
On the Integration of Smalltalk and Java
Practical Experience with STX:LIBJAVA

Marcel Hlopko
Czech Technical University in

Prague

marcel.hlopko@fit.cvut.cz

Jan Kurš
Software Composition Group,

University of Bern

kurs@iam.unibe.ch

Jan Vraný
Czech Technical University in

Prague,
eXept Software AG
jan.vrany@fit.cvut.cz

Claus Gittinger
eXept Software AG

cg@exept.de

Abstract
After decades of development in programming languages
and programming environments, Smalltalk is still one of
few environments that provide advanced features and is still
widely used in the industry. However, as Java became preva-
lent, the ability to call Java code from Smalltalk and vice
versa becomes important. Traditional approaches to inte-
grate the Java and Smalltalk languages are through low-level
communication between separate Java and Smalltalk virtual
machines. We are not aware of any attempt to execute
and integrate the Java language directly in the Smalltalk en-
vironment. A direct integration allows for very tight and
almost seamless integration of the languages and their ob-
jects within a single environment. Yet integration and lan-
guage interoperability impose challenging issues related to
method naming conventions, method overloading, exception
handling and thread-locking mechanisms.

In this paper we describe ways to overcome these chal-
lenges and to integrate Java into the Smalltalk environment.
Using techniques described in this paper, the programmer
can call Java code from Smalltalk using standard Smalltalk
idioms while the semantics of each language remains pre-
served. We present STX:LIBJAVA — an implementation of
Java virtual machine within Smalltalk/X — as a validation
of our approach.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
IWST ’12 August 28, Gent.
Copyright c© 2012 ACM 978-1-4503-1897-6/12/08. . . $15.00

Categories and Subject Descriptors H.3.3 [Programming
Languages]: Language Constructs and Features—Language
Interoperability; H.3.4 [Programming Languages]: Pro-
cessors—Interpreters, Virtual Machines

General Terms Language Interoperability

Keywords Language Interoperability, Smalltalk, Java

1. Introduction
Without doubt, the Java programming language has become
one of the most widely used programming languages today.
A significant amount of code is written in Java, ranging
from small libraries to large-scale application servers and
business applications. Nevertheless, Smalltalk still provides
a number of unique features (such as advanced reflection
support or expressive exception mechanism) lacking in Java,
which makes Smalltalk suitable for many kinds of project.
It is a tempting idea to call Java from Smalltalk and vice
versa, as it enables the use of many Java libraries within
Smalltalk projects.

The idea of Java-Smalltalk integration is not new and has
been explored by others in the past. JavaConnect (Brichau
and De Roover [1]) and JNIPort (Geidel [4]) use foreign
function interfaces to connect to the Java virtual machine
and to call a Java code. Bridges, such as VisualAge for Java
(Deupree and Weitzel [2]) or Expecco Java Interface Li-
brary (Expecco [3]), use proxy objects, which intercept and
forward function calls and return result values or handles
via an interprocess communication channel. Another more
versatile approach, is to execute both languages within the
same virtual machine and use a common object representa-
tion for both. STX:LIBJAVA, which is presented in this paper,
is an example of such an approach: it executes Java within
the Smalltalk virtual machine. Another example is Redline

Smalltalk (Ladd [9]), which executes Smalltalk using stan-
dard Java virtual machine.

Seamless, easy to use integration of two programming
languages consists of various parts. First, it must allow one
language to call functions in the other, possibly passing
argument objects and getting return values (runtime-level
integration).

Second, it should support programmer-friendly argument
and return value passing between the languages.

Third, it should ideally preserve object identity. The use
of replicas or proxy objects can introduce various problems
when objects are stored or managed by their identity. This
also affects any side effects to such objects when calling
functions in the other language.

Finally, it should seamlessly integrate the two languages
on the syntactic level, which means that (ideally) no addi-
tional glue or marshalling code should be required to call
the other language (language-level integration).

In the case of Java and Smalltalk, language-level integra-
tion raises a number of challenges, due to their different de-
sign and semantics. In particular these are:

• Smalltalk uses keyword message selectors, whereas Java
uses traditional C-like selectors (virtual function names).
• Java supports method overloading based on static types,

whereas there is no static type information in Smalltalk.
• Exception and locking mechanisms differ.

In this paper, we present STX:LIBJAVA, a Java virtual ma-
chine (JVM) implementation built into the Smalltalk/X en-
vironment. STX:LIBJAVA allows for the program to call Java
code from Smalltalk almost as naturally as normal Smalltalk
code. We will demonstrate how STX:LIBJAVA integrates Java
into Smalltalk and we will describe how it deals with seman-
tic differences.

The contributions of this paper are (i) a new approach of
Smalltalk and Java integration, (ii) identification of problems
imposed by such an integration and (iii) solutions for these
problems and their practical validation in STX:LIBJAVA.

The paper is organized as follows: Section 2 discusses in-
tegration problems in detail. Section 3 gives an overview of
STX:LIBJAVA and its implementation. Sections 5, 4, 6 and
7 describe techniques to solve these problems. Section 8
presents some real-world examples to validate our solution.
Section 9 discusses related work. Finally, Section 10 con-
cludes this paper.

2. Problem Description
At first glance Smalltalk and Java are very similar. Both are
high-level object oriented, class-based languages with sin-
gle inheritance and automatic memory management. In both
languages message sending is the fundamental way of com-
munication between objects. In this section we enumerate
details by which these languages differ and which pose prob-

lems when integrating these languages into a common sys-
tem.

