
Coordination Patterns 1.

© Oscar Nierstrasz 1997

rns

 for Coordination

oup
M)

scg/
Universität Bern

Coordination Patte

Design Patterns and their relevance

Oscar Nierstrasz

Software Composition Gr
Institut für Informatik (IA

Universität Bern

oscar@iam.unibe.ch
http://iamwww.unibe.ch/~

Coordination Patterns 2.

© Oscar Nierstrasz 1997

oms ...

, Blackboard, ...

ns
 it easier to apply patterns
Universität Bern

Overview

❑ What are Design Patterns?
➪ Example: the Proxy pattern

❑ What problems do patterns solve?
➪ Patterns are a form of communication

❑ What kinds of patterns exist?
➪ Architectural styles, design patterns, idi

❑ What patterns solve coordination problems?
➪ Administrator/Worker, Pipes and Filters

❑ What are the research opportunities?
➪ Specify and classify coordination patter
➪ Develop tools and languages that make

Coordination Patterns 3.

© Oscar Nierstrasz 1997

n of architecture:

r and over again in our
ution to that problem, in
imes over, without ever

al., A Pattern Language

common design problems:

s, and evaluates an
stems. Our goal is to
 use effectively.”

, et al., Design Patterns
Universität Bern

What are Design Patterns?

Patterns were first systematically catalogued in the domai

“Each pattern describes a problem which occurs ove
environment, and then describes the core of the sol
such a way that you can use this solution a million t
doing it the same way twice.”

Alexander, et

Software design patterns document standard solutions to

“Each design pattern systematically names, explain
important and recurring design in object-oriented sy
capture design experience in a form that people can

Gamma

Coordination Patterns 4.

© Oscar Nierstrasz 1997

..

design problems
er is a design pattern

problem
different implementations
using design patterns

 architecture using an object-

specific design problem
ith design patterns

from experience with multiple
Universität Bern

What Design Patterns are not .

Algorithms are not design patterns
☞ algorithms solve computation problems, not
☞ merge-sort is an algorithm; divide and conqu

Software components are not design patterns
☞ design patterns describe a way of solving a
☞ design patterns document pros and cons of
☞ software components may be implemented

Frameworks are not design patterns
☞ a framework implements a generic software

oriented language
☞ a design pattern documents the solution to a
☞ a framework may use and be documented w
☞ like frameworks, design patterns are drawn

applications solving related problems

Coordination Patterns 5.

© Oscar Nierstrasz 1997

ified?

essence of pattern

e pattern
ded use
 solution
ern be applied
ents

d their responsibilities
sponsibilities
lying the pattern
nguage issues
Smalltalk etc.
 in real systems
 patterns
Universität Bern

How are Design Patterns Spec

1. Pattern Name and Classification: should convey
☞ Also Known As: other common names

2. The Problem Forces: describes when to apply th
☞ Intent: short statement of rationale and inten
☞ Motivation: a problem scenario and example
☞ Applicability: in which situations can the patt

3. The Solution: abstract description of design elem
☞ Structure: class and scenario diagrams
☞ Participants: participating classes/objects an
☞ Collaborations: how participants carry out re

4. The Consequences: results and trade-offs of app
☞ Implementation: pitfalls, hints, techniques, la
☞ Sample Code: illustrative examples in C++,
☞ Known Uses: examples of the pattern found
☞ Related Patterns: competing and supporting

Coordination Patterns 6.

© Oscar Nierstrasz 1997

ect to control access to it.

ent by using proxies to
 actual objects will be loaded

d.

address space.
nd (e.g., multimedia).
bject.
 additional actions when

d when the count is zero

 first referenced

sed or modified
Universität Bern

The Proxy Pattern
Intent

Provide a surrogate or placeholder for another obj
Also Known As

Surrogate
Motivating Example

Speed up loading of a complex multimedia docum
represent images and other large components. The
by the proxies only when they need to be displaye

Applicability
1. A remote proxy represents an object in a different
2. A virtual proxy creates expensive objects on dema
3. A protection proxy controls access to the original o
4. A smart reference looks like a pointer but performs

dereferenced, such as:

– counting references so the object can be free

– loading a persistent object into memory when

– checking an object is locked before it is acces

Coordination Patterns 7.

© Oscar Nierstrasz 1997

t

...
realSubject->Request()
...
Universität Bern

Proxy — Structure

Structure

RealSubject

+Request()
...

Subject
abstrac

+Request() { abstract }
...

Proxy

-realSubject

+Request()
...

realSubject

Coordination Patterns 8.

© Oscar Nierstrasz 1997

borations

e responsible for creating

oxy ...

ubject can be interchanged

ts

ropriate
Universität Bern

Proxy — Participants and Colla

Participants
❑ Proxy:

– maintains a reference to the real Subject

– provides an identical interface to the Subject

– controls access to the real subject, and may b
and deleting it

– other responsibilities depend on the kind of pr

❑ Subject:

– defines common interface so Proxy and RealS

❑ RealSubject:

– defines the real object that the proxy represen

Collaborations
Proxy forwards requests to RealSubject when app

Coordination Patterns 9.

