
Feature Driven Browsing?

David Röthlisberger Orla Greevy Oscar Nierstrasz

Software Composition Group
University of Bern – Switzerland

Abstract. Development environments typically present the software en-
gineer with a structural perspective of an object-oriented system in terms
of packages, classes and methods. From this perspective it is difficult to
gain an understanding of how source entities participate in a system’s
features at runtime, especially when using dynamic languages such as
Smalltalk. In this paper we evaluate the usefulness of offering an alter-
native, complementary feature-centric perspective of a software system
when performing maintenance activities. We present a feature-centric en-
vironment combining interactive visual representations of features with
a source code browser displaying only the classes and methods partic-
ipating in a feature under investigation. To validate the usefulness of
our feature-centric view, we conducted a controlled empirical experi-
ment where we measured and compared the performance of subjects
when correcting two defects in an unfamiliar software system with a
traditional development environment and with our feature-centric envi-
ronment. We evaluate both quantitative and qualitative data to draw
conclusions about the usefulness of a feature-centric perspective to sup-
port program comprehension during maintenance activities.

1 Introduction

System comprehension is a prerequisite for software maintenance but it is a time-
consuming activity. Studies show that 50-60% of software engineering effort is
spent trying to understand source code [1, 2]. Object-oriented language charac-
teristics such as inheritance and polymorphism make it difficult to understand
runtime behavior purely by inspecting source code [3–5]. In particular, with dy-
namic languages it is nearly impossible to obtain a complete understanding of
a system by just looking at its static source code. The task of understanding a
software system is further exacerbated by a best practice in object-oriented pro-
gramming to scatter behavior in many small methods, often in deep inheritance
hierarchies [6].

The problems of understanding object-oriented software are poorly addressed
by current development tools, since these tools typically focus only on a struc-
tural perspective of a software system by displaying static source artifacts such

? Proceedings of the 2007 International Conference on Dynamic Languages (ICDL
2007), ACM Digital Library, 2007, pp. 79-100. DOI 10.1145/1352678.1352684.



as packages, classes and methods. This is also true for modern Smalltalk dialects
and development environments such as Squeak [7] or Cincom VisualWorks [8].

A system may be viewed as a set of features. Each feature represents a well-
understood abstraction of a system’s problem domain. Typically maintenance
requests are expressed in terms of features [9]. Thus, understanding how features
are implemented is a prerequisite for system maintenance. A feature denotes a
unit of behavior of a system. It exists at runtime as a collaboration of objects
exchanging messages to achieve a specific goal. However, as it is not explicitly
represented in the source code, it is not easy to identify and manipulate. In this
paper, we adopt the definition of a feature as being a unit of observable behavior
of a system [10].

As traditional development environments offer the software engineer a purely
structural perspective of object-oriented software, they make no provision for the
representation of behavioral entities such as features. To tackle this shortcoming,
we propose to support the task of understanding during maintenance by aug-
menting a static source code perspective with a feature perspective of a software
system. We present a novel feature-centric environment providing support for
visual representation, interactive exploration, navigation and maintenance of a
system’s features. To motivate our work, we address the following questions:

– How useful is a feature-centric development environment for understanding
and maintaining software?

– How do we quantitatively measure the usefulness of a feature-centric devel-
opment environment?

– How do software engineers subjectively rate the usefulness of a feature-
centric perspective of a system to perform their maintenance tasks?

The fundamental question we seek to answer is if software engineers can
indeed better understand and maintain a software system by exploiting a feature-
centric perspective in a dedicated feature-centric development environment. We
want to determine if a feature-centric perspective is superior to a structural
perspective to support program comprehension. To address this question, we
implemented a feature-centric development environment in Squeak [7], a dialect
of Smalltalk. Our feature-centric development environment acts as a proof of
concept for the technical feasibility of our approach and as a tool which we can
actually validate with real software engineers.

The key contributions of this paper are: (1) we present our feature-centric
development environment, and (2) we provide empirical evidence to show its
usefulness to support comprehension and maintenance activities as compared
with the structural views provided by a traditional development environment.

Paper structure. In the next section we expand on the problem of feature
comprehension and provide a motivating example. Based on this, we formulate
our hypotheses of the usefulness of a feature-centric perspective for performing
maintenance tasks. In Section 3 we introduce our feature browser proof of concept
tool, allowing a developer to work in a feature-centric development environment.
We validate the usefulness of our feature-centric development environment by



conducting an empirical study in Section 4. We present the results and evidence
of our study in Section Section 5. We report on related work in Section 6 and
finally we conclude in Section 7.

2 Problem of Feature Maintenance

It is a generally accepted best practice of object-oriented programming that
functionalities or features are implemented as a number of small methods [4].
This, in addition to the added complexity of inheritance and polymorphism in
object-oriented software, means that a software engineer often needs to browse
a long chain of small methods to understand how a feature is implemented.
In Figure 1 we illustrate this with an example from Pier [11], the system we
chose as a basis for our experimentation. Pier is a web content management
system encompassing a Wiki application [11] implemented in Squeak Smalltalk
[7]. Figure 1 shows a small part of the class hierarchy of Pier and an excerpt of
a call tree, generated by exercising the copy page feature. The call tree reveals
that the feature implementation crosscuts the structural boundaries of the Pier
system.

A software engineer, faced with the task of maintaining the copy page feature,
first needs to locate the relevant classes and methods, and then browses back
and forth in the call chain to establish a mental map of the relevant parts of the
code and to gain an understanding of how the feature is implemented. This is a
cumbersome and time-consuming activity and often the software engineer loses
time and focus browsing irrelevant code.

invokes

CopyCommand(Command)>>execute 

CopyCommand(LocationCommand)>>doValidate 

CopyCommand>>doExecute 

CopyCommand(Command)>>doExecute 

CopyCommand(Command)>>structure 

Page>>postCopy 

Page(Structure)>>postCopy 
Page(Decorated)>>postCopy inheritance lookup

name
execute
doValidate
doExecute
structure
uniqueName:in:
...

