
Grammar Generation with
Genetic Programming

Evolutionary Grammar Generation

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Sandro De Zanet
Bern im Juli 2009

Leiter der Arbeit

Prof. Dr. Oscar Nierstrasz

Toon Verwaest

Institut für Informatik und angewandte Mathematik

Sandro De Zanet
dezanets@gmail.com

Software Composition Group
University of Bern
Institute of Computer Science and Applied Mathematics
Neubrückstrasse 10
CH-3012 Bern
http://scg.unibe.ch/

http://scg.unibe.ch/

Abstract

External domain specific languages are ubiquitous in computer science. Getting ahold
of definitions of these languages and being able to analyze them is difficult. The code
has to be parsed and transformed to a model before we can even start to retrieve
meaningful information. Often a parser is not openly available or is written in an
other language. Hence a developer analyzing the code has to manually figure out the
grammar and write his own parser. This thesis will address the problem by automating
the grammar and parser retrieval process. The approach uses a combination of Parsing
Expression Grammars and Genetic Programming.

iii

iv ABSTRACT

Acknowledgements

I would like to thank the following persons who have made the completion of this
Master Thesis possible: Prof. Oscar Nierstrasz, Toon Verwaest and the whole scg staff
and fellow master students.

v

vi ACKNOWLEDGEMENTS

Contents

Abstract iii

Acknowledgements v

Contents vii

1 Introduction 1
1.1 Related work . 2
1.2 Solution in a nutshell . 3
1.3 Overview . 4

2 Parsing Expression Grammars 7
2.1 Operators . 8
2.2 Representation and parsing . 9
2.3 Bound behavior . 12
2.4 Memoization . 12

2.4.1 Example . 13
2.5 Conclusion . 14

3 Genetic Programming 17
3.1 Evolutionary algorithms . 17
3.2 Example of Evolutionary Algorithms - Antenna 19
3.3 Types of EA . 20
3.4 Restrictions to individuals . 20
3.5 Example from nature . 21
3.6 Conclusion . 21

4 Combination of PEGs and Genetic Programming 23
4.1 Tuning PEGs for Genetic Programming 23

4.1.1 Mutation . 24
4.1.2 Crossover . 26
4.1.3 Fitness function . 27

4.2 Left recursion and endless loops . 30
4.3 Examples . 32

vii

viii CONTENTS

4.4 Optimization of Genetic Programming . 33
4.5 Parallelization . 34
4.6 Preliminary data . 35
4.7 Tweaking the parameters . 35
4.8 Conclusion . 38

5 Case studies 41
5.1 Identifier . 41
5.2 Keyword . 42
5.3 Real language . 43
5.4 Conclusion . 44

6 Conclusion 45
6.1 Future work . 46

7 Appendix 49
7.1 Quickstart . 49

7.1.1 Prerequisites . 49
7.1.2 Single Evolution . 49
7.1.3 Master/Slave Evolution . 50

List of Figures 51

Listings 53

Bibliography 55

Chapter 1

Introduction

As more and more software projects are developed, more and more legacy code is
generated. Over time they grow big and it gets more difficult to keep a good overview.
This leads to unmaintainable and error prone code. Developers who join a team need a
lot of time to understand the legacy. Changes to such code are expensive in terms of
time as well as money. With a fast and detailed understanding of software, cost can be
minimized and the number of errors kept low. This is why it is important to be able to
understand big software projects in less time.

To understand large software we need to analyze it. Normally this is done manually by
skimming through the code and understanding more and more of the code. Although
a developer will see more details of the project by doing it manually, it is difficult to
keep track of the general overview of the project while trailing off into specifics of the
implementation.

