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Overview

❑ What are Design Patterns?
➪ Example: the Proxy pattern

❑ What problems do patterns solve?
➪ Patterns are a form of communication

❑ What kinds of patterns exist?
➪ Architectural styles, design patterns, idi

❑ What patterns solve coordination problems?
➪ Administrator/Worker, Pipes and Filters

❑ What are the research opportunities?
➪ Specify and classify coordination patter
➪ Develop tools and languages that make
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What are Design Patterns?

Patterns were first systematically catalogued in the domai

“Each pattern describes a problem which occurs ove
environment, and then describes the core of the sol
such a way that you can use this solution a million t
doing it the same way twice.”

Alexander, et 

Software design patterns document standard solutions to 

“Each design pattern systematically names, explain
important and recurring design in object-oriented sy
capture design experience in a form that people can

Gamma
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What Design Patterns are not .

Algorithms are not design patterns
☞ algorithms solve computation problems, not 
☞ merge-sort is an algorithm; divide and conqu

Software components are not design patterns
☞ design patterns describe a way of solving a 
☞ design patterns document pros and cons of 
☞ software components may be implemented 

Frameworks are not design patterns
☞ a framework implements a generic software

oriented language
☞ a design pattern documents the solution to a
☞ a framework may use and be documented w
☞ like frameworks, design patterns are drawn 

applications solving related problems
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How are Design Patterns Spec

1. Pattern Name and Classification:  should convey
☞ Also Known As: other common names

2. The Problem Forces:  describes when to apply th
☞ Intent: short statement of rationale and inten
☞ Motivation: a problem scenario and example
☞ Applicability: in which situations can the patt

3. The Solution:  abstract description of design elem
☞ Structure: class and scenario diagrams
☞ Participants: participating classes/objects an
☞ Collaborations: how participants carry out re

4. The Consequences:  results and trade-offs of app
☞ Implementation: pitfalls, hints, techniques, la
☞ Sample Code: illustrative examples in C++, 
☞ Known Uses: examples of the pattern found
☞ Related Patterns: competing and supporting
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The Proxy Pattern
Intent

Provide a surrogate or placeholder for another obj
Also Known As

Surrogate
Motivating Example

Speed up loading of a complex multimedia docum
represent images and other large components. The
by the proxies only when they need to be displaye

Applicability
1. A remote proxy represents an object in a different 
2. A virtual proxy creates expensive objects on dema
3. A protection proxy controls access to the original o
4. A smart reference looks like a pointer but performs

dereferenced, such as:

– counting references so the object can be free

– loading a persistent object into memory when

– checking an object is locked before it is acces
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Proxy — Structure

Structure

RealSubject

+Request()
...

Subject
abstrac

+Request() { abstract }
...

Proxy

-realSubject

+Request()
...

realSubject
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Proxy — Participants and Colla

Participants
❑ Proxy:

– maintains a reference to the real Subject

– provides an identical interface to the Subject

– controls access to the real subject, and may b
and deleting it

– other responsibilities depend on the kind of pr

❑ Subject:

– defines common interface so Proxy and RealS

❑ RealSubject:

– defines the real object that the proxy represen

Collaborations
Proxy forwards requests to RealSubject when app
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Proxy — Consequences ...

Consequences
The Proxy introduces a level of indirection that can
such as hiding the real location of an object, delayin
an object is needed, or performing various housek

Known Uses
NEXTSTEP uses proxies to represent distributed o

Related Patterns
Adaptor provides a different interface to the object
Decorators may be implemented in a similar way t
different. Decorators add responsibilities, whereas
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Sample Design Patterns
The following design patterns are typical of those found in

Creational Patterns

Factory Method Define an interface for creating an object, but le
instantiate. Factory Method lets a class defer ins

Prototype Specify the kinds of objects to create using a pro
objects by copying this prototype.

