts can consider edge weights
(which can be seen as a distance metric), edges with the same weight may have different length on
the visualization pane depending on the connectedness of the graph at that position. Furthermore,
the resulting placement is not continuous. The void between vertices is not continuous spectrum of
metric locations, as is the case with an MDS layout.
Graph splatting is a variation of graph drawing, which produced visualizations that are very

similar to thematic maps [38]. Graph splatting represents the layout of graph drawing algorithms as
a continuous scalar field. Graph splatting combines the layout of graph drawing with the rendering
of thematic maps. Each vertex contributes to the field with a Gaussian-shaped basis function. The
elevation of the field, thus, represents the density of the graph layout at that position. Telea et al.
apply Graph splatting in their RE toolkit to visualize software systems [29]. However, they are not
concerned with stable layouts. Each run of their tool may yield a different layout.
Treemaps represent tree-structured information using nested rectangles [25]. Though treemaps

make continuous use of the visualization pane, the interpretation of position and distance is imple-
mentation dependent. Classical treemap implementations are known to produce very narrow and
thus distorted rectangles. Balzer et al. proposed a modification of the classical treemap layout using
Voronoi tessellation [39]. Their approach creates aesthetically more appealing treemaps, reducing
the number of narrow tessels. There are some treemap variations (e.g., the strip layout or the
squarified layout) that can, and do, order the nodes depending on a metric. However, nodes are
typically ordered on a local level only, not taking into account the global colocation of bordering
leaf nodes contained in nodes that touch at a higher level. Many treemaps found in software visual-
ization literature are even applied with arbitrary order of nodes, such as alphanumeric order of class
names.
Polymetric views visualize software systems by mapping different software metrics on the visual

properties of box-and-arrow diagrams [40,41]. Many polymetric views are ordered by the value
of a given software metric, so that relevant items appear first (whatever first means, given the
layout). Such an order is more meaningful than alphabetic (or worse, hash-key ordering), but on
the other hand only as stable as the used metric. The System Complexity view is by far the most
popular polymetric view, and is often used as a base layout where our requirements for stability
and consistence apply (see, e.g., [42]). The layout of System Complexity uses graph drawing on
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inheritance relations, and orders the top-level classes as well as each layer of subclasses by class
names. Such a layout does not meet our desiderate for a stable and consistent layout.

6.3. More cartography metaphors in software visualization

A number of tools have adopted metaphors from cartography in recent years to visualize soft-
ware. Usually these approaches are integrated in a tool with in an interactive, explorative interface
and often feature three-dimensional visualizations. None of these approaches satisfies DeLine’s
desiderata.
MetricView is an exploratory environment featuring UML diagram visualizations [43]. The third

dimension is used to extend UML with polymetric views [40]. The diagrams use arbitrary layout,
so do not reflect meaningful distance or position.
White Coats is an explorative environment also based on the notion of polymetric views [44]. The

visualizations are three-dimensional with position and visual distance of entities given by selected
metrics. However they do not incorporate the notion of a consistent layout.
CGA Call Graph Analyser is an explorative environment that visualizes a combination of function

call graph and nestedmodules structure [45]. The tool employs a two and half-dimensional approach.
To our best knowledge, their visualizations use an arbitrary layout.
CodeCity is an explorative environment building on the city metaphor [46]. CodeCity employs

the nesting level of packages for their city’s elevation model, and uses a modified tree layout to
position the entities, i.e., packages and classes. Within a package, elements are ordered by size
of the element’s visual representation. Hence, when changing the metrics mapped on width and
height, the overall layout of the city changes, and thus, the consistent layout breaks.
VERSO is an explorative environment that is also based on the city metaphor [47]. Similar to

CodeCity, VERSO employs a treemap layout to position their elements. Within a package, elements
are either ordered by their color or by first appearance in the system’s history. As the leaf elements
have all the same base size, changing this setting does not change the overall layout. Hence, they
provide consistent layout, however within the spatial limitations of the classical treemap layout.

7. CONCLUSION

This paper presents Software Cartography, a spatial representation of software. Our approach visu-
alizes software entities using a consistent layout. Software maps present the entire program and
are continuous. Software maps contain visual landmarks that allow developers to find parts of the
system perceptually rather than relying on conceptual clues, e.g., names. As all software maps of
a system use the same layout, maps with thematic overlays can be compared with each other.
The layout of software maps is based on the lexical similarity of software entities. Our algorithm

uses LSI to position software entities in a multidimensional space, and MDS to map these positions
on a two-dimensional display. Software maps can be generated to depict evolution of a software
system over time. We evaluated the visual stability of iteratively generated maps considering four
open-source case studies.
In spite of the aesthetic appeal of hill shading and contour lines, the main contribution of this

paper is not the cartographic look of software maps. The main contribution of Software Cartography
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is (i) that cartographic position reflects topical distance of software entities and (ii) that consistent
layout allows different software maps to be easily compared. In this way, software maps reflect
world maps in an atlas that exploit the same consistent layout to depict various kinds of thematic
information about geographical sites.
We have presented several examples to illustrate the usefulness of software maps to depict the

evolution of software systems, and to serve as a background for thematic visualizations. The exam-
ples have been produced using CODEMAP, a proof-of-concept tool that implements our technique.
As future work, we can identify the following promising directions:

• Software maps at present are largely static. We envision a more interactive environment in
which the user can ‘zoom and pan’ through the landscape to see features in closer detail, or
navigate to other views of the software.

• Selectively displaying features would make the environment more attractive for navigation.
Instead of generating all the labels and thematic widgets up-front, users can annotate the map,
adding comments and waymarks as they perform their tasks.

• Orientation and layout are presently consistent for a single project only. We would like to
investigate the usefulness of conventions for establishing consistent layout and orientation (i.e.,
‘testing’ is North-East) that will work across multiple projects, possibly within a reasonably
well-defined domain.

• We plan to perform an empirical user study to evaluate the application of Software Cartography
for software comprehension and reverse engineering, but also for source code navigation in
development environments.
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