1. Class access. In Smalltalk classes are identified by name.
There is only one class with a given name at any time (al-
though it may change over time) and it must be present
and resolved prior to the code actually beeing executed.
The system triggers a runtime error otherwise. The pro-
cess of loading classes into the system is not specified in
the standard, although some Smalltalk dialects provide
namespaces and/or a lazy class loading facility.
On the other hand Java provides a well-defined, user-
extensible mechanism called classloaders for lazy-loading
of classes into a running system. Moreover in Java a
class is not only identified by its name but by its defining
classloader as well. In other words two possibly different
classes with the same name may coexist in the running
system as long as they have been defined by different
classloaders. Which classloader is used to load a partic-
ular class at a particular place in the code is a subject to
complex rules and depends on the runtime context.

2. Selector mismatch. On the bytecode level, a method is
identified by a selector in both languages. However, the
syntactic format of selectors differs. Smalltalk uses the
same selector in bytecode and in a source code. Java en-
codes type information into a selector at the bytecode
level. This may affect reflection and/or dynamic execu-
tion, eg via #perform:.
For example, consider the following code in Smalltalk:

out println: 10

Let’s assume that out is an instance of the Java class
java.io.PrintStream. Smalltalk compiles a message
send with the selector println:. However, at the byte-
code level the Java selector is println(I)V, whereas
println is the method name expressed in the source
code. The added suffix (I)V means that the method
takes one argument of the Java type int and V means
that the method does not return a value (aka returns a
void type).

3. Method overloading. Java has a concept of overload-
ing: in a single class, multiple methods with same name
but with different numbers or types of arguments may
coexist. For example, a PrintStream instance from
the previous example has multiple methods by the name
println, one taking an argument of type int, another
taking a Java String argument, and so on. On the vir-
tual machine level, each overloaded method has a dif-
ferent selector (println(I)V, respectively println
(Ljava/lang/String;)V).
The method which is called depends on the static types
of the argument types at the call site. At compile time the
Java compiler finds the best match and generates a send
with the particular selector. For example, the source code

out.println("String");
out.println(1);

produces the following bytecode with type information
encoded in method selectors (arguments of INVOKEVIRT
instruction):

ALOAD ...
LDC 1
INVOKEVIRT println(L...String;)V
BIPUSH 1
INVOKEVIRT println(I)V

As Smalltalk is dynamically typed, no type specific se-
lector are chosen by the Smalltalk compiler at compile
time.

4. Protocol mismatch. Comparing Java and Smalltalk side
by side, many classes with similar functionality are
found. For example both Java’s java.lang.String
and Smalltalk’s String class represent a String type.
More complex examples are java.util.Map and
Smalltalk’s Dictionary class. Here, the classes have
different names, possibly have different method names,
but their purpose and usage is similar — both store ob-
jects under a particular key.
When using code from both languages the programmer
has to take care which kind of object (Java or Smalltalk)
is passed as an argument. For example the hash of a string
is obtained by sending the hashCode message in Java
but hash in Smalltalk. Passing a Smalltalk String as an
argument to a Java method which expects a Java-like
String may result in a MethodNotFound exception.

5. Exceptions. The exception mechanisms in Smalltalk and
Java differ in two very profound ways:
First in Smalltalk both exception and ensure-handlers
are blocks. Blocks are self-contained first-class closures
that can be manipulated and executed separately. In Java
exception and finally-handlers are syntactic entities and
technically generate a sequence of bytecode instructions,
which are spliced into the instruction stream. They can
be only executed by jumping to the beginning of the han-
dler and then continuing execution from that location.
The method in question contains a special exception ta-
ble which maps instruction ranges to the beginning of a
particular handler.
Second, Smalltalk provides resumable exceptions. When
an exception is thrown (raised) in Smalltalk, the handler
is executed on top of the context that caused that excep-
tion. The underlying stack frames are still present at han-
dler execution time. If the handler returns, i.e., the ex-
ception is not “proceeded”1, ensure blocks are executed

1 Smalltalk allows for exceptions to be “proceeded”, which effectively
means that the executions is resumed at the point where the exception was
thrown (raised).

after the exception handler. Java provides only return se-
mantics. When a handler is found, all contexts up to the
handler context are immediately unwound and the exe-
cution is resumed at the beginning of the handler. Any
finally block is treated like special exception handler,
which matches any exception.
In other words, the main difference between Smalltalk
and Java exceptions from the programmer’s point of view
is that in Smalltalk, ensure blocks are eventually executed
after the the handler, if the handler decides to return. In
contrast, finally blocks of Java are always executed and
their evaluation happens before the execution of the han-
dler. A Smalltalk handler is even free to dynamically de-
cide whether to proceed with execution after the excep-
tion is raised. Such proceedable exceptions are useful to
continue execution after fixing a problem in the handler,
or to implement queries or notifications (for example, to
implement loggers or user interaction).