Command

name
defaultName
doValidate
name:
target
...

name
target

LocationCommand

defaultName
doExecute
...

CopyCommand

postCopy
...

Decorated

postCopy
postCopyTo:
name
isValidCommand:in:
name:
title:
...

Structure

postCopy
...

Page

Page(Object)>>copy

Page(Object)>>postCopy 

Fig. 1. The relevant Pier Class Hierarchies for the copy page Feature and its Call Graph



2.1 Making Features Explicit in the Development Environment

From the perspective of a software engineer, a feature consists of a set of all
methods executed while performing a certain task or activity in a software sys-
tem. The relationships between the methods of a feature are dynamic in nature
and thus are not explicit in the structural representation of the software [12].
For our purposes, we represent features (i.e., dynamic units of behavior ) in
terms of their particpating methods. We aim to support the software engineer
when maintaining or fixing a defect in a feature. Thus we need to capture and
represent features as explicit entities. The behavior of a feature may be captured
by triggering an activity from the user interface. Alternatively, as described in
the work of Licata et. al. [13], test cases are typically aligned with features. For
our experimentation we opted to use test cases to trigger features. Furthermore,
by using test cases we can better control the volume of dynamic information
captured to represent each feature.

Our premise is that by explicitly representing features in the development
environment, we support maintenance activities by providing the software engi-
neer with an explicit map between features and source entities that implement
the feature. By focusing the attention of the maintainer on only relevant source
entities of a given feature or set of features, we improve the understanding and
the ease with which she can carry out maintenance tasks.

We state our hypotheses as:

– A feature-centric development environment decreases the time a software
engineer has to spend to maintain a software system (e.g., to correct a bug)
compared to a traditional development environment which provides only a
structural perspective of the code

– A feature-centric development environment improves and enriches the un-
derstanding of how the features of a software system are implemented

We refine our hypotheses in Section 4, when we describe the details of our
empirical study. Our qualitative and quantitative evaluation of the findings of
our experimentation reveal that these hypotheses do indeed hold.

3 Proposing a Solution: A Feature-centric Environment

The foundation of our approach is a feature browser tool which we embed in the
software engineer’s integrated development environment (IDE). The purpose of
the feature browser is to augment an IDE with a feature perspective of a soft-
ware. We implemented our prototype feature browser in Squeak Smalltalk [7].
The feature browser complements the traditional structural and purely textual
representation of source code in a browser by presenting the developer with inter-
active, navigable visualizations of features in three distinct but complementary
views. These views are enriched with metrics to provide the software engineer
with additional information about the relevancy of source artifacts (i.e., classes
and methods ) to features.



Initially, we introduce the key elements of our feature-centric environment.
Subsequently, we describe how feature-centric environment promotes software
engineer’s comprehension of scattered code in object-oriented programming while
performing maintenance tasks on a system’s features.

3.1 Feature Affinity in a Nutshell.

In previous work [14], we defined a Feature Affinity measure to assign a rele-
vancy scale to methods in the context of a set of features. Feature Affinity defines
an ordinal scale corresponding to increasing levels of participation of a source
artifact (e.g., a method) in the set of features that have been exercised. For our
feature-centric environment we consider four Feature Affinity values: (1) a single-
Feature method participates in only one feature, (2) a lowGroupFeature method
participates in less than 50% of the features, (3) a highGroupFeature method
participates in 50% or more of the features and (4) an infrastructuralFeature
method participates in all of the features.

We exploit the semantics of Feature Affinity to guide and support the soft-
ware engineer during the navigation and understanding of one or many features.
We assign to the visual representation of a method a color that represents its Fea-
ture Affinity value. Our choice of colors corresponds to a heat map (i.e., a cyan
method implies singleFeature and red implies infrastructuralFeature, i.e., used
by all the features we are currently investigating).

3.2 Elements of the feature-centric environment

testCopy
testCopyIntoChild
testInitialized

CopyCommandTest
...

Test Browser
tests

<<context menu>>

- generate trace
- open in feature view
- run

(1)

(4)

<<context menu>>

- view source in browser
- ...

(3)
(4)

(2)

Fig. 2. The Elements of our Feature Browser Environment

The feature-centric environment contributes three different visualizations for
one and the same feature: (2) the compact feature overview, (3) the feature tree



view and (4) the feature artifact browser. (1) is the test runner which is not
directly part of the feature-centric environment but a separated tool.

Compact Feature Overview

The Compact Feature Overview presents a visualization of two or more fea-
tures represented in a compacted form. The Compact Feature view represents a
feature as a collection of all methods used in the feature as a result of capturing
its execution trace. Each method is displayed as a small colored box; the color
represents the Feature Affinity value. The methods are sorted according to their
Feature Affinity value. The software engineer decides how many features she
wants to visualize at the same time (see Figure 2 (2)). Clicking on a method
box in the Compact Feature View opens the Feature Tree View, which depicts
a call tree of the execution trace. This visualization reveals the method names
and order of execution. All occurrences of the method selected in the Compact
Feature View are highlighted in the call tree.

Feature Tree

This view presents the method call tree, captured as a result of exercising
one feature (see Figure 2 (3)). The first method executed for a feature (e.g., the
“main” method) forms the root of this tree. Methods invoked in this root node
form the first level of the tree, hence the nodes represent methods and the edges
are message sends from a sender to a receiver. As with the Compact Feature
Overview, the nodes of the tree are colored according to their Feature Affinity
value.