© Oscar Nierstrasz 1997

 be used to do various things,
g loading or initialization until

eeping activities.

bjects. ...

 it adapts, in contrast to Proxy.
o Proxies, but the intent is
 Proxies control access.
Universität Bern

Proxy — Consequences ...

Consequences
The Proxy introduces a level of indirection that can
such as hiding the real location of an object, delayin
an object is needed, or performing various housek

Known Uses
NEXTSTEP uses proxies to represent distributed o

Related Patterns
Adaptor provides a different interface to the object
Decorators may be implemented in a similar way t
different. Decorators add responsibilities, whereas

Coordination Patterns 10.

© Oscar Nierstrasz 1997

Gamma, et al.

t subclasses decide which class to
tantiation to subclasses.

totypical instance, and create new

rface clients expect. Adapter lets
cause of incompatible interfaces.

namically. Decorators provide a
unctionality.

cts so that when one object changes
d automatically.

ion, deferring some steps to
define certain steps of an algorithm
Universität Bern

Sample Design Patterns
The following design patterns are typical of those found in

Creational Patterns

Factory Method Define an interface for creating an object, but le
instantiate. Factory Method lets a class defer ins

Prototype Specify the kinds of objects to create using a pro
objects by copying this prototype.

Structural Patterns

Adapter Convert the interface of a class into another inte
classes work together that couldn’t otherwise be

Decorator Attach additional responsibilities to an object dy
flexible alternative to subclassing for extending f

Behavioural Patterns

Observer Define a one-to-many dependency between obje
state, all its dependents are notified and update

Template Method
Define the skeleton of an algorithm in an operat
subclasses. Template method lets subclasses re
with changing the algorithm’s structure.

Coordination Patterns 11.

© Oscar Nierstrasz 1997

erns Solve?

chitecture
ss software development

enced developers already

d technology

ge-centric” viewpoints

hmidt, CACM Oct 1995
Universität Bern

What Problems do Design Patt

Patterns document design experience:

❑ Patterns enable widespread reuse of software ar
❑ Patterns improve communication within and acro

teams
❑ Patterns explicitly capture knowledge that experi

understand implicitly
❑ Useful patterns arise from practical experience
❑ Patterns help ease the transition to object-oriente
❑ Patterns facilitate training of new developers
❑ Patterns help to transcend “programming langua

Sc

Coordination Patterns 12.

© Oscar Nierstrasz 1997

mples
sed consistently
attern
o the domain and reuse

 by testing
evelopers and domain experts
 trade-offs and design

apply and do not apply

hmidt, CACM Oct 1995
Universität Bern

Authoring Patterns

❑ Pattern descriptions should contain concrete exa
❑ Pattern names should be chosen carefully and u
❑ Resist the temptation to recast everything as a p
❑ Focus on developing patterns that are strategic t

existing tactical patterns
❑ Patterns are validated by experience rather than
❑ Directly involve pattern authors with application d
❑ Pattern descriptions explicitly record engineering

alternatives that resolve non-functional forces
❑ Carefully document the contexts where patterns

Sc

Coordination Patterns 13.

© Oscar Nierstrasz 1997

iques:

entation

bstract, not concrete classes
ete classes to instantiate

arent class implementation
 increases run-time flexibility

gating it to another object
haviour to change at run-time
Universität Bern

Common Design Techniques

Design patterns make use of many common design techn

❑ Class vs. Interface inheritance
☞ Class inheritance supports sharing of implem
☞ Interface inheritance supports polymorphism

❑ Program to an interface, not an implementation!
☞ Increase flexibility by declaring variables of a
☞ Localize knowledge concerning which concr

❑ Inheritance vs. Object Composition
☞ Inheritance occurs statically, and exposes p
☞ Object composition occurs dynamically, and

❑ Delegation vs. Inheritance
☞ An object can “implement” a service by dele
☞ Delegation increases flexibility by allowing be

Coordination Patterns 14.

© Oscar Nierstrasz 1997

bility:

Factory” or “Prototype” object
me
ically select operations

etails from clients
ons
es from cascading

rize algorithms

oid tight coupling

inheritance

de and adapt them
Universität Bern

Improving Design Flexibility
Many design problems are concerned with achieving flexi

❑ Varying which classes are instantiated
☞ Create objects indirectly by delegating to a “

❑ Varying which operations are performed at run-ti
☞ Use polymorphism and delegation to dynam

❑ Varying hardware or software platform
☞ Use polymorphism to hide implementation d

❑ Varying object representations and implementati
☞ Encapsulate dependencies to prevent chang

❑ Varying algorithms
☞ Use polymorphism to substitute or paramete

❑ Decoupling objects
☞ Use object composition and delegation to av

❑ Extending functionality in arbitrary ways
☞ Prefer object composition and delegation to

❑ Adapting existing classes
☞ Use object composition and delegation to hi

Coordination Patterns 15.