6. Synchronization. The mechanisms for process synchro-
nisation differ both in design and implementation.
The principal synchronisation mechanism in Java is a
monitor. Conceptionally every Java object has associated
with it a monitor object. Synchronization is done using
two basic operations: entering the monitor, which may
imply a wait on its availablility and leaving the moni-
tor (Section 8.13, Lindholm and Yellin [10]). Monitor
enter and leave operations must be properly nested. In
Java, whole methods can be marked as synchronized, in
which case the Java virtual machine itself is responsi-
ble for entering the monitor associated with the receiver
and leaving it when the method returns. This happens
both for normal and unexpected returns, for example due
to unwinding after an uncaught exception. For synchro-
nized blocks, the compiler emits MONITORENTER and
MONITOREXIT bytecodes and ensures that no moni-
tor remains entered, no matter how the method returns.
Again, both normal and unwinding (Section 8.4.3.6,
Gosling et al. [8], Section 3.11.11, Lindholm and Yellin
[10]). The compiler achieves this by generating special
finally-handlers, which leave the monitor and rethrow the
exception.
In Smalltalk (Smalltalk/X, in particular), processes are
usually synchronized by semaphores. The programmer is
responsible for proper semaphore signaling, although li-
brary routines provide support for critical regions. Tech-
nically speaking, there is no support at the virtual ma-
chine level for semaphores, except for a few low-level
primitive methods.
Now consider the following code:

1 [
2 self basicExecute
3] on: ExecutionError do: [:ex |

4 self handleError: ex
5]

A system which integrates Java and Smalltalk must en-
sure that all monitors possibly entered during execu-
tion of the basicExecute method are left when an
ExecutionError is thrown and caught by the han-
dler.

3. STX:LIBJAVA

3.1 In a Nutshell
STX:LIBJAVA is an implementation of the Java virtual ma-
chine built into the Smalltalk/X environment. In addition to
providing the infrastructure to load and execute Java code, it
also integrates Java into the Smalltalk development environ-
ment, including browsers, debugger and other tools.

Calling Java from Smalltalk is almost natural. Listing 1
demonstrates how a Java library can be used from Smalltalk.
In the example, an XML file is parsed and parsed data
is printed on a system transcript. The XML file is parsed
by the SAX parser, which is completely implemented in
Java. However, the SAX events are processed by a Smalltalk
object — an instance of CDDatabaseHandler (see Listing 2).

This example demonstrates STX:LIBJAVA interoperability
features:

• Java classes are referred to via a sequence of (unary)
messages, which comprise the fully qualified name of a
class. Java classes can be reached via the global variable
JAVA. For example, to access java.io.File from
Smalltalk, one may use2:

JAVA java io File

• To overcome selector mismatch errors, STX:LIBJAVA in-
tercepts the first message send and automatically creates
a dynamic proxy method. These dynamic proxy methods
translate the selector from Smalltalk keyword form into a
correctly typed Java method descriptor and pass control
to the corresponding Java method.
• STX:LIBJAVA provides a bridge between Java and Small-

talk exception models. Java exceptions can be handled by
Smalltalk code. When a Smalltalk exception is thrown
and the handler returns, all Java finally blocks between
the raising context and handler context are correctly exe-
cuted and all possibly entered monitors are left. No stale
Java locks are left behind.

3.2 Architecture of STX:LIBJAVA

In this section we will briefly outline STX:LIBJAVA’s internal
architecture.

Unlike other projects which integrate Java with other lan-
guages, STX:LIBJAVA does not use the original JVM in par-

2 alternatively, the class can also be referred to via a sub-namespace, as
JAVA::java::io::File.

allel with the host virtual machine, nor does it translate Java
source code or Java bytecode to any other host language. In-
stead the Smalltalk/X virtual machine is extended to support
multiple bytecode sets and execute Java bytecode directly.
To our knowledge, Smalltalk/X and STX:LIBJAVA is the only
programming environment that took this approach.

The required infrastructure for loading .class (chap-
ter 4, Lindholm and Yellin [10]) files, class loader support
and additional support for execution, such as native methods,
is implemented in Smalltalk. Java runtime classes and meth-
ods are implemented as customized Smalltalk Behavior
and Method objects. In particular, Java methods are repre-
sented as instances of subclasses of the Smalltalk Method
class. However, they refer to Java instead of Smalltalk byte-
code. Execution of Java bytecode is implemented in the vir-
tual machine. In the same way that Smalltalk bytecode is
handled by the VM, Java bytecode is interpreted and/or dy-
namically compiled to machine code (jitted).

However, some complex instructions (such as CHECK-
CAST or MONITORENTER) are handled by the virtual ma-
chine calling back into the Smalltalk layer via a so-called
trampoline and are implemented in Smalltalk as a library
method. Similarly, all native methods are implemented in
Smalltalk.

Both Smalltalk and Java objects live in the same ob-
ject memory and are handled by the same object engine
and garbage collector. Performance-wise, there is no dif-
ference between Smalltalk code calling a Java method or
other Smalltalk code. Moreover, all dynamic features of the
Smalltalk environment - such as stack reification and ad-
vanced reflection — can be used on the Java code.

The main disadvantage of our approach (as opposed to
having a separate original JVM execute Java bytecodes) is
that the whole functionality of the Java virtual machine. has
to be reimplemented. This includes an extensive number of
native methods, which indeed involve a lot of engineering
work. However, we believe that this solution opens possibil-
ities to a much tighter integration which would not be possi-
ble otherwise.

4. Class Access
In Smalltalk classes are stored by name in the global Smalltalk
dictionary. Obviously, this dictionary cannot be reused by
the Java subsystem, as Java classes are specified by name
and defining class loader. Therefore loaded classes are ac-
cessed through JavaVM class. Listing 8 shows its usage in
case of a known class loader instance.