We need a way of automatically getting general data out of code (Lines of code,
Number of methods, etc.). By processing this data, we can tell the programmer if there
is something wrong with the source code and which parts have to be refactored. They
show the most important parts of the projects and how they work together. There are a
lot of different metrics tools to address the various problems and hot spots of software.
Unfortunately for every language there has to be an export and import facility, which
parses and analyzes the code. So for every language one needs to write a parser or at
least write some sort of plugin for existing compilers, if available. This is tedious work
and needs a lot of familiarization with the topic of parsing. There are more general tools
like Moose [9], which use a language independent metamodel (FAMIX [3]) to define
data and structures of object oriented languages. In this way metric analysis tools only
have to be written once and can be reused. One still has to write a parser for every new
language, though. With the ever increasing number of scripting languages and external
Domain Specific Language (DSL), as well as new languages, it is a lot of work to write
new exporters every time. In this work we will present a possible simplification and
automation of the process of grammar extraction from source code.

1

2 CHAPTER 1. INTRODUCTION

In many cases neither the compiler nor the grammar of a language is freely available.
If a grammar is available, sometimes it’s not defined in a standard format like Backus
Naur Form (BNF), from which a parser could be generated (semi-) automatically.
Therefore if we want to analyze code, we need to write our own parser. While for
simple DSLs the parsing process is usually straightforward and doesn’t need a big
experience, for more complex languages writing a parser is cumbersome work and
often very time intensive. Programmers usually don’t have the knowledge for parsing
and therefore must acquire it. A lot of time spent on correct definitions of BNFs,
grammar ambiguities and precedence rules. Mostly, programmers don’t care about the
inner workings of a parser and are simply interested in the meta data they can gain.
Thus, the parsing overhead seems even more amiss.

1.1 Related work

There have been attempts to simplify and automate the process of extracting software
meta-models from source code. Markus Kobel investigated the idea of direct mapping
of source code to a formal representation of the considered source code [10]. In that
case it was the aforementioned FAMIX metamodel. They let the user select meaningful
subtexts from the source code. By building the corresponding metamodel object in
FAMIX the program can map source code to the FAMIX model. For instance one
can map a method signature in the code with the metamodel of method signature in
FAMIX. Their prototype, CodeSnooper, tries to generate a local parser for the specified
example. Naturally, the more examples you provide the better the parser gets (with
the danger of overgeneralization). With their prototype they could extract metrics for
elements of Java code. They had problems with Ruby, although this was more of a
technical problem than one of the general approach.

A more general approach has been followed by Marjan Mernik, Goran Gerlič, Viljem
Žumer, namely the generation of grammars for arbitrary languages [2]. They used
Genetic Programming, an evolution based search algorithm, to find grammars for
legacy source code written in a relatively simple programming language. In contrast
to the work of Markus Kobel [10], their goal was to find a grammar to which the
input source complies instead of a direct mapping to meta-models. Although with the
grammar we don’t directly extract data this approach is still very useful. A parser can be
easily generated from a grammar. With the parser we can build an abstract syntax tree.
The final mapping of an AST to a meta-models is then almost straightforward.

In their approach using Genetic Programming, the grammars were evolved directly
rather than transforming them into special evolvable models. With this quite simple
setup they achieved useful and compact grammars for small DSLs. For instance
they evolved a grammar for simple arithmetic expressions as well as a robot steering
language. To avoid the problem of the token definitions, users had to define them by
hand. They are not part of the evolution process. It might not be that big an issue, since
tokens are very similar from one language to the next.

1.2. SOLUTION IN A NUTSHELL 3

1.2 Solution in a nutshell

In this thesis we will show a solution for the first step of software metamodel extraction.
We will address the automatic generation of a grammar for an arbitrary language and
thus its parser. We want to be as automatic as possible: we only want to rely on
sample code. The process should automatically find a grammar which describes a
programming language.

As we saw, there are different ways to approach this goal. A solution has to deal
with the problem of finding patterns in an almost arbitrary stream of characters. The
canonical way of analyzing such a stream is applying a formal grammar. Our goal is to
find this grammar.

To find the grammar we could apply pattern recognition on the characters to find
balanced parentheses, recurring syntactical patterns or keywords. There are some prob-
lems with this approach: keywords, for instance, are very difficult to detect through
statistics, since names (of variables, methods, etc.) can recur as often as keywords.
So it is difficult to identify patterns statistically. Instead of relying on statistics, we
could define certain recurring patterns manually beforehand. This, however, limits
the number of patterns that can be found. It will potentially miss syntactic features.
Having to define these patterns beforehand involves a lot of work from the user as
well, which breaks our premise of high automation.