The key challenge of dynamic analysis is how to deal with the large amount
of data. For our experimentation we chose Pier [11], a web-based content man-
agement system implemented in Smalltalk. We obtained large traces of more
than 15’000 methods. We discovered that it is nearly impossible to visualize
that amount of data without losing the overview and focus, but still convey-
ing useful information. To overcome this we applied two techniques: First, we
compressed the execution traces and the corresponding visual representation as
a feature tree as much as possible without loss of information about order of
execution of method sends. Second, we opted to execute test cases of a software
system rather than interactively trigger the features directly from the user inter-
face. For instance, instead of looking at the entire copy page feature initiated by
a user action in the user interface, we analyze the copy page feature by looking
at the test cases that were implemented to test this feature. As stated in the
work of Licata [13], features are often encoded in dedicated unit test cases or in
functional tests encoded within several unit test cases. In the case of a software
system that includes a comprehensive test suite, it is appropriate to interpret
the execution traces of such test cases as feature execution traces.

Furthermore, we tackle the problem of large execution traces by compressing
feature trace with two different algorithms: First we remove common subexpres-
sions in the tree and subsequently we remove sequences of recurring method calls



as a result of loops.

C>>testA
A>>>b

A>>c

A>>b
D>>b

C>>a

(1) common subexpression popup

3
A>>d

C>>e
(2) sequence compression

Fig. 3. The Common Subexpression and Sequence Compression of the Feature Tree

Common Subexpression Removal
A subexpression in a tree is a branch which occurs more than once. If, for ex-
ample, a pattern “method c invokes methods a and b” occurs several times in
a call tree, we identify this pattern as a common subexpression. Our analysis
reveals that the execution traces of features typically contain many common
subexpressions. By compacting the representation of these subexpressions,
we reduce the tree by up to 30% on average. Our visualization still includes
an expandable root node of a common subexpression branch in the tree, the
subexpression can be opened in a pop-up window by the software engineer.
Figure 3 (1) shows a schematic representation of how we display common
subexpressions in our feature tree view.
To perform the removal of common subexpressions, we applied the algorithm
presented in [15].

Sequence Removal
Often a feature trace contains several sequences, e.g., methods invoked in a
loop. It is straightforward to compress these nodes included in a loop by only
presenting them once. Furthermore, we indicate how often the statements
of a loop are repeated. If, for example, the methods d and e are executed
three times in a loop, we add an artificial numeric node labeled with a ‘3’ to
the tree and link the nodes for d and e. to this node ( as shown in Figure 3



(2)). To detect and compact sequences, we implemented a variation of the
algorithm presented in [16].

Despite having applied these techniques, the feature tree is still complete
and is easily read and interpreted by the software engineer. No method calls
occurring in the feature are omitted.

Initially a feature tree is displayed collapsed to the first two levels. Every
node can be expanded and collapsed again. In this way, the software engineer
can conveniently navigate even large feature trees.

When a user selects a method node in the compact feature overview, all the
occurrences of this method are highlighted in the feature tree. Also the tree is
automatically expanded to the first occurrence of the selected method and the
feature tree window is centered on that node. The user can navigate through all
occurrences of the desired method by repeatedly clicking on the corresponding
node in the compact feature overview. By opening a method node in the feature
tree the engineer is able to follow the complete chain of method calls from the
root node to the current opened method node. No intermediate calls of methods
belonging to the software system under study are omitted.

Every node of the tree provides a button to query the source code of the
corresponding method in the feature artifact browser.

Feature Artifact Browser
The source artifacts of an individual feature are presented as text in the

feature artifact browser (see Figure 2 (4)). It exclusively displays the classes and
methods actually used in the feature. This makes it much easier for the user
to focus on a single feature of the software. Our feature artifact browser is an
adapted version of a standard class browser available in the Squeak environment.
It containing packages, classes, method categories and methods in four panes on
the top, while the lower pane contains the source code of the selected entity. This
version of the class browser not only presents static source artifacts, but also
the feature affinity metric values by coloring the names of classes and methods
accordingly.

The three distinct visualizations provided by the feature browser are tightly
interconnected so that a software engineer does not lose the overview when
performing a maintenance task. For instance, the user selects a method in the
compact feature overview, the tree opens with all occurrences of the selected
method. From the tree perspective, the software engineer can choose to view a
method as source code in the feature artifact browser by double-clicking on a
node that represents the method of interest in the feature tree.

To initiate a maintenance session with the feature browser, the software engi-
neer selects test cases that exercise features relevant to her specific maintenance
task. To ease the collection of features traces, we extended the standard class
browser of Smalltalk (called OmniBrowser) to seamlessly execute instrumented
test cases and capture feature traces as shown in Figure 2 (1). Thus, once she has
executed the instrumented test cases, the software engineer launches a feature
browser with an initial number of features.



3.3 Solving Maintenance Tasks with the Feature Environment

The feature-centric environment supports program comprehension and feature
understanding for maintenance tasks in three ways:

Firstly, by comparing several features with each other in the compact feature
overview, software engineers gain knowledge about how different selected features
are related in terms of the methods they have in common. Since the features
included in this compact feature overview can be arbitrarily selected, a developer
can compare any features with each other. However, when performing a specific
maintenance task, it makes sense to select related test cases to e.g., compare
failing tests with similar, non-failing tests to determine which parts of a software
system may be most likely responsible for a defect. If, for example, only one test
method of a test class exercising the copy command feature of a software system
is failing, then we compare this test method to all test methods exercising the
copy command feature. We assume that by looking first at the methods that
are only used in the single failing test method, we are more likely to be faster
at discovering the defect, as the chances are high that one of the singleFeature
methods (i.e., methods unique to one compact feature view) are responsible for
that defect. The aim of the compact feature overview is to support the quick
identification and rejection of candidate methods that may contain a defect.