1 JavaVM
2 classForName: ’org.junit.TestCase’
3 definedBy: classLoaderObject

Listing 3. Accessing Java class with known class loader

1 factory := JAVA javax xml parsers SAXParserFactory newInstance.
2 parser := factory newSAXParser getXMLReader.
3 parser setContentHandler: JavaExamples::CDDatabaseHandler new.
4 [
5 parser parse: ’cd.xml’.
6] on: JAVA java io IOException do:[:ioe|
7 Transcript showCR: ’I/O error: ’, ioe getMessage.
8 ioe printStackTrace
9] on: UserNotification do:[:un|

10 Transcript showCR: un messageText.
11 un proceed.
12]

Listing 1. Smalltalk code calling Java XML parser

1 CDDatabaseHandler>>startElement:namespace localName:localName qName:qName attributes:
attributes

2 tag := qName.
3

4 CDDatabaseHandler>>endElement:namespace localName:localName qName:qName
5 qName = ’cd’ ifTrue:[
6 title isNil ifTrue:[self error: ’No title’].
7 artist isNil ifTrue:[self error: ’No artist’].
8 index := index + 1.
9 UserNotification notify:

10 (index printString , ’. ’, title , ’ - ’ , artist)
11]
12

13 CDDatabaseHandler>>characters: string offset: off length: len
14 tag = ’title’ ifTrue:[
15 title := string copyFrom: off + 1 to: off + len.
16 tag := nil.
17].
18 tag = ’artist’ ifTrue:[
19 artist := string copyFrom: off + 1 to: off + len.
20 tag := nil.
21].

Listing 2. An excerpt of CDDatabaseParser used in Listing 1

As already shown in Listing 1, the JAVA global variable
is provided to refer to a Java class using the current class
loader.

Interoperability approaches based on foreign-function in-
terfaces of the JVM and host virtual machine suffer from the
inability to reclaim classes which have entered the JNI (Java
native interface). In STX:LIBJAVA all loaded classes are re-
claimed in compliance with the JVM specification (Section
12.7, Gosling et al. [8]).

5. Dynamic Proxy Methods
The Dynamic Proxy Method is a mechanism employed by
STX:LIBJAVA to solve selector and protocol mismatch and
to deal with Java’s method overloading. A proxy method is

an intermediate method that possibly performs an additional
method resolution, transforms arguments and finally passes
control to a real method dispatching on the type and num-
ber of arguments. Such a proxy is generated dynamically
whenever the control flow crosses the language boundary,
i.e., when Smalltalk calls Java or vice versa. In the following
sections we describe in detail how dynamic method proxies
solve the problem outlined in the previous sections. We will
demonstrate proxies on examples of Smalltalk calling Java;
the actions performed in the opposite call direction are anal-
ogous.

5.1 Selector Mismatch
Consider the example given in the listing 3. Without addi-
tional interoperability support, a DoesNotUnderstand
exception would be raised, since there is obviously no
method for the println: selector in the Java Print-
Stream class.

1 out := JAVA java lang System out.
2 out println: 10.

Listing 4. Example of selector mismatch

STX:LIBJAVA’s interoperability mechanism catches cross-
language message sends and dynamically generates a dy-
namic proxy method for the original selector, which per-
forms a second send using a transformed selector. The code
of the proxy is shown on Listing 4. The proxy is compiled on
the fly and installed into the receiver’s class and the original
message-send is restarted. This way a proxy method is gen-
erated only for the very first time and subsequent sends will
use the “fast path”, invoking the already generated proxy
directly. Details on how sends are intercepted are discussed
below in section 4.6.

1 java.io.PrintStream>>println: arg
2 self perform: #’println(I)V’
3 with: arg

Listing 5. A proxy method for println() Java method

5.2 Method Resolution
There are numerous ways to translate Smalltalk selectors
to corresponding Java selectors and vice versa. This section
does not discuss any pros and cons of possible approaches.
We do not believe that there is the only one the best way
how to translate selectors. STX:LIBJAVA simply uses the
way which showed to be the most natural and easy for our
purpose. The translation rules are described below.

Smalltalk to Java resolution. When calling a selector like
println:, and the receiver is a Java object, the Java object
and its super-classes are searched for all methods with a
name of println. In case there is no such method, the
#doesNotUnderstand: message is sent, as usual. If
exactly one method exists by that name, that method is
invoked. In case more than one method exists by the name
(e.g., the method is overloaded), the algorithm consults at
run-time the number and types of arguments and tries to find
the best matching Java method. If the number of arguments
does not match, the #doesNotUnderstand: message is
sent. Finally, if an interface type is expected as an argument
and the argument is a Smalltalk object (which usually does
not implement the Java interface), STX:LIBJAVA follows the
traditional Smalltalk duck-typing philosophy and passes the
Smalltalk argument unchanged to the method. Either the

argument object implements any required interface methods
(and everything works as expected then), or Java throws a
runtime exception, which can be handled either by Smalltalk
or by Java code.

Java to Smalltalk resolution. When calling a selector like
put(Ljava.lang.String;Ljava.lang.Object)
V3. and the receiver is a Smalltalk object, the object’s class
and its superclasses are searched for any selector starting
with the first keyword part, put:. The rest of the selec-
tor is ignored in this matching process. However, the num-
ber of arguments must match. Also argument types are ig-
nored. If more than one method fulfils these criteria, an
AmbiguousMessageSend error is raised.

Variable number of arguments. Starting with Java 1.6,
Java supports a variable number of arguments (section 8.4.1,
Gosling et al. [8]). Technically, variable arguments are
wrapped into an array object and passed to the method as
a single argument. A Java compiler is responsible for gen-
erating code that wraps variable arguments. Therefore, no
special care is required during method resolution.