For this thesis we decided to take another strategy than statistical analysis to find a
suitable grammar. We however kept in mind that the user effort should be minimized.
One can match patterns on the characters, but it’s quite cumbersome. While some
patterns match parts of the source, they don’t fully describe the whole language. Only
the part of the language which has been presented to the search algorithm is recognized.
The missing parts have to be filled in with more general statements, which might not
be restrictive enough. It is also difficult to know beforehand which patterns will occur
in the source files. Programming languages use different kinds of white-spaces used
for scoping, variables, etc.

Since there are a lot of equivalent grammars which fully describes a certain source code
and since we don’t have any additional constraints of the grammar beforehand, we
need a searching algorithm which is able to find patterns in a seemingly random data
set. The solution we use in this thesis is Genetic Programming, which was also used
in ”Can a Parser be Generated From Examples?” [2]. This special type of evolutionary
algorithm uses the principles of biological evolution to search and optimize results
for a given problem. This algorithm can improve very simple and bad solutions
iteratively to get a more sophisticated result. Beginning with randomly generated
grammars we can breed them to a sufficiently useful grammar. Like in nature, in
Genetic Programming the grammars nearest to the aimed goal are selected to pass on
to the next generation. The crucial part of the algorithm is precisely the function which
selects a new generation of grammars, the so-called fitness function. It determines
what the goal of the search is and thus directs the algorithm towards the solution.

4 CHAPTER 1. INTRODUCTION

The equivalent of the fitness function in nature would be for instance the survival
probability of a creature’s offspring.

Since the fitness function is so important, we will need to take a closer look at how to
define it. It defines what constitutes a ”good” grammar, what kind of grammars we
want to achieve. On the one hand, we don’t want too general grammars, while on the
other hand we shouldn’t let the grammars be too specialized towards the source code
samples.

An additional issue is the definition of the data types, e.g. how the envisioned gram-
mars should be encoded. We need an easily modifiable structure so we can evolve
it with Genetic Programming. For the evolutionary approach, we have to be able to
gradually change grammars. It is also important that we are able to test the fitness
of the grammars in a simple and efficient way. Since in our case the fitness test in-
volves a lot of parsing, the transformation between the definition of grammars and the
corresponding parsers should be fast and easily achievable.

Usually grammars for computer languages are defined with Context Free Grammars
using the (Extended) Backus Naur Form. As they are well known, the essential
algorithms for parser generation and optimized parsing are available (Lexer, YACC,
etc.). They usually compile grammars to C code, which represent the code for the
parser corresponding to the grammar. This source code has to be compiled again to
executed. Ambiguities resulting from the grammar have to be solved manually, which
is difficult an error prone. This is a disadvantage for the envisioned automation of the
process, since we want to hide the generation of parsers from the user. Unfortunately,
ambiguous grammars cannot be discarded automatically. In fact this problem is
undecidable.

Our approach for the grammar is to use Parsing Expression Grammars (PEG) [7].
A PEG is basically a composable grammar, recursively descent parsers. After it is
defined (normally written as internal domain specific language) it can be used right
away, without need of further transformation or generation of supplementary files.
No additional parsing is needed. Furthermore, due to their greedy nature (unlike
CFGs) they have no inherent ambiguities. This facilitates the automatic generation of
grammars, since the user does not have to intervene. Due to their uniform nature, they
are easily implemented and extended to suit our needs.

While naively implemented PEGs have potentially exponential time complexity they
can be optimized to perform in linear time using Memoization.

1.3 Overview

In this thesis we will first look at the basics of the parsers and what search algorithm we
will use. In chapter 2 we will have a look at the details of Parsing Expression Grammars
and in chapter 3 at Genetic Programming and other evolutionary algorithms. We will
combine both techniques in chapter 4. Furthermore, we will address optimization

1.3. OVERVIEW 5

problems as well as parameter calibration. The more interesting implementation details
are depicted in chapter 2.4.1 along with their consequences for the results. Finally, we
will discuss the outcome of the algorithm in chapter 5, where different real DSLs are
taken to the test. Here we will see the limitations of the approach. To conclude we will
summarize the results and present ideas for future work. This will be shown in chapter
6.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Parsing Expression Grammars

Our goal is to find grammars for source code of certain programming languages. In this
chapter we will first discuss what kind of grammars are available and which one suits
most our need. Subsequently we will look at the details of the selected grammar.