Secondly, the feature tree provides an insight into the dynamic structure of
a feature, an orthogonal dimension compared to the static structure visible in
the source code. The nodes in the tree are also colored according to the Feature
Affinity metric which guides the software engineer to identify faulty methods.
In the example described above where a single feature is failing the most likely
candidate methods responsible for the defect are colored in cyan in the feature
tree. Since this tree is complete, i.e., it contains all method calls for that specific
feature, chances are high that the engineer discovers the source of the defect in
one of these single methods that are easy to locate in the feature tree due to
their coloring.

The software engineer can also navigate and browse the tree to obtain a
deeper understanding of the implementation of the feature and the relationships
between the different methods used in the feature. For every method of a feature,
the software engineer can easily navigate to all occurrences of this method in
the feature tree to find out how and in which context the given method is used.
This helps one to discover the location of a defect and the reason why it occurs.
The feature tree transforms and improves the understanding of the dynamic
structure of a feature and reveals where and how methods are used. For every
node in the feature tree, the developer can view the source code of that method
in the feature artifact browser.

Thirdly, the feature artifact browser helps the developer to focus only on
entities effectively used in a feature. The number of methods that might be
responsible for bugs is thus reduced to a small subset of all existing methods
in a class or a package. Since only packages, classes and methods are presented
to the developer in the feature artifact browser, it is much easier for her to
find information relevant for a defect or another maintenance task, i.e., classes



or methods. Hence the feature artifact browser helps one to focus on relevant
source artifacts and to not lose track and context.

4 Validation

To obtain a measure of the usefulness of our feature-centric environment and its
concepts in practice, we conducted an empirical experiment with subjects using
and working with the feature-centric environment. The goals of the experiment
were to gain insight into the strengths and shortcomings of our current im-
plementation of the feature-centric environment, to obtain user feedback about
possible improvements and enhancements, and to assess the practical potential
of the feature-centric environment. Our primary goal was to gather quantitative
data that would indicate how beneficial was the effect of using the feature-centric
environment as compared with the standard structural and textual representa-
tions of a traditional development environment. We introduce and describe the
experiment in this section, formulate the hypotheses we address and describe
precisely the study design. Finally, we present the results we obtained from the
experiment.

4.1 Introducing the Experiment

To validate our feature-centric environment we asked twelve subjects (computer
science graduate students) to perform two equally complex maintenance tasks
in a software system, one task performed in the feature-centric environment and
the other in the standard environment of Squeak Smalltalk (i.e., using Omni-
Browser). As a maintenance task, we assigned the subjects the correction of a
defect in the software system. The presence of the defect is revealed by the fact
that some of the feature tests are failing.

In this experiment we seek to validate three hypotheses concerning our feature-
centric environment. If the result of the experiment reveals that the hypotheses
hold, we then have successfully obtained clear evidence that our feature-centric
environment supports a developer to perform maintenance and that the feature
affinity metric we applied is of value in practice.

4.2 Hypotheses

We propose the three null hypotheses listed in Table 1. The goal of the experi-
ment is to refute these null hypotheses in favor of alternative hypotheses which
would indicate that a feature-centric environment helps the software engineer to
discover and correct a defect and hence improves program comprehension.

4.3 Study design

Study setup.



H01 The time to discover the location of the defect is equal when using the standard browser
and our feature-centric environment. (formally: µD,FB = µD,OB , where µD,FB is the average
discovery time using the feature-centric environment and µD,OB the average discovery time
using OmniBrowser)

H02 The time to correct the defect is equal when using the standard browser and our feature-
centric environment. (formally: µC,FB = µC,OB)

H03 The feature-centric environment has no effect on the software engineer’s program compre-
hension. (formally: average effect µE,FB = 0)

Table 1. Formulation of the null hypotheses

During the experiment, subjects were asked to correct two bugs in a complex
web-based content management framework written in Smalltalk. Our software
system, Pier [11], consists of 219 classes of 2341 methods with a total of 19261
lines of code. The two defects were approximatively equally complex to discover
and correct. For both bugs we slightly changed one method in the Pier system.
As a result of our change, some (feature) tests failed. We presented the subjects
with these failing tests as a starting point for their search for the defect. In Pier
a unit test class is dedicated to a certain feature (e.g., copying a Wiki page) and
the different methods of a test class are different instantiations of that feature
(e.g., different parameters with which the feature is exercised). This is in line
with the argumentation presented in the work of Licata [13] saying that features
are often encoded in unit test cases.

In our experiment, we introduced two different defects in the copy page fea-
ture. This feature is tested by a dedicated test class with five test methods. The
two defects produce failures in different test methods of the copy page test class.
For the experiment we select all the five test methods exercising the copy page
feature and show them in row in the Compact Feature View our feature-centric
environment. As these five exercised test methods are variants of the same fea-
ture they are clearly related to each other, which means that if one test method
reveals a failure but the others don’t, it is most likely to spot that failure by just
looking at the different methods the failing test is executing.

We conducted the experiment with twelve graduate computer science stu-
dents as subjects with varying degrees of experience with the Smalltalk pro-
gramming language and the Squeak development environment. All subjects had
between one and five years of experience with the language, but only between
zero and four years of experience with the Squeak development environment.
None of the subjects was familiar with the design and implementation of the
Pier application in detail.

Before starting the experiment, we organized a workshop to introduce the
concepts and paradigms of our feature-centric environment. Every subject could
experiment with our feature browser for half an hour before commencing our
experiment consisting of the task of defect location and correction. Further-
more, we briefly introduced the subjects to the design and the basic concepts



of Pier by presenting an UML diagram of the important entities of the appli-
cation. The experiment was conducted in a laboratory environment, as opposed
to the subjects’ normal working environment. While performing the experiment,
we observed the subjects. Afterwards we asked them to respond to a question-
naire to gather qualitative information about the feature-centric environment.
The questionnaire contains several questions about the usefulness of the feature-
centric environment to understand the program and to perform the requested
maintenance task. For every question, the subjects could choose a rating from
-3 to 3, where -3 represents a hinderance to program comprehension, 0 no effect
and 3 very useful. In addition, the subjects could provide qualitative feedback,
e.g., what shortcomings of the environment suggested improvements. The results
of these open suggestions, as well as the observations of the experimenters form
the qualitative part of our study.