5.3 Method Overloading
To demonstrate method overloading, we extend the example
in Listing 3 , as depicted in Listing 5. After execution of line
3, a new proxy method has been added to the java.io.
PrintStream class as depicted in Listing 4. The execu-
tion of line 4 would raise a runtime error, since we call the
println(I)V method with a boolean parameter.

1 out := JAVA java lang System out.
2 out println: 10.
3 out println: true.

Listing 6. An example of overloaded method called from
Smalltalk

1 java.io.PrintStream>>println: a1
2 | method |
3 (a1 class == SmallInteger) ifTrue:[
4 ↑ self perform: #’println(I)V’ with:

a1
5].
6 self recompile: a1.
7 ↑ self println: a1.

Listing 7. A proxy method for an overloaded method

Due to the dynamic nature of Smalltalk, argument types
cannot be statically inferred and may even change during
execution. Therefore, another method resolution step has to
be added to the proxy method. To ensure type-safety (as

3 A Java selector for method named put that takes two arguments of
types java.lang.String and java.lang.Object respectively and
whose return type is void

required and assumed by the Java code) the actual call to
the Java method is protected by a “guard” that checks the
actual argument types. The code for the println: proxy
after execution of line 2 is shown in Listing 6.

Only one guard is added at a time. Line 6 ensures that if
no guard matches — like when line 3 of example from List-
ing 5 is executed — the proxy is recompiled, possibly adding
a new guard. Line 7 restarts the send. This prevents unnec-
essary guards which are actually never used from being gen-
erated. An alternative implementation based on multiple dis-
patch could be implemented by dynamically installing dou-
ble dispatch methods in the encountered argument classes.
However, as the number of dynamically encountered argu-
ment types is usually relatively small, we believe that the
switch code on the argument class is usually sufficient and
faster.

5.4 Protocol Mismatch
In some cases, it is not sufficient to simply translate the
Java selector to a Smalltalk selector and vice versa. For
example, Smalltalk code can send a #isEmpty message
to a java.lang.String (because it contains the is
Empty() method), but it cannot send #collectAll:,
as there is no such functionality in a Java string. Therefore
the arguments and return values should also be converted
when crossing the language boundary. STX:LIBJAVA makes
these conversions automatically for predefined types (such
as String, Integer, Boolean, ...). Thanks to dynamic proxy
methods, user-defined types can be converted automatically
as well.

Being aware of the protocol mismatch problem, we have
to update the proxy method from Listing 6 as depicted in
Listing 7. The #asJavaObject and #asSmalltalk
Object are responsible for conversion between Smalltalk
and Java types.

1 java.io.PrintStream>>println: a1
2 | jA1 jA1Class |
3 jA1 := a1 asJavaObject.
4 jA1Class :=
5 Java classForName:
6 ’java/Lang/String’.
7

8 (jA1 class == jA1Class) ifTrue: [
9 ↑ (self #’println(Ljava/lang/String;)

V’: jA1)
10 asSmalltalkObject.
11].
12 self recompile: a1.
13 ↑ self println: a1.

Listing 8. A proxy method with argument and return value
conversions

5.5 Field Accessing
In Java, public fields can be accessed directly using the dot-
notation whereas in Smalltalk, values of instance variables
could only be accessed using accessor methods. Although
in modern Java, declaring instance fields public and ac-
cessing them directly is considered as a “bad style”, pub-
lic static fields are often thorough Java libraries to expose
constant values. STX:LIBJAVA allows for public field to be
accessed from Smalltalk in a Smalltalk way,i.e., by access
methods. These accessor methods are dynamically compiled
whenever needed - just like proxy methods described above.

Consider the example given in the listing ?? that ac-
cess public static field PI of class java.lang.Math.
STX:LIBJAVA interoperability mechanism catches the send
of message #PI to the class and automatically generates get-
ter method returning corresponding field.

1 cf = 2 * (JAVA java lang Math PI) * r

Listing 9. An example of accessing Java fields from
Smalltalk

Accessor methods are generated only for Java fields de-
clared as public. If the field is declared as final, only
getter method is generated. Same mechanism is used to ac-
cess both static and instance fields.

5.6 Intercepting the Message Send
To install a proxy, a message send must be intercepted.
A standard Smalltalk solution would be to override the
#doesNotUnderstand: method so it creates and in-
stalls the generated proxy method.

However, STX:LIBJAVA utilizes the method lookup meta-
object protocol (MOP; Vraný et al. [12]) which is integrated
into the Smalltalk/X virtual machine. The MOP allows for a
user-defined method lookup routine to be specified on a per-
class basis. This user-defined method lookup routine installs
the proxy and invokes it.

6. Mixed Exception-Handling
Considering the mixed Smalltalk and Java code in Figure 1
(part a) which creates a user account, let us follow the ac-
tions taken when an exception is thrown in an invocation of
CreateAccountCmd»perform (part b). First, the han-
dler is searched and executed (Step 1 in Figure 1). Since the
handler does not proceed the stack should be unwound and
control passed to the createAccountClicked method.
All ensure and finally blocks between the current context and
the context for createAccountClickedmethod are ex-
ecuted first. The first such block is the ensure block in the
execute method (Step 2 in Figure 1). The second is the
finally block in createAccount(). However, the finally
block is not a Smalltalk block and thus cannot be evaluated
easily. Due to the underlying virtual machine implementa-
tion, the only way to execute the finally code is to (i) set

the program counter to the beginning of the handler and
(ii) restart the method. Restarting a method also implies that
contexts below the restarted method’s context are destroyed
(i.e., contexts for called methods). In particular, the context
of the raise method should be destroyed. This poses a
problem, as it is the context of the method which controls
all handler and ensure block evaluation.

