
Dynamic Synchronization – A Synchronization Model
through Behavioral Reflection

Jorge Ressia & Oscar Nierstrasz
Software Composition Group

University of Bern, Switzerland
http://scg.unibe.ch

ABSTRACT
In conventional software applications, synchronization code
is typically interspersed with functional code, thereby im-
pacting understandability and maintainability of the code
base. At the same time, the synchronization defined stat-
ically in the code is not capable of adapting to different
runtime situations. We propose a new approach to syn-
chronization which strictly separates the functional code
from the synchronization requirements to be used and which
adapts objects to be synchronized dynamically to their envi-
ronment. First-class synchronization specifications express
safety requirements, and a Dynamic Synchronization System
dynamically adapts objects to different runtime situations.
We present an overview of a prototype of our approach to-
gether with several classical concurrency problems, and we
discuss open issues for further research.

Categories and Subject Descriptors
D.3.2 [Programming languages]: Smalltalk; D.2.3
[Software Engineering]: Coding Tools and Tech-
niques; D.1 [Software]: Programming Techniques—Object-
Oriented Programming ; D.1.3 [Software]: Programming
Techniques—Concurrent Programming

General Terms
Context, Concurrency, Reflection

Keywords
Context-oriented Programming, software composition, be-
havioral variation, reflection, context

1. MOTIVATING EXAMPLE
Pier [10] is a fully object-oriented content management

system implemented in Smalltalk which has a large num-
ber of users. Pier provides the mechanisms to create, edit
and manage hypertext pages on the web. Pier uses the Com-
mand pattern [6] in order to model the different actions that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWST’09 August 31, 2009, Brest, France.
Copyright 2009 ACM 978-1-60558-899-5 ...$10.00.

can be performed by the user like editing, adding, moving
and copying pages. Each command might affect a different
number of pages depending on its semantics. For instance,
the edit command will only modify one page, the page being
edited, while the move command will affect the page itself,
all its children, the origin parent page and the destination
page.

The fact that different commands touch quite different
sets of pages poses a non-trivial dynamic synchronization
problem. If two clients trigger two commands and the sets of
pages that they modify overlap then we will have a data race.
Two commands that might modify at least one shared page
should be executed mutually exclusively. Defining a mutual
exclusion mechanism is not a trivial task since the number
of pages targeted by commands can vary. The developers
of Pier decided to attack this problem conservatively. A
global mutex is used to synchronize all commands, which
means that if there are two commands whose page interests
do not overlap, one of them will have to wait for the other
to complete, even though there is no conflict. We seek a
solution to the dynamic synchronization problem which is
safe, yet optimally live. Since one cannot know a priori
which objects may be modified by a given thread, we need
a solution that dynamically adapts itself to the interests of
the actually running threads.

We define the interests of a thread to be the set of objects
for which that thread may require read or write access. We
propose a solution to the dynamic synchronization problem
that dynamically computes the interests of different run-
ning threads. In a nutshell, one simply specifies a synchro-
nization specification, which declares which messages may
potentially conflict, and specifies a means to compute the
thread interests. This information is then used at runtime
to adapt the synchronization policy. If thread interests over-
lap, then a mutual exclusion policy, for example, can be im-
posed, whereas if no conflicts exist, then no synchronization
is required.

In our prototype, we make use of the Reflectivity
framework [3] to dynamically adapt the behavior of clients
and resources. The decision about how a particular situa-
tion should be synchronized depends on the interests each
running thread has.

2. SOLUTION: DYNAMIC SYNCHRO-
NIZATION

In order to improve the way Pier manages concurrent
execution of commands we will present how this can be
achieved with our approach. In conventional software appli-

101

http://scg.unibe.ch

cations, synchronization code is typically interspersed with
functional code, thereby impacting understandability and
maintainability of the code base. Our approach also tackles
this issue by providing abstractions which strictly separate
the functional code from the synchronization policy to be
used and dynamic adaptation to the application environ-
ment.

We introduce the notion of a first-class synchronization
specification, which expresses the safety requirements for a
set of collaborations. A synchronization specification decou-
ples the synchronization requirements from the actual policy
to be used. At runtime the synchronization specification is
used to dynamically select the most suitable policy to put
into place.