Structural Patterns

Adapter Convert the interface of a class into another inte
classes work together that couldn’t otherwise be

Decorator Attach additional responsibilities to an object dy
flexible alternative to subclassing for extending f

Behavioural Patterns

Observer Define a one-to-many dependency between obje
state, all its dependents are notified and update

Template Method
Define the skeleton of an algorithm in an operat
subclasses. Template method lets subclasses re
with changing the algorithm’s structure.
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What Problems do Design Patt

Patterns document design experience:

❑ Patterns enable widespread reuse of software ar
❑ Patterns improve communication within and acro

teams
❑ Patterns explicitly capture knowledge that experi

understand implicitly
❑ Useful patterns arise from practical experience
❑ Patterns help ease the transition to object-oriente
❑ Patterns facilitate training of new developers
❑ Patterns help to transcend “programming langua

Sc
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Authoring Patterns

❑ Pattern descriptions should contain concrete exa
❑ Pattern names should be chosen carefully and u
❑ Resist the temptation to recast everything as a p
❑ Focus on developing patterns that are strategic t

existing tactical patterns
❑ Patterns are validated by experience rather than
❑ Directly involve pattern authors with application d
❑ Pattern descriptions explicitly record engineering

alternatives that resolve non-functional forces
❑ Carefully document the contexts where patterns 

Sc
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Common Design Techniques

Design patterns make use of many common design techn

❑ Class vs. Interface inheritance
☞ Class inheritance supports sharing of implem
☞ Interface inheritance supports polymorphism

❑ Program to an interface, not an implementation!
☞ Increase flexibility by declaring variables of a
☞ Localize knowledge concerning which concr

❑ Inheritance vs. Object Composition
☞ Inheritance occurs statically, and exposes p
☞ Object composition occurs dynamically, and

❑ Delegation vs. Inheritance
☞ An object can “implement” a service by dele
☞ Delegation increases flexibility by allowing be
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Improving Design Flexibility
Many design problems are concerned with achieving flexi

❑ Varying which classes are instantiated
☞ Create objects indirectly by delegating to a “

❑ Varying which operations are performed at run-ti
☞ Use polymorphism and delegation to dynam

❑ Varying hardware or software platform
☞ Use polymorphism to hide implementation d

❑ Varying object representations and implementati
☞ Encapsulate dependencies to prevent chang

❑ Varying algorithms
☞ Use polymorphism to substitute or paramete

❑ Decoupling objects
☞ Use object composition and delegation to av

❑ Extending functionality in arbitrary ways
☞ Prefer object composition and delegation to 

❑ Adapting existing classes
☞ Use object composition and delegation to hi
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Idioms

Most Design patterns make use of common idioms:

❑ Handle/Body Classes:  separate classes into a h
and a body (for implementation) [cf. Proxy, Adap

❑ Functors (Function Objects):  an alternative to 
supports reuse through inheritance, encapsulatio
changes of behaviour

❑ Orthodox Canonical Form:  supports constructi
and copying of non-trivial classes

❑ ...
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Kinds of Patterns

A Software Architecture defines a system in terms o
components and interactions amongst those compo

An Architectural Style defines a family of systems in
structural organization.

— cf. Shaw & Garlan, Softwar

❑ Architectural patterns (styles)
➪ “a fundamental structural organization s

❑ Design patterns
➪ “a commonly-recurring structure of com

solves a general design problem within 
❑ Idioms

➪ “a low-level pattern specific to a program
— or more generally: “an implementatio

— cf. Buschmann et al., Pattern-Oriented Software
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What is Coordination?

Coordination is managing dependencies between a

— Malone and
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Coordination Patterns

❑ Architectural styles:
➪ Pipes and Filters [SA, POSA]
➪ Blackboard; result/agenda/specialist pa
➪ Event-based implicit invocation [SA]

❑ Design Patterns:
➪ Master/Slave; Administrator/Worker [PO
➪ Proxy [DP, POSA]
➪ Active Object [Schmidt, PLoPD]

❑ Idioms:
➪ Handle/Body [Coplien, Advanced C++]
➪ Futures
➪ RPC
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Research Topics

Specifying Patterns:
❑ Identifying and classifying Coordination Patterns

Developing better tools and languages
❑ Make architectures and designs explicit

☞ Separate coordination from computation
☞ Declarative vs. operational specification

❑ Provide more high-level coordination component
common design patterns and arch. styles
☞ Make it easy to implement coordination idiom

components
☞ Make it easier to reflect about coordination
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