To solve this problem we exploit two facts. First, when
ensure or finally handlers are executed, the contexts below
the handler context are going to be destroyed anyway. Sec-
ond, finally blocks are compiled in such a way that they
never touch the exception object. The exception is only tem-
porarily stored and then rethrown by the ATHROW Java in-
struction. The exception object can be any object, not neces-
sarily a Java object inheriting from Throwable. To execute
the finally code, we pass a special finally token object as an
exception and restart the method with the finally block (Step
3 in Figure 1). This special finally token is recognised by the
ATHROW instruction. Upon detection of that special token,
ATHROW continues to evaluate finally and ensure blocks and
finally unwinds the stack (Step 4 in Figure 1).

7. Synchronization
The Java runtime library has been designed to be thread-safe.
Critical sections guarded by monitors are pervasive through
the code. Correct handling of monitors in case of mixed
Java-Smalltalk code is essential as a single leftover monitor
can easily result in blocking the whole system.

Prior to entering a critical section, a monitor is entered,
which must be left at the end of the section. This is done
either implicitly by the virtual machine (when the whole
method is marked as synchronized) or explicitly using spe-
cial MONITORENTER and MONITORLEAVE instructions.
Those implement fine-grain synchronization of Java’s syn-
chronized blocks.

7.1 Synchronized blocks
When an exception occurs during the execution of a syn-
chronized block, the guarding monitor must be left before
the control flow is passed to a handler higher up on an exe-
cution stack 4. To ensure this, a Java compiler must generate
a synthetic finally block in which the monitor is left and the
exception is rethrown (Section 7.13, Lindholm and Yellin
[10]). Figure 2 shows an example of such a finally block.

Consider the code shown in Figure 2. Because an excep-
tion could be thrown in the synchronized block (bytecode
lines 2 - 10), the compiler generates a special handler (byte-
code lines 11 - 15, Figure 2), in which the monitor is left and
the exception is rethrown.

7.2 Synchronized methods
In the case of synchronized methods, neither MONITOR-
ENTER / MONITOREXIT instructions, nor synthetic finally

4 assuming that the stack grows downwards

blocks are generated by the Java compiler. Instead, synchro-
nization is done directly by the virtual machine. The monitor
used for synchronization is the monitor associated with the
receiver or (in case of a static method) with the class.

Prior to executing a synchronized method, the virtual
machine enters the monitor associated with the receiver and
tags the context as an unwind context. The VM intercepts
returns through such tagged contexts and trampolines into
the Smalltalk level for any unwind actions to be executed. In
this case, the monitor-leave semantic is performed.

8. STX:LIBJAVA at Work
As mentioned in the 1 section, language integration consists
of runtime-level and language-level integration.

Runtime-level integration. Several reasonably large Java
projects have been chosen as benchmarks to validate the cor-
rect implementation of Java runtime support. These projects
include:

• Apache Tomcat5 – a Servlet/JSP container,
• SAXON6 – an XSLT and XQuery processor,
• Groovy7 – a dynamic language for Java platform,

Apache Tomcat makes heavy use of almost all Java fea-
tures, from threads and synchronization, through dynamic
class generation, class loading and finalization, to exceptions
and finally blocks. Groovy makes heavy use of Java reflec-
tion and especially class loading as it dynamically generates
Java bytecode and loads it into a running system. All these
programs run correctly under STX:LIBJAVA.

Language-level integration. Language-level interoperabil-
ity was already demonstrated in Listings 1 and 2, which use
the Xerces XML parser to parse an XML file. The filename
is passed into the Java method as a Smalltalk string. The
SAX handler which is passed to the parser and later called
for decoded elements is actually implemented in Smalltalk.
No boilerplate code is needed whatsoever.

Tool support. A Java implementation in Smalltalk would
not be complete without support in the development tools.
Java classes can be browsed using the standard Smalltalk
class browser, and Java objects or classes can be inspected
in the Smalltalk inspectors. For programmer convenience,
specialized inspectors are provided for specific Java classes
such as Vector, ArrayList, Set or Map. Java is also
fully supported by the debugger — breakpoints may be set
on methods and Java code can be single stepped and de-
bugged just like Smalltalk. A Groovy interpreter has been
integrated into the Workspace application so programmers

5 http://tomcat.apache.org
6 http://saxon.sourceforge.com
7 http://groovy.codehaus.com

http://tomcat.apache.org
http://saxon.sourceforge.com
http://groovy.codehaus.com

NewAccountCmd>>perform

account hasStrongPassword ifFalse: [
 WeakPasswordError raise
].
...

execute:cmd
 self openTransaction.
 [
 cmd perform
] ensure:
 self closeTransaction
]

public void makeAccount(Account a) {
 this.beBusy();
 try {
 Cmd cmd = new NewAccountCmd(a);
 database.execute(cmd);
 } {finally
 this.setIdle();
 }
}

AccountController>>createAccountClicked
[
 manager makeAccount: account
] on: Error do: [:err |
 self showErrorMessage:err
]

#createAccountClicked

#on:do:

#makeAccount(LCmd;)V

#perform

#raise

[] in #createAccountCli...