We can specify these requirements for the add command
as follows:

SynchronizationSpecification
for: PRAddCommand
on: #validateAndExecute
interestedIn: #pagesPotentiallyModified

This specifies a synchronization constraint for in-
stances of PRAddCommand. Whenever the message
validateAndExecute is sent concurrently to two or more
instances, a potential data race exists. The message
pagesPotentiallyModified can be sent to the PRAddCommand
instances to determine which actual pages may be accessed
by the command. This information can then be used by the
runtime system to adapt the synchronization policy.

It is also possible to specify a set of messages that may
need to be synchronized, and instead of sending a message
to compute the thread interests, an arbitrary one-argument
block (i.e., an anonymous function) may be specified, taking
the instance as its parameter.

We could also specify synchronization for the
PRMoveCommand as follows:

SynchronizationSpecification
for: PRMoveCommand
on: #validateAndExecute
interestedIn: #pagesPotentiallyModified

As we can see the specifications for these two commands
are almost identical. We can instead provide the following
specification for all commands:

SynchronizationSpecification
forAllSubclassesOf: PRCommand.
on: #validateAndExecute
interestedIn: #pagesPotentiallyModified

This specification models the synchronization require-
ments for command execution in Pier. In order for this
specification to be applied to the running application it has
to be registered with the Dynamic Synchronization System
(DSS). This system is responsible for adapting the behavior
of objects at runtime according to the registered specifica-
tions. Adapted code delegates to the DSS the decision which
synchronization policy should be put in place at runtime, de-
pending on the interests of the running threads. This cannot
be another source of race conditions since the access to the
DSS is synchronized.

After the specification is registered, every time a command
receives the message validateAndExecute the adapted code
will be executed. This code will delegate to the DSS the

responsibility of deciding which synchronization policy to
use. The DSS will determine the interests of running threads
and impose mutual exclusion in case of a conflict. If there are
no overlapping interests, the threads will run to completion
without interfering between each other. Further details are
given in Section 3.2.

3. DETAILS
In this section we present the implementation details of

our application.

3.1 Code Adaptation
Code is adapted by the DSS using the AST rewriting fa-

cilities of the Reflectivity framework [3]. All methods
listed in a synchronization specification are adapted. The
adaptation process adds synchronization code which collab-
orates with the DSS to allow the objects to dynamically
adapt their synchronization policy. Our prototype currently
only provides one policy which is mutual exclusion.

By separating the synchronization code from the func-
tional code we have also separated the requirements from
the implementation. The DSS can be satisfied using differ-
ent approaches. We have selected a mutex approach but
the adaptation technique does not limit the use of other ap-
proaches like transactions, monitors, etc.

3.2 Synchronization mechanism
In order to achieve mutual exclusion between the behav-

ior of different objects we chose a standard mechanism. A
unique mutex is assigned to every object in the thread in-
terests. These mutexes are ordered in a global fashion. The
adapted code delegates to the DSS the calculation of the in-
terests and the construction of a mutex. This mutex could
be a set of ordered mutexes or a single mutex, depending on
the number of objects in the thread interests.

message
(DynamicSynchronizationSystem current

mutexFor: self
in: aSpecificationId)

critical: [∧ originalMessageBody]'

As we can see in the previous adapted code, the decision
which mutex or set of mutexes to use is delegated to the
DSS. The adapted object is passed as an external collabora-
tor. The specification id is the unique identification provided
by the DSS when the specification was registered. The spec-
ification id is required since the DSS uses it to identify the
synchronization specification which was used to adapt the
code thus accessing the block for calculating the interests at
runtime. Finally the original message body will be executed
inside the critical message of the mutex provided.

3.3 Example
We use a classic, academic problem to illustrate the ap-

proach.
In the Dining Philosophers problem several philosophers

spend their time thinking and eating. In order to think they
first need to eat. In order to eat each of them needs two
forks. There are not enough forks for all of the philosophers
to eat at the same time.

In Figure 2 we show one possible solution for this prob-
lem. Each philosopher has two main actions, eat and think.
When a philosopher first tries to eat he must pick up both

102

aPhilosopher aTable

start

pickUpForks

dropForks

eat

eatMeal

think

Figure 1: Dining Philosophers sequence diagram

forks in front of him. After that he can actually eat, and
afterward drop the forks back on the table.