Every subject had to fix both defects, one using our feature-centric environ-
ment and the other one using the standard class browser, i.e., OmniBrowser.
Both the debugger as well as the unit-test runner were available for use to com-
plete the task. We prohibited use of every other tool during the experiment.
From subject to subject we varied the order in which they fixed the defects as
well as the order in which they used the different browsers. Hence there are
four possible combinations to conduct an experiment with a subject and each
of these four combinations were exercised three times. A concrete combination
was randomly chosen by the experimenters for any subject.

Dependent variables.
We recorded two dependent variables: (i) the time to discover the location

(i.e., the method) where the defect was introduced, and (ii) the time to actually
correct the defect completely. We considered the goal as being achieved when
all 872 unit tests of Pier ran successfully. The bugs had to be fixed in the right
method, thus, they were carefully chosen so that they could only be corrected
in this method.

4.4 Study Result

Initially we report on the quantitative data we obtained by recording the time
the subjects spent to find and correct the defects using the different browsers.
Then we evaluate the results from the questionnaire and finally we present qual-
itative feedback reported by the subjects.

Time Evaluation.
Figure 4 compares the average time spent to correct the bugs, the average

times were aggregated independent on the used browser or on the order in which
the different defect were addressed by the subject. The figure clearly shows that
the two bugs were approximately equally complex, thus allowing us to compare
the time the different subjects spent in different environments to correct the two
defects. We initially selected these two defects after having assessed their com-
plexity in a pre-test with two subjects working in the standard Squeak browser.



These two subjects needed approximately the same time to correct both defects
and subjectively considered the two bugs as equally complex and difficult to
correct.

0 5 10 15 20 25 30

Defect B

Defect A

Fig. 4. Comparing average time to correct the two defects

Figure 5 compares the total time the subjects spent to discover the location
of the defect once using the feature-centric environment and once using the Om-
niBrowser. The average benefit of using the feature-centric environment is 56
percent which are in total 56 minutes less than using OmniBrowser. During
the experiment we considered that the correct location of the defect has been
discovered when the subject announces that the defect has to be in the specific
faulty method. The subjects were asked to name the faulty method as soon as
they believed to have found it. The situation is similar when considering the time
spent to fully correct the defects (see also Figure 5), which is the time to discover
the defect plus the amount of time to edit and correct the faulty method. Here
we get a relative improvement of 33 percent and an absolute of 100 minutes saved
when using the feature-centric environment instead of OmniBrowser. Figure 6
presents boxplots showing the distribution of the discovery and correction time
the different subjects spent in different browsers. The different defects are not
identifiable in these boxplots, only the different browsers. To measure the whole
correcting time we considered the bug as being corrected as soon as all the tests
of Pier run successfully.

Evaluation of the Questionnaire.
In our questionnaire we mainly asked the subjects how they rate the effect of

the different aspects of the feature-centric environment on program comprehen-
sion. We asked about the overall effect on program comprehension, the effect of
the feature overview, of the feature tree, feature class browser and of the feature
affinity metric. Furthermore, we asked how well certain parts of the feature-
centric environment were understood by the subjects and how well they could
interact with the different parts. In Table 7 we present the details of our ques-
tionnaire and the average results we got from the subjects. They could choose



0 5 10 15 20 25 30 35

Correcting with OmniBrowser                     

Correcting with Feature-centric Environment

Discovery with OmniBrowser                      

Discovery with Feature-centric Environment 

Fig. 5. Comparing average time between using feature-centric environment and Om-
niBrowser to discover resp. correct a defect

0

10

20

30

40

50

Discovery with
Feature-centric

Environment

Discovery with
OmniBrowser

Correcting with
Feature-centric

Environment

Correcting with
OmniBrowser

Fig. 6. Boxplots showing the distribution of the different subjects



Question Result

1. General effect on Program Comprehension 1.16
2. Effect of Compact Feature Overview 1.58
3. Effect of Feature Tree Browser 1.33
4. Effect of Feature Class Browser 1.50
5. Effect of Feature Affinity Metric 1.42
6. Understanding the subexpression compression in Feature Tree 1.58
7. Understanding the sequence compression in Feature Tree 1.75
8. Understanding the navigation in Feature Tree 2.00
9. Interaction with Compact Feature View 1.50
10. Interaction between Feature Tree and Feature Class Browser 1.58

Fig. 7. Questionnaire.

between a rating from -3 to 3, so an average rating of 1.16 for e.g., “General
effect on Program Comprehension” reveals a positive, although not a very strong
effect. As an example, we depict in Figure 8 the results for the question about
the effect of the compact feature overview on program comprehension. The rat-
ings were in average 1.58 which denotes that the subjects considered the effect
in average as “good”.

0

1

2

3

4

5

-3 -2 -1 0 1 2 3

Fig. 8. Comparing the average results for the effect of compact feature overview on
program comprehension



Statistical Conclusion.
To test the first two hypotheses formulated in Table 1 we apply the one-

sided independent t-test [17] with an α value of 10% and 22 degrees of freedom.
One requirement for applying the t-test is equality of the variance of the two
samples. For the two discovery time samples we determine a variance of 92 and
112, respectively, for the correcting time samples the variances are more closes
to each other, 102 and 110, respectively. For the correcting time the variance re-
quirement is fulfilled, for the discovery time we are careful and assume that this
requirement is not fulfilled. Another requirement for applying the t-test is a nor-
mal distribution of the underlying data which we justify with the Kolmogorow-
Smirnow-Test. With an α value of 5% the result of this test allows us to assume
normal distribution for the correcting time samples, with an α value of 10% we
can also assume normal distribution for the discovery time samples.