The most commonly used type of grammar is the Context Free Grammar (CFG) intro-
duced by Noam Chomsky. It owes its prevalence to the fact that it can describe most
of the languages used nowadays. Since it is known for a long time, there are broadly
available tools for the generation of parsers. Predominantly the LR (k) parser. Most
performance and validity problems are solved and well researched. While parsers
can be generated from CFGs (for instance with YACC), it sometimes needs human
interaction to straighten out ambiguities.

Since we want the process to be as automated as possible, we directly generate gram-
mars as Parsing Expression Grammars [8].

PEGs are commonly used as internal domain specific languages - they can be used
directly in the host language. There is no need for an additional scripting language and
no subsequent parsing and compiling of the scripting language has to be performed.
Once a PEG has been built, it can immediately be used as a parser. So the difference
between the runtime structure and the source code is smaller which makes it more
understandable and dynamic.

In contrast to LR (k) parsers, PEGs are greedy and unambiguous by design. This is
a requirement for an automated approach where no human interaction is possible.
PEGs are composed of interchangeable and connectable parsers, forming a graph of
parsers. They are not able to express left recursive grammars as CFGs do. Fortunately
(meaningful) left recursions can be rewritten.

In terms of speed PEGs can be optimized in theory to be as fast as LR (k) parsers with
Memoization with a additional cost in space complexity. Since we are rather interested
in the speed part this does not hinder us in using PEGs.

7

8 CHAPTER 2. PARSING EXPRESSION GRAMMARS

Thus, Parsing Expression Grammars give us a big advantage and we will use them for
our approach.

2.1 Operators

PEGs are parser objects normally composed of other PEG parsers. Every PEG has a
root node. The root is the entry point for the recursively descent parser. There are
different types of parsers which act differently on an stream of characters and possibly
delegate processing to their children parsers.

All parsers can succeed or fail. If a parser fails, the algorithm will backtrack to the last
successful parsing location. If possible it will continue with other parsers. If the root
parser fails, then the input string is not defined by the grammar, i.e. the PEG does not
match the string.

There are several different basic PEGs that can be combined to build complex parsers.
We need PEGs, which can parse single characters and substrings. The following list
presents the typical basic parsers used in PEGs:

Notation Description
’x’ Single character x

[x-y] Character class from character x to character y
. Any character

Since these are the most primitive PEGs, they constitute the base for our parsers. They
are the only ones that consume one or more (literal string) characters. If the character
at the current position of the input string does not match the character related to the
parser, then it will obviously fail and induce backtracking, if possible.

An existing graph of PEGs e can be extended by using the following unary postfix
operators:

Notation Description
e? Optional
e* Zero or more
e+ One or more

Unary suffix operators determine how many times the parser e will be sequentially
applied on the input string. It generates a new parser with the semantics of the operator
which delegates the child. For instance the option operator tries to apply its child parser
e on the input string. If e succeeds, the parsing will be applied, otherwise (if e fails) e
will be omitted. This makes sure e will be applied at most once.

The the zero-or-more operator tries to apply e as long as e doesn’t fail. Similar to the
option parser, if e fails, nothing happens.

2.2. REPRESENTATION AND PARSING 9

The one-or-more parser differs slightly from the zero-or-more. It has to consume at
least one e, otherwise it will fail.

Similarly there are prefix operators that act on a parser e:

Notation Description
& e And predicate

!e Not predicate

Prefix operators change the way of how the parser backtracks. The And-predicate
parses the string but does not consume it and will unconditionally backtrack. The
information about its success or failure is preserved though and passed up to its
parent parser. Similarly the Not-predicate does not consume the string and will
unconditionally backtrack. However in this case the success/failure information of the
child e is inverted. For example the grammar (’a’ !’b’ .*) will parse everything beginning
with an a that is not followed by a b.