If we would ask someone to express in ordinary words the
synchronization problem of this example he would say that
philosophers need forks to eat, and two philosophers should
be able to eat at the same time if they do not share any
forks. Translating this to our framework, we would specify
that when a philosopher wishes to eat, he is interested in
forks.

SynchronizationSpecification
for: Philosopher
on: #eat
interestedIn: #forks

The synchronization specification expresses this require-
ment declaratively. When trying to eat, a philosopher should
be synchronized with respect to the forks he is interested
in. The synchronization specification makes this require-
ment explicit and it helps the developer to step back and
think the problem in at a higher level, closing the semantic
gap between the problem domain and its modeling solution.

Given the situation shown in Figure 2, if Philosopher 1 is
the first to start eating then he will hold forks 1 and 2. If
then Philosopher 2 tries to start eating he will be blocked
waiting for fork 2 held by Philosopher 1. When Philosopher
3 then tries to start eating he needs both forks 3 and 4, Since
these are available, he will be able to eat. When Philosopher
1 stops eating and leaves the forks on the table Philosopher
2 will try to take forks 2 and 3. He will succeed taking fork
2 but depending on whether Philosopher 3 is done eating or
not Philosopher 2 might need to wait for fork 3.

Every object which is declared to be a thread interest,
in this case the forks, has an associated mutex used by the
adapted code. The adapted code will send the critical: mes-
sage to the mutexes always in the same order. This syn-
chronization mechanism is safe since locking on mutexes in
a consistent order for all threads avoids deadlock due to cir-
cular dependencies.

Philosopher
1

Philosopher
2

Philosopher
3

Fork 1

Fork 2 Fork 3

Fork 4

Figure 2: Philosophers Interaction

4. DISCUSSION
In this section we show some examples how synchroniza-

tion specifications can help us think about concurrency from
different perspectives.

4.1 Dynamic Adaptation
During the application life cycle the synchronization re-

quirements can and do change, thus invalidating previous
synchronization specifications. The synchronization specifi-
cation abstraction addresses the problem of changing syn-
chronization requirements as follows. Suppose that we
slightly change Pier’s Command specification by introducing
a requirement which states that when the message validate
is sent to a command it should be mutually exclusive with
any other command validation and execution.

SynchronizationSpecification
forAllSubclassesOf: PRCommand.
on: #validateAndExecute
interestedIn: #pagesPotentiallyModified

Suppose that a distracted developer would create a new
specification for a new requirement which states that when
the message validate is sent to an add command it should be
mutually exclusive with any other command validation and
execution. Instead of modifying the preexisting specification
he defines a new one.

SynchronizationSpecification
for: PRAddCommand
onAll: #(validateAndExecute validate)
interestedIn: #pagesPotentiallyModified

We could introduce a rule in the DSS registration which
states that if the objects belong to the same hierarchy, the
blocks for evaluating the thread interests are the same and
all the objects involved are polymorphic regarding the extra
message validate; we are able to merge this too specifica-
tions as it is shown in Figure 3. When registering this new
specification the DSS will detect this overlap and merge the
two synchronization specifications. By reifying the specifica-
tions we are able to access the synchronization requirements
at runtime. By no means is this a fixed behavior. On the
contrary, this behavior can be changed when the DSS is cre-
ated by providing a set of rules or at runtime by changing
the set of rules. With this example we want to emphasize

103

how the synchronization specification abstraction assists us
in thinking about our application from a higher level of ab-
straction regarding synchronization.

PRViewCommand

#validateAndExecute

New Specification
Requirement

Old Specification

PRAddCommand

#validate

#validateAndExecutePRAddCommand

PRViewCommand

#validateAndExecute

Merged Specification

PRAddCommand

#validate

Figure 3: Specification with overlapping behavior

4.2 Configuration
Another adaptation strategy could be provided in order

to change the way code is adapted. So far we have only ex-
perimented with a simple modification of this approach in
which several objects are passed from the adapted code to
the synchronization system in order to be used in the cal-
culation of the thread interests. We have also experimented
with different mutex providers. Instead of using the classi-
cal approach of assigning one mutex per object we modified
this mechanism to consider groups of object. The group of
objects modeled by a thread interest is assigned a single mu-
tex. If afterwards, while these interests are active, another
thread has overlapping interests then it will be assigned the

same mutex and so on. With this approach we are saving
the time consumed in sending the message critical: to a po-
tentially large collection of mutexes. However, this approach
has the drawback that in the worst case all threads might
end up waiting on a single mutex even though they could
execute safely. Suppose we have three threads each inter-
ested in two objects, (1 2), (2 3) and (3 4) respectively. Now
suppose these threads run one after the other. Since their
interests overlap, they will all end up waiting on the same
mutex, even though the first and third threads have inde-
pendent interests. In case of the dining philosophers, this
strategy could lead to only a single philosopher being able
to eat at a time.