These preliminary tests allows us to use the t-test at least for the correcting
time. We also use it for the discovery time, but we are skeptical about the
result in that case. For the discovery time we calculated a t value of 1.32. The
t distribution tells us the probability that t > 1.32 is exactly 10% which means
that we can just barely reject the null hypothesis H01. Because the requirements
for the t-test are not properly fulfilled and because an α value of 10% is probably
to low to justify a rejection of the null hypothesis we cannot prove the positive
effect of the feature-centric environment on the discovery time of a defect.

For the time to correct a defect we obtain a t value of 1.86 which is even
greater than the t value of the 95% confidence interval (t = 1.717). This means
that we can reject H02 even with an α value of 5% and accept the alternative
hypothesis H12 saying that the feature-centric environment speeds up the time
to correct a defect (µC,FB < µC,OB).

To test the third hypothesis we use the results of the questionnaire and
apply the one-sided Wilcoxon signed-rank test [18]. We cannot assume normal
distribution for the underlying data in this case since the ratings were almost
all positive. We only apply the test to the answers for the general effect of the
feature-centric environment. We calculate a W value of 26 which is exactly equal
to the S value we find in the tabular denoting the 95% confidence interval. This
means that we can reject H03 with an α value of 5% and hence accept the
alternative hypothesis which says that the feature-centric environment has a
positive effect on program comprehension.

5 Discussion

In this section we report on the main threats to validity of our experiment and on
the conclusions we can draw from this study. Furthermore, the subjects provided
us with a wide range of constructive criticism and suggestions for improvements
to the feature-centric environment, which we also outline in this section.

5.1 Threats to Validity

We distinguish between external, internal and construct validity [19].



– External validity depends on the subjects and the software system in which
subjects are asked to correct defects during the experiment. In our case
the software system, Pier, is a complex real-world application comparable to
other industrial object-oriented systems. The subjects, however, are students
and research assistants who may not be directly comparable to programmers
in industry. Furthermore, the experiment was conducted in a laboratory en-
vironment which biases the performance of the subjects. Hence the results
are not directly applicable to settings in practice, although we consider the
aforementioned influences as small.

– Internal validity is jeopardized by the fact that not all subjects had the same
amount of experience with the programming language and especially with
the Squeak development environment. While everybody was quite familiar
programming in Smalltalk (at least one year of experience), the particular
environment was new to some of the subjects. But because these problems
were present for both defects and browsers, we believe that they do not bias
the results tremendously. Furthermore, we changed the order of the bugs and
browsers from subject to subject, hence the results were only slightly biased
by the fact that subjects had more insight into the development environment
and also into the software system when fixing the second bug than they had
for the first bug. However, the different amount of experience of the subjects
is nonetheless a shortcoming of this study.
Another important issue is that subjects could also use other tools than just
the two different browsers, e.g., the debugger. As it is usually necessary to
use a debugger in a dynamic language to find a bug, we did not prohibit
its usage. Some subjects performed the task predominantly by using the
debugger to find the bug whereas they made the necessary corrections often
in the provided browser. These other available tools clearly bias the result
of our experiment to a degree which is hard to estimate.
Yet another important issue is that the subjects did not know or use the
feature-centric environment previously. It is a complete new environment
with a very different approach to look at a software system and its fea-
tures. The other environment (i.e., the OmniBrowser) was well-known by
all subjects, since the paradigm applied in this browser is the standard way
of browsing source code in most Smalltalk dialects (and indeed for other
object-oriented languages).

– Construct validity. Our measure, the time to find and correct a defect, is
adequate to assess the contribution of the feature-centric environment to
maintenance performance. However, this time is certainly biased by many
other factors than the browsers in use, such as the experience of the devel-
oper, her motivation, the use of other tools, etc. To assess the effect of the
feature-centric environment on program comprehension we used our ques-
tionnaire to obtain feedback on how the subjects personally judge the effects
on program comprehension. These answers are certainly subjective and may
hence not be representative. Thus the applied measures are not a perfect



assessment of the effects of the feature-centric environment on maintenance
performance and on program comprehension, although at least the former
is still relatively well assessed with the applied measures.

5.2 Study Conclusion

Two main issues of our empirical study are: (1) the subjects participating the
experiment do not have the same experience with the programming language and
the development environment, and (2) they were unfamiliar with our feature-
centric environment as they had never used it before. On the other hand, they are
familiar with the standard development environment. Another important issue
is that due to the limited number of subjects participating in the experiment,
it is difficult to draw statistically firm conclusions. This study nonetheless gives
us worthwhile insights into how software engineers use and judge our feature-
centric environment and defines a framework for further studies of this kind. The
results we obtained motivate us to proceed with our work on this environment
and the subject feedback provides us also several new ideas and approaches that
we intend to pursue. We conclude that performing this study was crucial to
validate and improve our work.

5.3 Elements of the Feature-Centric Environment

In this section we discuss some of the interesting ideas and suggestions we ob-
tained as feedback from the subjects who participated in the experiment. Fur-
thermore, we also discuss some of the issues of feature analysis inherent in our
feature-centric environment:

– Bidirectional interactions. Providing the capability to navigate the tree by
clicking and selecting the textual representations of the methods in the fea-
ture artifact browser and being able to click on nodes in the tree to select
the same methods in the compact feature view is a useful improvement to
the feature-centric environment. This helps one to navigate and understand
more quickly the structure and implementation of a feature.

– Bind tree to debugger. Using a debugger is not an easy task since we only
see a slice of a program in the debugger but not the overall structure. If we
could use the feature tree to step through a running program to debug it,
we would get a better overview and understanding of the overall structure
of a feature. Hence a promising extension of the feature-centric environment
would be to add debugging facilities to the feature tree, such as stepping
through a program, inspecting variables and changing methods on the fly.