Parsers can be concatenated by these binary operators:

Notation Description
e1 e2 Sequence

e1 / e2 Prioritized choice

Sequences impose an order on the application of the parsers on the input string. They
have to consume the string subsequently and if either parser fails, the sequence will
fail as well. In the prioritized choice the first parser will attempt to parse. On failure
the operator falls back to the second. If both fail the choice operator fails as well.

Not all PEG combinations are valid though. Infinite recursion can occur if there are
loops in the graph, i.e. if there is a left recursion in the grammar definition. Looping
parsers - parsers which repetetively apply their children on the string -, like the zero
or more parser, can raise a problem as well. If their underlying parser succeeds on
parsing, but does not consume any character of the input string, then the zero or more
parser will endlessly loop as well. These issues will be addressed later on.

2.2 Representation and parsing

To illustrate how a PEG works in action, we will look at a simple grammar parsing
a short string. In figure 2.1 we have an example of parsing ”:a:b:” with the gram-
mar

Listing 2.1: Simple grammar

0 -> {(’:’ [a-z] 0) | ’:’}

10 CHAPTER 2. PARSING EXPRESSION GRAMMARS

which defines all strings with lowercase characters that are delimited by colons. Note
that {. . .} demark choice and (. . .) demark sequences. We used two different parenthe-
ses to be able to detect the type if there is only one element.

We will look at the parsing step by step:

1. The input string is fed to the root choice node which delegates it to its first child.

2. The sequence passes the string to its first child.

3. The character parser can parse the first character and consumes it.

4. The range parser can parse ’a’ and consumes it as well

5. The choice is recursively called and works again like in the previous four steps,
consuming ’:’ and ’b’ this time.

6. Choice is expanded again and the string passes down till to the colon parser
which can still parse the remaining column in the input string.

7. The following character parser fails on the empty string which leads to a back-
tracking to the choice parser.

8. The choice will try with the second child, the single colon parser which succeeds.
Every parser then succeeds up to the to the root. Since the root succeeds the
grammar accepts the input string.

2.2. REPRESENTATION AND PARSING 11

{..|..}

(..)

':' [a-z] ':'

":a:b:"
{..|..}

(..)

':' [a-z] ':'

":a:b:"

{..|..}

(..)

':' [a-z] ':'

":a:b:"

{..|..}

(..)

':' [a-z] ':'

":a:b:"
{..|..}

(..)

':' [a-z] ':'{..|..}

(..)

':' [a-z] ':'

{..|..}

(..)

':' [a-z] ':'{..|..}

(..)

':' [a-z] ':'{..|..}

(..)

':' [a-z] ':'

{..|..}

(..)

':' [a-z] ':'{..|..}

(..)

':' [a-z] ':'{..|..}

(..)

':' [a-z] ':'

{..|..}

(..)

':' [a-z] ':'{..|..}

(..)

':' [a-z] ':'{..|..}

(..)

':' [a-z] ':'

":a:b:"

":a:b:"

":a:b:"":a:b:"

1 2

3 4

5 6

7 8

Figure 2.1: Example of parsing with a PEG

12 CHAPTER 2. PARSING EXPRESSION GRAMMARS

2.3 Bound behavior

PEGs can be straightforwardly expanded to generate abstract syntax trees. By adding
behavior to specific nodes of the parser graph an AST can be constructed while parsing.
We will demonstrate this using the example of the previous section.

Listing 2.2: Simple grammar

0 -> {(’:’ [a-z] 0) | ’:’}

In order to generate an AST we just need to define behavior on exactly two nodes of
the grammar. On the range parser ([a-z]) we define a function that takes the parsed
character and wraps it into an AST node. On the choice parser (which is also the root)
we define a function that takes all the results of the children and adds them to a new
AST node. If we run this enhanced parser on the same string as before (”:a:b:”) we get a
simple tree. The tree consists of an AST node ’a’ with a child AST node ’b’. Notice that
parsing results are passed up to the respective parent parsers if there is no behavior
defined on the current parser. So, in our case, the sequence parser just passes all the
results to its parent, which is the choice parser.