These different strategies can be changed when the DSS is
created by passing different collaborators to it. We plan to
explore other synchronization strategies to provide the user
with a wide variety of configuration scenarios.

5. PERFORMANCE
To assess the performance impact of our approach we have

performed some benchmarks. The adapted code sends more
messages than needed for traditional synchronization using
semaphores in Smalltalk. We will analyze the specific slow-
down related to this issue and then we will show results of
slowdown in real problems.

We have compared the performance of a method which
sends the critical: message to a semaphore against the adap-
tation of and empty message and for both of them we repeat
its execution as it can be seen:

(1 to: 1000000) do: [:each | anObject testSync].

(1 to: 1000000) do: [:each | anObject testAdapted].

Table 1 shows the results when comparing a classical syn-
chronization approach with our approach through adapta-
tion. As expected the slowdown is considerable when no
message is sent from the critical section. This implies that
most of the time is invested in synchronization code. Since
our approach adds message sends in order to determine
which synchronization structure to use we obtain a substan-
tial slowdown. If we now introduce empty message sends
in the critical section we can observe that the slowdown is
considerably smaller, down to around 30%.

It should be noted that the overhead observed for adapted
code does not translate directly into a slowdown of a real
world application using this technique. The overall slow-
down depends on how often the adapted portions of the
application are executed and how much of the application
is adapted. If we take the Dining Philosophers problem and
compare the slowdown between a classical approach and an
adapted one we only get a 0.27% slowdown.

6. RELATED WORK
The idea of separating the problem domain code from the

synchronization specific constructs was first pioneered by
Lopes [9] in the D Framework. This work provides lan-
guage constructions for mutual exclusion which have a simi-
lar behavior to the synchronization specifications. They also
present language features for defining Coordinators which
have the responsibility of coordinating the behavior of the
threads. These language constructs use aspects in order to
adapt the code.

104

Classical (msecs) Adapted (msecs) Slowdown

0 message sends 117 2807 2300%
500 message sends 3524 6073 72%
1000 message sends 6849 9337 36%

Table 1: Performance Impact

Kienzle and Guerraoui [7] also address concurrency and
failures from an aspect-oriented viewpoint. They use trans-
actions to solve the problem and due to this the application
code is still polluted with synchronization concerns. They
demonstrate that although a certain level of separation of
concerns is achievable some problems arise and they cannot
be solved by aspectizing the transaction mechanisms. It is
not possible to apply transaction aspects to previously non-
transactional code due to the impossibility of automatically
identifying irreversible actions.

Fabry et al. [4] introduced KALA, Kernel Aspect Lan-
guage for Advanced transactions, a domain-specific aspect
language for using advanced transaction management in
a distributed system. This tool provides transactions as
language constructs for dealing with concurrency and dis-
tributed issues. The main issue with this approach is that
the problem domain code has to be modify to also contain
the behavior related to transactional concerns.

Caromel et al. [2] introduce Sequential Objects Monitors
(SOM) as an alternative to programming with Java moni-
tors. Monitors method calls are reified as sequential requests
which are processed by a Scheduler. SOM follows the Actor
[1] concept by which all messages to a SOM are processed
sequentially. This potentially entails a loss of parallelism.

Since we want to avoid code pollution we did not consider
using transactional approaches for solving the synchroniza-
tion problem.

Svend Frolund and Gul Agha [5] introduce the notion of
Multi-Object Coordination. In order to synchronize the be-
havior of threads they use patterns of coordination that can
be defined abstractly. Patterns are expressed in the form of
constraints that organize the invocation to a group of ob-
jects. Constraints are responsible for allowing access or not
to a group of objects. Synchronizers are the abstractions
that define the patterns to be used. They use the Actor
approach.