– Delta debugging. Using the feature-centric environment to discover and cor-
rect a defect in a feature is a frequent task which we can ease by analyzing
test cases representing features. Careful analysis of test cases with delta de-
bugging approaches [20] allows us to rate methods used in a feature according
to their probability being responsible for a defect. If we present the methods
in the compact feature view sorted by their probability to contain erroneous



code a developer can very quickly focus on the right methods to correct a
defect.

– Performance analysis By enriching the feature-centric environment, in par-
ticular the feature tree, with more dynamic information such as execution
time or memory consumption, the tool will be well suited for performance
analysis. The feature tree can easily reveal which branch consumes the most
resources or which specific method call takes the most time to execute. An-
other useful enhancement is a mechanism to compare different executions
of a feature (e.g., with different parameters) with each other to emphasize
differences in execution time or consumption of resources.

– Scalability Issues. Dynamic analysis approaches are required to manipulate
large amounts of data. We address this issue by using test cases to trigger
the behavior of features. Furthermore, we present the user with both a com-
pressed feature view as well as the entire call tree of a feature. To reduce the
call tree, we applied compression algorithms. Our feature representations
could also be reduced by applying selective instrumentation and filtering
techniques [16].

– Coverage. By using test cases to represent features we do not obtain full
coverage of all possible execution paths of a feature. Other feature identifi-
cation approaches are also subject to this limitation [10, 21]. We argue that
although full coverage is desirable, it is not essential to support a feature-
centric approach to software maintenance.

6 Related Work

The problems of understanding object-oriented software when browsing and
maintaining a system are well-documented [3–5, 22]. Wilde and Huitt [5] de-
scribed several problem areas related to object-oriented code and they suggested
tracing dependencies was vital for effective software maintenance. To fully un-
derstand a method, its context of use must be found by tracing back the chain
of messages that reach it, together with the various chains of methods invoked
by its body [5]. Nielson and Richards [23] investigated how difficult it was for
experienced software engineers to learn and use the Smalltalk programming lan-
guage. They found the distributed nature of the code caused problems when
attempting to understand a system. Chen et. al. also highlighted class hierar-
chies and messages as posing difficulties when trying to maintain object-oriented
code [24]. It is exactly such problems we aim to address with our feature-centric
environment.

Some empirical analysis work has been carried out to obtain evidence to sup-
port their claim that understanding object-oriented software to perform main-
tenance tasks is difficult. In the work Brade et. al. [25], they presented a tool
(Whorf) to provide explicit support for delocalized plans (conceptually related
code that is not localized contiguously in a program). Whorf provided hypertext
links between views of the software to highlight interactions between physically
disparate components. They performed an experiment with software engineers



to measure how quickly it took them to identify relevant code to perform an en-
hancement to a software system, once with paper documentation and once with
Whorf . Their results show that using Whorf improved efficiency when perform-
ing a maintenance task. The focus of this work was to support documentation
strategies for object-oriented programs.

Dunsmore et. al. [4] highlighted the shortcomings of traditional code inspec-
tion techniques when faced with the problem of delocalization in object-oriented
software. They present the results of an empirical investigation to measure how
long it took software engineers to locate defects in a software system.

In contrast to the work of Dunsmore et. al. and Brade et. al. [4,25], our exper-
iment focuses on measuring the usefulness of our feature-centric environment.
With our approach, we provide the software engineer integrated development
environment support to locate the parts of the system that are relevant to a
feature.

Other related research is that of runtime information visualization to under-
stand object-oriented software [12, 26–28]. Various tools and approaches make
use of dynamic (trace-based) information such as Program Explorer [29], Jin-
sight and its ancestors [30], and Graphtrace [27]. De Pauw et. al. present two
visualization techniques. In their tool Jinsight, they focused on interaction dia-
grams [30]. Thus all interactions between objects are visualized.

Reiss [28] developed Jive to visualize the runtime activity of Java programs.
The focus of this tool was to visually represent runtime activity in real time. The
goal of this work is to support software development activities such as debugging
and performance optimizations.

In contrast to the above approaches, our focus was to directly incorporate
interactive and navigable visualizations of the dynamic behavior of features into
the development environment. In this way, we emphasize the importance of pro-
viding the software engineer with direct access to the information during a main-
tenance session.

7 Conclusion

In this paper we presented our feature-centric environment which allows us (1)
to visually compare several features of a software system, (2) to visually analyze
the dynamic structure of a single feature in detail and, (3) to navigate, browse
and modify the source artifacts of a single feature in a feature artifact browser
focusing on the entities actually used in that feature. All these visualizations are
enriched with the feature affinity metric to highlight parts of a feature relevant
to a specific maintenance task.

The views on features are fully interactive and interconnected to ease and
enhance their usage in maintenance activities. We validated our feature-centric
environment by carrying out an empirical study with twelve graduate com-
puter science students. The results of our experiment are promising because
they clearly reveal that the feature-centric environment has a positive effect on
program comprehension and in particular on the efficiency in discovering the



exact locations of software defects and in correcting them efficiently. We recog-
nize that as our experiment had only a low number of participating subjects, it
is difficult to generalize the results. However, feedback of the users in addition
to the quantitative results of our analysis are encouraging. This motivates us
to continue investigation and development of a feature-centric environment that
represents features as first-class entities for the software engineer. In particu-
lar, we aim to focus on ideas mentioned in Section 5.2, for example providing
bidirectional interaction to the feature-centric environment or to add debugging
facilities to the feature tree.

Acknowledgments

We thank all the participants of our experiment.
We gratefully acknowledge the financial support of the Swiss National Science

Foundation for the project “Analyzing, capturing and taming software change”
(SNF Project No. 200020-113342, Oct. 2006 - Sept. 2008).