An interesting application is to use PEGs directly as simple interpreters. As long
as the defined language is functional, it can be executed directly while parsing. For
instance a calculator language can be implemented by defining the functions (additions,
multiplications, etc.) on the PEG nodes representing the latter. This makes PEGs very
powerful for quickly testing various constructs of a language.

2.4 Memoization

Parsers for context free grammars have been optimized to perform in linear time.
However, parsing with a PEG as described in the previous section is not performant,
that is it performs in worse than linear time. Our main performance issue is parsing. It
is heavily used for the calculation of the fitness, so we need to optimize the parsing
process. We will first look at the complexity of the aforementioned, naive algorithm, to
present a linear version using Memoization (in combination with PEGs called Packrat
Parsing [4]).

As variables we define p, the examined parser, |p| = m the number of nodes in the
parser p, s the string we want to parse and n = |s|, the number of characters in s. In
the worst case the algorithm takes every possible path through the graphs. Therefore
the complexity of the algorithm is the number of permutations the nodes can do on
the length of the string (with multiple occurrences) which leads to a complexity of
O(mn).

We want to know the complexity depending on the length of the string, so n is variable.
The number of nodes m, however, is constant in this context, since the grammar

2.4. MEMOIZATION 13

doesn’t change while parsing. Therefore m = c is constant and hence the complexity is
O(cn) = O(en). An exponential complexity is something we want avoid at all cost, so
we need some way of optimizing the parse process.

Luckily, there is a way to get the parser to be as fast as O(n). This is the same per-
formance as a canonical parser for a CFG. By introducing a cache we can prevent a
PEG from reapplying sub parsers to a certain substring multiple times. For every
start character of a substring a list is generated that holds all the parsers that already
attempted to parse it as well as their specific result. The results can either be a fail or a
success. If there is a success, additional information is given for what has been parsed
and the optional result of the behavior functions of that sub parser. Thus, while parsing
a string we can check the current character position in the cache. If the position has
already been computed with the same parser the result can be immediately returned
without parsing it again. Otherwise the result will be computed and stored for later
reuse.

With this caching we assure a linear parsing complexity. For every character, every
parser node will attempt to parse only once. Hence, in the worst case, the list of
every character holds all m parsers (every parser attempted once) which results in a
complexity of O(n ·m). As before m = c is constant and the complexity O(c · n) =
O(n).

In their paper Ralph Becket and Zoltan Somogyi point out that Memoization does
not increase performance in PEGs for most languages [11]. However, we deal with
random rather than handcrafted grammars. Thus Memoization is still beneficial, since
we mostly don’t generate grammars which behave like handcrafted ones. Even if the
goal of the search is a good (in the sense of readable) grammar, we still generate a
lot of bad grammars. The latter have to be tested. This is why we used Memoization
nonetheless.

2.4.1 Example

As an example we will look at the implementation of the parser which generates PEG
objects from a string. We implemented the parser for the PEG language and used it for
tests and for the deserialization of PEGs when sent over the net (explained in chapter
4).

The definition of the PEG grammar is listed below:

Listing 2.3: PEG grammar

0 -> (([0-9])+ ’ ’ ’-’ ’>’ ’ ’
1 -> {
#epsilon
’e’ |
#zero or more
2 -> (’(’ 1 ’)’ ’*’) |
#one or more

14 CHAPTER 2. PARSING EXPRESSION GRAMMARS

3 -> (’(’ 1 ’)’ ’+’) |
#new link
0 |
#prioritized choice
4 -> (’{’ 5 -> {6 -> (1 ’ ’ ’|’ ’ ’ 5) | 1} ’}’) |
#sequence
7 -> (’(’ 8 -> {9 -> (1 ’ ’ 8) | 1} ’)’) |
#any
’.’ |
#number
10 -> (’[’ ’0’ ’-’ ’9’ ’]’) |
#lowercase
11 -> (’[’ ’a’ ’-’ ’z’ ’]’) |
#uppercase
12 -> (’[’ ’A’ ’-’ ’Z’ ’]’) |
#character
13 -> (’’’ . ’’’) |
#backlink
14 -> {([0-9])+}

})

Numbers with an arrow denote new rules, beginning with the root rule]0. Rules are
used by writing the number without an arrow. Characters are denoted with two single
quotes around it. Sequences use normal parentheses and choice is written with curly
braces.