© Oscar Nierstrasz 1997

andle (for controlling access)
tor, Decorator etc.]

using function pointers that
n of state, and dynamic

on, destruction, assignment
Universität Bern

Idioms

Most Design patterns make use of common idioms:

❑ Handle/Body Classes: separate classes into a h
and a body (for implementation) [cf. Proxy, Adap

❑ Functors (Function Objects): an alternative to
supports reuse through inheritance, encapsulatio
changes of behaviour

❑ Orthodox Canonical Form: supports constructi
and copying of non-trivial classes

❑ ...

Coordination Patterns 16.

© Oscar Nierstrasz 1997

f computational
nents.

 terms of a pattern of

e Architecture, pp. 3, 19

chema for software systems”

municating components that
a particular context”

ming language”
n technique”

 Architecture, pp. 12-14
Universität Bern

Kinds of Patterns

A Software Architecture defines a system in terms o
components and interactions amongst those compo

An Architectural Style defines a family of systems in
structural organization.

— cf. Shaw & Garlan, Softwar

❑ Architectural patterns (styles)
➪ “a fundamental structural organization s

❑ Design patterns
➪ “a commonly-recurring structure of com

solves a general design problem within
❑ Idioms

➪ “a low-level pattern specific to a program
— or more generally: “an implementatio

— cf. Buschmann et al., Pattern-Oriented Software

Coordination Patterns 17.

© Oscar Nierstrasz 1997

ctivities.

 Crowston, CACM, 26.1
Universität Bern

What is Coordination?

Coordination is managing dependencies between a

— Malone and

Coordination Patterns 18.

© Oscar Nierstrasz 1997

rallelism [SA, POSA, HWPP]

SA, HWPP]
Universität Bern

Coordination Patterns

❑ Architectural styles:
➪ Pipes and Filters [SA, POSA]
➪ Blackboard; result/agenda/specialist pa
➪ Event-based implicit invocation [SA]

❑ Design Patterns:
➪ Master/Slave; Administrator/Worker [PO
➪ Proxy [DP, POSA]
➪ Active Object [Schmidt, PLoPD]

❑ Idioms:
➪ Handle/Body [Coplien, Advanced C++]
➪ Futures
➪ RPC

Coordination Patterns 19.

© Oscar Nierstrasz 1997

, Styles and Idioms

s and connectors that realize

s and patterns as
Universität Bern

Research Topics

Specifying Patterns:
❑ Identifying and classifying Coordination Patterns

Developing better tools and languages
❑ Make architectures and designs explicit

☞ Separate coordination from computation
☞ Declarative vs. operational specification

❑ Provide more high-level coordination component
common design patterns and arch. styles
☞ Make it easy to implement coordination idiom

components
☞ Make it easier to reflect about coordination

Coordination Patterns 20.

© Oscar Nierstrasz 1997

 Silverstein, A Pattern
77.
t, Peter Sommerlad and
ure — A System of Patterns,

ite Parallel Programs: a First

 Design, Addison-Wesley,

John Vlissides, Design

sign principles and Patterns,

velop Reusable Object-
ns of the ACM, vol. 38, no. 10,

re: Perspectives on an
Universität Bern

Literature — Design Patterns

1. Christopher Alexander, Sara Ishakawa and Murray
Language, Oxford University Press, New York, 19

2. Frank Buschmann, Regine Meunier, Hans Rohner
Michael Stad, Pattern-Oriented Software Architect
John Wiley, 1996.

3. Nicholas Carriero and David Gelernter, How to Wr
Course, MIT Press, cop. 1990, Cambridge, 1990.

4. James O. Coplien, Pattern Languages of Program
1995.

5. Erich Gamma, Richard Helm, Ralph Johnson and
Patterns, Addison Wesley, Reading, MA, 1995.

6. Doug Lea, Concurrent Programming in Java — De
The Java Series, Addison-Wesley, 1996.

7. Douglas C. Schmidt, “Using Design Patterns to De
Oriented Communication Software,” Communicatio
October 1995, pp. 65-74.

8. Mary Shaw and David Garlan, Software Architectu
Emerging Discipline, Prentice-Hall, 1996.

	Coordination Patterns
	Overview
	What are Design Patterns?
	What Design Patterns are not ...
	How are Design Patterns Specified?
	The Proxy Pattern
	Proxy — Structure
	Proxy — Participants and Collaborations
	Proxy — Consequences ...
	Sample Design Patterns
	What Problems do Design Patterns Solve?
	Authoring Patterns
	Common Design Techniques
	Improving Design Flexibility
	Idioms
	Kinds of Patterns
	What is Coordination?
	Coordination Patterns
	Research Topics
	Literature — Design Patterns