References

1. V. Basili, Evolving and packaging reading technologies, Journal Systems and Soft-
ware 38 (1) (1997) 3–12.

2. T. A. Corbi, Program understanding: Challenge for the 1990’s, IBM Systems Jour-
nal 28 (2) (1989) 294–306.

3. S. Demeyer, S. Ducasse, K. Mens, A. Trifu, R. Vasa, Report of the ECOOP’03
workshop on object-oriented reengineering (2003).

4. A. Dunsmore, M. Roper, M. Wood, Object-oriented inspection in the face of delo-
calisation, in: Proceedings of ICSE ’00 (22nd International Conference on Software
Engineering), ACM Press, 2000, pp. 467–476.

5. N. Wilde, R. Huitt, Maintenance support for object-oriented programs, IEEE
Transactions on Software Engineering SE-18 (12) (1992) 1038–1044.

6. J. Nielsen, J. T. Richards, The Experience of Learning and Using Smalltalk, IEEE
Software 6 (3) (1989) 73–77.

7. D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay, Back to the future: The
story of Squeak, A practical Smalltalk written in itself, in: Proceedings OOPSLA
’97, ACM SIGPLAN Notices, ACM Press, 1997, pp. 318–326.

8. Cincom Smalltalk, http://www.cincom.com/scripts/smalltalk.dll/ (Sep. 2003).

9. A. Mehta, G. Heineman, Evolving legacy systems features using regression test
cases and components, in: Proceedings ACM International Workshop on Principles
of Software Evolution, ACM Press, New York NY, 2002, pp. 190–193.

10. T. Eisenbarth, R. Koschke, D. Simon, Locating features in source code, IEEE
Computer 29 (3) (2003) 210–224.

11. L. Renggli, Magritte — meta-described web application development, Master’s
thesis, University of Bern (Jun. 2006).

12. D. Jerding, J. Stasko, T. Ball, Visualizing message patterns in object-oriented
program executions, Tech. Rep. GIT-GVU-96-15, Georgia Institute of Technology
(May 1996).



13. D. Licata, C. Harris, S. Krishnamurthi, The feature signatures of evolving pro-
grams, in: Proceedings IEEE International Conference on Automated Software
Engineering, IEEE Computer Society Press, Los Alamitos CA, 2003, pp. 281–285.

14. O. Greevy, Enriching reverse engineering with feature analysis, Ph.D. thesis, Uni-
versity of Berne (May 2007).

15. J.-M. S. Philippe Flajolet, Paolo Sipala, Analytic variations on the common subex-
pression problem, in: Automata, Languages, and Programming, Vol. 443 of LNCS,
Springer Verlag, 1990, pp. 220–234.

16. A. Hamou-Lhadj, T. Lethbridge, An efficient algorithm for detecting patterns in
traces of procedure calls, in: Proceedings of 1st International Workshop on Dy-
namic Analysis (WODA), 2003.

17. G. K. Kanji, 100 Statistical Tests, SAGE Publications, 1999.
18. F. Wilcoxon, Individual Comparisons by Ranking Methods, International Biomet-

ric Society, 1945.
19. M. O’Brien, J. Buckley, C. Exton, Empirically studying software practitioners -

bridging the gap between theory and practice, in: Proceedings of the 21st IEEE
International Conference on Software Maintenance (ICSM 2005), IEEE Computer
Society Press, 2005.

20. A. Zeller, Isolating cause-effect chains from computer programs, in: SIGSOFT
’02/FSE-10: Proceedings of the 10th ACM SIGSOFT symposium on Foundations
of software engineering, ACM Press, New York, NY, USA, 2002, pp. 1–10.

21. N. Wilde, M. Scully, Software reconnaisance: Mapping program features to code,
Software Maintenance: Research and Practice 7 (1) (1995) 49–62.

22. A. Hamou-Lhadj, E. Braun, D. Amyot, T. Lethbridge, Recovering behavioral de-
sign models from execution traces, in: Proceedings IEEE European Conference on
Software Maintenance and Reengineering (CSMR 2005), IEEE Computer Society
Press, Los Alamitos CA, 2005, pp. 112–121.

23. F. Nielson, The typed lambda-calculus with first-class processes, in: E. Odijk, J.-C.
Syre (Eds.), Proceedings PARLE ’89, Vol II, LNCS 366, Springer-Verlag, Eind-
hoven, 1989, pp. 357–373.

24. J.-B. Chen, S. C. Lee, Generation and Reorganization of Subtype hierarchies, Jour-
nal of Object Oriented Programming 8 (8) (1996) 26–35.

25. K. Brade, M. Guzdial, M. Steckel, E. Soloway, Whorf: A visualization tool for
software maintenance, in: Proceedings of IEEE Workshop on Visual Languages,
IEEE Society Press, 1992, pp. 148–154.

26. O. Greevy, M. Lanza, C. Wysseier, Visualizing live software systems in 3D, in:
Proceedings of SoftVis 2006 (ACM Symposium on Software Visualization), 2006.

27. M. F. Kleyn, P. C. Gingrich, GraphTrace — understanding object-oriented sys-
tems using concurrently animated views, in: Proceedings of International Con-
ference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’88), Vol. 23, ACM Press, 1988, pp. 191–205.

28. S. P. Reiss, Visualizing Java in action, in: Proceedings of SoftVis 2003 (ACM
Symposium on Software Visualization), 2003, pp. 57–66.

29. D. Lange, Y. Nakamura, Interactive visualization of design patterns can help
in framework understanding, in: Proceedings ACM International Conference
on Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA’95), ACM Press, New York NY, 1995, pp. 342–357.

30. W. De Pauw, R. Helm, D. Kimelman, J. Vlissides, Visualizing the behavior of
object-oriented systems, in: Proceedings of International Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA’93),
1993, pp. 326–337.