In order to build the PEG we defined behavior on every rule. For instance rule]2 takes
the child result and wraps a zero-or-more parser around it. Similarly rule]4 stand for
the choice and adds all the children results to a choice parser.

The trickiest part of it were the rule backlinks. Rules had to be stored in a global registry
so they could be retrieved from every parser. If the rule hasn’t been parsed yet but
was already used as a backlink, it would be added to the registry with an empty value.
Once the rule has been parsed the backlink is automatically resolved.

2.5 Conclusion

For the purpose of automatic generation of grammars PEGs are suited for our approach.
PEGs are an equally powerful subset of CFGs with the added important features of
being easy to manipulate and combine. Unlike CFGs, they are unambiguous by
construction. They don’t have to be modified to be unambiguous and can be used
directly after definition. The concern of not being performant is not an issue, since
PEGs can be optimized to perform with the time complexity of canonical parsers used
for CFGs using Memoization. The increased space complexity does not hinder us
since we are interested in speed rather than space efficiency in order to check a lot of
grammars in a shorter time.

2.5. CONCLUSION 15

Furthermore, as we will see in later chapters, the graph-structure with its interchange-
able nodes simplifies some operations which are needed by Genetic Programming
algorithms to modify grammars. PEGs do not have to be compiled to intermediate
code and then compiled again. Rather they can be used as internal DSLs. As such, the
task of generating grammars gets a lot easier, since it can be done on the fly in the host
language.

16 CHAPTER 2. PARSING EXPRESSION GRAMMARS

Chapter 3

Genetic Programming

In this chapter we will discuss our second prerequisite for the automatic generation
of grammars for DSLs. As we saw in the previous chapter we use PEGs to define
grammars. As mentioned in the introduction, we will use Genetic Programming as our
search algorithm.

Genetic Programming belongs to the class of Evolutionary Algorithms, which are
based on the principles of biological evolution. This class of algorithms relies on
the basics of evolution to find optimal solutions in a search space. We will look at
evolutionary algorithms in general and subsequently go more into detail about Genetic
Programming.

3.1 Evolutionary algorithms

Evolutionary Algorithms (EA) are used to search for solutions in a big problem space
with the aid of the mechanics of evolution. Biological evolution is based on three main
characteristics : reproduction, mutation and natural selection. While reproduction
conserves the species from extinction, mutation allows for change. The real promoter
of evolution, though, is natural selection which serves as a filter for more adapted
variations of individuals in a species.

These principles can be applied to computer science in a formal way. Individuals
are represented by potential solutions to a given problem. The equivalent to natural
selection is defined as the so-called fitness function. It determines the degree of adaption
or fitness of an individual. The nearer the individual approaches the ideal solution,
the better the fitness. Thus the fitness function computes numerical rating which
represents how well an individual solves the given problem. Artificial selection then
discards (kills) the individuals with the worst fitness, thereby preventing them from
reproducing.

17

18 CHAPTER 3. GENETIC PROGRAMMING

Since biological evolution starts from an existing population of species, we need to
bootstrap an initial population before we can begin evolving it. This initial population
is generally a number of random individuals. These initial individuals usually don’t
perform well, although some will already be a tad better than others. That is exactly
what we need to get evolution going.