#createAccountClicked

#on:do:

#makeAccount(LCmd;)V

#perform

#raise

[] in #execute

#createAccountClicked

#on:do:

#makeAccount(LCmd;)V

#ensure: #ensure: #ensure:

#execute: #execute: #execute:

#perform

#raise

#createAccountClicked

#on:do:

#makeAccount(LCmd;)V

#createAccountClicked

Step 1

Step 2

Step 3

Step 4

Legend

#method

#[] in #method:

S
TA

C
K

Callee

Caller

TIME

(error handler in create...) (ensure block in #execute)

(b)

Figure 1. (a) an example of mixed-exception code (b) method activation stackswhen executing code from (a). Too keep the
figure concise, unimportant intermediate contexts for “try” blocks in #on:error: and #ensure: are omitted.

 0: aload_1 //load lock
 1: dup
 2: astore_2 //temp. store lock
 3: monitorenter //enter lock
 4: aload_0 //load receicer
 5: invokevirtual #5; //invoke execute:()Z
 8: aload_2 //load lock
 9: monitorexit //leave lock
 10: ireturn //return
 11: astore_3 //temp. store exception
 12: aload_2 //load lock
 13: monitorexit //leave lock
 14: aload_3 //load exception
 15: athrow //rethrow it
 Exception table:
 from to target type
 4 10 11 any

public boolean perform(Object lock) {
 synchronized (lock) {
 return this.execute();
 }
}

Synchronization
handler

(a) Java Code (b) Generated Bytecode

Figure 2. Example of synchronized block in Java

can quickly test Java code (doIt), in just the way they are
used to with Smalltalk. Also, JUnit8 has been integrated into
the standard tools to ease running of JUnit tests.

Java classes can be unloaded and then a possibly new
version can be loaded again at run-time – a feature missing
in other Java virtual machines. A new can be even written
and then “accepted” in the class browser. A standard javac
is then invoked a new class is reloaded into a running system.
However, this feature is still experimental.

9. Related Work
9.1 JavaConnect and JNIPort
JavaConnect (Brichau and De Roover [1]) and JNIPort
(Geidel [4]) are Smalltalk libraries that allow interaction
with Java code from within Smalltalk. A Java virtual ma-
chine is linked into the Smalltalk virtual machine and the
communication is made via foreign-function interfaces.
Cross-language messages are translated into FFI invocations
of either environment.

Java classes can be browsed, but cannot be modified from
within Smalltalk. This is caused by the implementation of
the Java virtual machine. Each Java object passed through
FFI must be wrapped and registered, which generates ad-
ditional overhead and disables automatic garbage collec-
tion of such objects. Because Java code is running in a
separate virtual machine, proxy Java class must be gen-
erated for every Smalltalk class passed into Java. To re-
duce the overhead due to FFI calls, JavaConnect introduces
the concept of language shifting objects. Shifted Java ob-
jects have part (or whole) of their behavior translated into
Smalltalk, but not all instructions and language constructs
are supported (such as MONITORENTER instruction and
synchronized methods). In multithreaded applications,
object state must be synchronized and problems arise, when
a single native-threaded Smalltalk virtual machine interacts
with a multithreaded Java application. Deadlocks can occur
when a Java thread tries to communicate with the Smalltalk
virtual machine, whose single native thread is blocked by
another Java thread.

In STX:LIBJAVA, Java classes can be created, modified,
or destroyed in runtime. There is no need to synchronize
object state across two virtual machines. Java methods are
directly executed, therefore no translation or interprocess
communication is needed.

9.2 IBM VisualAge
IBM VisualAge for Java (Deupree and Weitzel [2]) includes
an interaction mechanism on the Smalltalk side. Commu-
nication is realized using remote-method invocation (RMI).
Java and Smalltalk virtual machines run in parallel, possi-
bly even on two separate machines. The transition between
languages is explicit and managed by the programmer. A lot

8 www.junit,org

of boilerplate code must be written and objects must be reg-
istered, converted and maintained by the programmer when
crossing language barrier.

STX:LIBJAVA does not require any boilerplate code to ac-
cess code across the language barrier, nor does it require any
explicit handling or conversion when crossing the barrier.
There is no need to set up an RMI service and to explicitly
register objects in the RMI registry.

9.3 Redline Smalltalk
Redline Smalltalk (Ladd [9]) is a Smalltalk implementa-
tion running on the JVM. Java classes are dynamically com-
piled from Smalltalk source code and loaded into JVM us-
ing standard class loaders. Smalltalk exceptions are mapped
onto Java exceptions. Therefore, it is not possible to pro-
ceed or retry an exception. This greatly restricts the num-
ber of Smalltalk applications and libraries which could run
on Redline Smalltalk. Some methods, especially those re-
lated to object space reflection, such as allInstances
or become:, are not supported for performance reasons.
Common types such as string and integer must be explicitly
converted when crossing the language barrier. Due to Java’s
static type system, Smalltalk objects can only be passed as
argument if the Java method expects that type.

STX:LIBJAVA does not alter any feature of the Java lan-
guage, Java reflection is also fully compliant with the orig-
inal JVM. Any Java application could run on STX:LIBJAVA
without modifications. Common types are automatically
converted. Java and Smalltalk methods can be passed in
as needed and the programmer is freed from the need to
handle Java or Smalltalk objects differently. STX:LIBJAVA
is currently the only language implementation of this kind
on Smalltalk/X, however the approach does allow for di-
rect communication between other such languages if they
become relevant9.