One important drawback that we have perceived in all pre-
vious approaches is a lack of abstractions for modeling the
synchronization requirements. Lopes provided a language
construction for modeling synchronization specifications but
it was not possible to extend or modify its predefined behav-
ior.

7. CONCLUSIONS AND FUTURE WORK
We introduce synchronization specifications to separate of

synchronization code from functional code. Since synchro-
nization specifications are first-class objects, they are avail-
able at runtime to support dynamic adaptation to synchro-
nization policies. Different locking mechanisms can be used
to provide different levels of liveness and fairness. When
new synchronization specifications are introduced, potential
conflicts can be resolved.

We identify four main directions for further work:

• High level synchronization specifications.

• Synchronization policies.

• Coordinators and Schedulers

• Configuration

The synchronization specification is a high level abstrac-
tion which we would like to further develop in order to obtain
more ways to express synchronization requirements. For in-
stance, we would like to express that the use of a specific ob-
ject by different threads should be fair. For some problems
we should be able to simply state at a high level the situa-
tions that should be avoided (safety) or the activities which
should always be enabled (liveness). We currently provide
a mutually exclusive policy of objects’ methods. We would
like to support different kinds of policies that will control the
adaptation process and will deliver a higher level of context
sensitivity. For example we could have optimistic [8] and
pessimistic policies. Depending on the circumstances of an
application the policy could be switched between pessimistic
and optimistic making the adapted code adapt to the con-
text and change its behavior. Furthermore, in the absence
of competing threads, thread safety is not an issue, so the
context should be free not to impose any synchronization at
all. We would like to analyze if the schedulers and coordi-
nators abstractions presented in Section 6 are useful in this
context. We also plan to extend the specification capabil-
ities to detect potential problems and merge specifications
that overlap.

Acknowledgements
We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Bringing Mod-
els Closer to Code” (SNF Project No. 200020-121594, Oct.
2008 - Sept. 2010), and CHOOSE, the Swiss Group for
Object-Oriented Systems and Environments.

8. REFERENCES
[1] Gul Agha. ACTORS: A Model of Concurrent

Computation in Distributed Systems. MIT Press,
Cambridge, Mass., 1986.

[2] Denis Caromel, Luis Mateu, and Eric Tanter.
Sequential object monitors. In Proceedings of the 18th
European Conference on Object-Oriented
Programming (ECOOP 2004), number 3086 in Lecture
Notes in Computer Science, pages 316–340.
Springer-Verlag, 2004.

[3] Marcus Denker. Sub-method Structural and Behavioral
Reflection. PhD thesis, University of Bern, May 2008.

[4] Johan Fabry and Theo D’Hondt. Kala: Kernel aspect
language for advanced transactions. In SAC ’06:
Proceedings of the 2006 ACM symposium on Applied

105

computing, pages 1615–1620, New York, NY, USA,
2006. ACM.

[5] Svend Frolund and Gul Agha. A language framework
for multi-object coordination. In Oscar Nierstrasz,
editor, Proceedings ECOOP ’93, volume 707 of LNCS,
pages 346–360, Kaiserslautern, Germany, July 1993.
Springer-Verlag.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading,
Mass., 1995.

[7] Joerg Kienzle and Rachid Guerraoui. AOP: Does it
make sense? the case of concurrency and failures. In
Proceedings ECOOP 2002, volume 2374 of LNCS.

Springer Verlag, 2002.

[8] Hsiang-Tsung Kung and John T. Robinson. On
optimistic methods for concurrency control. ACM
TODS, 6(2):213–226, June 1981.

[9] Cristina Isabel Videira Lopes. D: A language
framework for distributed programming, 1997.

[10] Lukas Renggli, Stéphane Ducasse, and Adrian Kuhn.
Magritte — a meta-driven approach to empower
developers and end users. In Gregor Engels, Bill
Opdyke, Douglas C. Schmidt, and Frank Weil, editors,
Model Driven Engineering Languages and Systems,
volume 4735 of LNCS, pages 106–120. Springer,
September 2007.

106

	Motivating Example
	Solution: Dynamic Synchronization
	Details
	Code Adaptation
	Synchronization mechanism
	Example

	Discussion
	Dynamic Adaptation
	Configuration

	Performance
	Related Work
	Conclusions and future work
	References