10. Conclusion And Future Work
In this paper, we have presented STX:LIBJAVA, a Java vir-
tual machine implementation integrated into the Smalltalk/X
environment. We have described the main problems of a
seamless integration of Smalltalk and Java languages and
their solutions. We use dynamic method proxies to allow for
Java code to be easily called from Smalltalk and the other
way round. Also, we described how to integrate Smalltalk
and Java exception and synchronization mechanisms, so
Smalltalk code can handle Java exceptions while the seman-
tics of Java finally and synchronized blocks are preserved.
A number of significantly large programs such as SAXON
XSLT processor and Apache Tomcat Server/JSP container
run on STX:LIBJAVA.

9 Ruby (Vraný [11], Chapter 8) and a JavaScript dialect (Gittinger [5]) have
been integrated into are Smalltalk/X, but these translate the source language
into Smalltalk/X bytecode and do not suffer from the complexity resulting
from major semantic differences of eg. the exception mechanism

http://www.junit,org

Figure 3. Class Browser and Debugger showing Java code

In the future we plan to further improve the integration
of Java into Smalltalk environment, for instance: add sup-
port for extension methods on Java classes, integrate Java
support to Smalltalk/X packaging tools and building pro-
cess, improve code highlighting and navigation, add more
specialised object inspectors. We also plan to extend STX:
LIBJAVA to provide a fully incremental development envi-
ronment for Java, similar to that provided for the Smalltalk
language.

Acknowledgement. We would like to gratefully thank to Oscar
Nierstrasz and Eliot Miranda for their precious comments.

References
[1] J. Brichau and C. De Roover. Language-shifting objects

from java to smalltalk: an exploration using javaconnect.
In Proceedings of the International Workshop on Smalltalk
Technologies, IWST ’09, pages 120–125, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-899-5. doi: 10.1145/
1735935.1735956. URL http://doi.acm.org/10.1145/1735935.
1735956.

[2] J. Deupree and M. Weitzel. Visualage integration for the 21st
century: Smalltalk, java, websphere. URL http://www-01.ibm.

com/support/docview.wss?uid=swg27000174.

[3] Expecco. Java interface library 2.1. http://wiki.expecco.de/wiki/
Java_Interface_Library_2.1.

[4] J. Geidel. Jniport, Feb. 2011. URL http://jniport.wikispaces.
com/.

[5] C. Gittinger. Javascript compiler and interpreter. http://live.
exept.de/doc/online/english/programming/goody_javaScript.html.

[6] C. Gittinger. Die Unified Smalltalk/Java Virtual Machine in
Smalltalk/X. In Proceedings of NetObjectDays, 1997.

[7] C. Gittinger and S. Vogel. Smalltalk/Java Integration in
Smalltalk/X. Tagungsband STJA’97, GI Fachtagung Objek-
toriente Softwareentwicklung, 1997.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha. JavaTM Lan-
guage Specification, The (3rd Edition). Addison Wesley,
Santa Clara, California 95054, U.S.A, 3 edition, 6 2005. ISBN
9780321246783. URL http://java.sun.com/docs/books/jls/.

[9] J. Ladd. Smalltalk implementation for the jvm. URL www.
redline.st.

[10] T. Lindholm and F. Yellin. JavaTM Virtual Machine Specifica-
tion, The (2nd Edition). Prentice Hall, Santa Clara, California
95054 U.S.A, 2 edition, 4 1999. ISBN 9780201432947. URL
http://java.sun.com/docs/books/jvms/.

http://doi.acm.org/10.1145/1735935.1735956
http://doi.acm.org/10.1145/1735935.1735956
http://www-01.ibm.com/support/docview.wss?uid=swg27000174
http://www-01.ibm.com/support/docview.wss?uid=swg27000174
http://wiki.expecco.de/wiki/Java_Interface_Library_2.1
http://wiki.expecco.de/wiki/Java_Interface_Library_2.1
http://jniport.wikispaces.com/
http://jniport.wikispaces.com/
http://live.exept.de/doc/online/english/programming/goody_javaScript.html
http://live.exept.de/doc/online/english/programming/goody_javaScript.html
http://java.sun.com/docs/books/jls/
www.redline.st
www.redline.st
http://java.sun.com/docs/books/jvms/

[11] J. Vraný. Supporting Multiple Languages in Virtual Ma-
chines. PhD thesis, Faculty of Information Technologies,
Czech Technical University in Prague, Sept. 2010.

[12] J. Vraný, J. Kurš, and C. Gittinger. Efficient Method
Lookup Customization for Smalltalk. Objects, Models,
Components, Patterns, pages 1–16, 2012. doi: 10.1007/
978-3-642-30561-0_10. URL http://www.springerlink.com/
index/PU875371770R562R.pdf.

http://www.springerlink.com/index/PU875371770R562R.pdf
http://www.springerlink.com/index/PU875371770R562R.pdf

	Introduction
	Problem Description
	stx:libjava
	In a Nutshell
	Architecture of stx:libjava

	Dynamic Proxy Methods
	Selector Mismatch
	Method Resolution
	Method Overloading
	Protocol Mismatch
	Field Accessing
	Intercepting the Message Send

	Class Access
	Mixed Exception-Handling
	Synchronization
	Synchronized blocks
	Synchronized methods

	stx:libjava at Work
	Related Work
	JavaConnect and JNIPort
	IBM VisualAge
	Redline Smalltalk
	IronSmalltalk

	Conclusion And Future Work