The final part is reproduction, i.e. to generate a new generation from the surviving pre-
vious generation. For that purpose an evolutionary algorithm usually uses two types
of genetic operators: point mutation and crossover (We will refer to point mutations as
mutations, although crossover is technically also a mutation). Mutations change an
individual in a random location to alter it slightly, thus generating new information.
Crossover1 however, takes at least two individuals and cuts out part of one of them, to
put it in the other individual(s). By only moving around information, Crossover does
not introduce new information. Be aware that every modification of an individual has
to result in a new individual that is valid. Validity is very dependent on the search
space - it generally means that fitness function as well as the genetic operators should
be applicable to a valid individual. A schematic view is shown in fig. 3.1.

generate new
random population

select most fit
individuals

 generate new
population with

genetic operators

fit enough?

mutation crossover

Figure 3.1: Principles of an Evolutionary Algorithm

There are alternatives to rejecting a certain number of badly performing individuals
per generation. To compute the new generation, one can generate new individuals
from all individuals of the old generation. This would not result in an improvement
since the selection is completely random. Hence the parent individuals are selected

1Crossover in biology is the process of two parental chromosomes exchanging parts of genes in the
meiosis (cell division for reproduction cells)

3.2. EXAMPLE OF EVOLUTIONARY ALGORITHMS - ANTENNA 19

by a certain probability. Here the probability is correlated with the fitness. Compared
to the automatic preservation of good individuals, this probabilistic approach has the
disadvantage of possibly losing very well performing PEGs - information can get lost.
On the other hand, it helps to get out of local maxima by amplifying the choice of
possible search routes.

As in biology, the hope is that it is possible to improve with more or less small but
steady steps to get to the envisioned solution. Being a stochastic algorithm, there is no
guarantee of a success. The success is mainly dependent on the size of the improvement
steps the algorithm has to take. Bigger improvements steps have a lower probabilty
of happening, while small steps have a higher probabilty but can’t improve solutions
by much. If we look at the overall probability of the search (the probability to reach
the solution), we find that the probability decreases even more so. The size of the
steps depends on one hand heavily on the problem space but also on the offered
modifications to change individuals. Finally it depends on the granularity of the fitness
function.

3.2 Example of Evolutionary Algorithms - Antenna

In many areas evolutionary algorithms have been successfully applied. In a NASA
project, for instance, antennas have been evolved to consume the least amount of energy
for the most optimal ratio of power use versus broadcasting distance (see 3.2). While it
could have been calculated manually, it is a very complex and laborious task.

With the evolutionary approach a large search space can be covered and evaluated [5].
Using a fast and accurate physics simulation to determine the fitness, an antenna could
be evolved which performed very well. The result is quite counterintuitive and would
have been difficult to calculate (or think of) from scratch.

Figure 3.2: The evolved space antenna

20 CHAPTER 3. GENETIC PROGRAMMING

3.3 Types of EA

There are a few different types of EA, which mainly differ in their encoding of the
individuals.

Genetic algorithm Encoding as an array which represent the individual by parametriza-
tion.

Genetic programming The individual takes the form of a computer program.

Evolutionary programming Individual is a computer program, only some numerical
parts can evolve.

An interesting analogy is found in the difference between GAs and GPs, where the first
is only an encoding for a solution, while the second is the solution itself. In biology
the difference between the encoding and the actual emerged individual (solution) is
called the genotype/phenotype-difference. In Genetic Programming this difference is
not present and genotype and phenotype describe the very same thing.

An advantage of Genetic Programming is that modifications are directly performed on
the solution rather than on a external number representing it (like in GA). Therefore
the change is more local which helps to get smaller probability steps (as mentioned
before).

The disadvantage of mixed phenotype and genotype is the increased difficulty of
operations on the structure of the individual. Since individuals typically are trees or
graphs in GP, modifications on them are also more computationally intensive than for
Genetic Algorithms, where mutations are only performed on numbers in arrays.

3.4 Restrictions to individuals

The algorithm described above imposes some distinctive restrictions on the individuals
that have to be evolved. These are:

Heritability Exact copies of individuals have to have the same ability as the originals.
Additionally, they slightly change in the process of copying, they should only
slightly change their ability as well. Heritability is especially important, since it
maintains the information from one generation to the next. This prevents the loss
of already achieved successes.

Variability It must be possible to change individuals into other valid individuals.
There must be a high variability on individuals with vast potential of small
changes. Variability is needed to introduce new information into the system
in significantly small steps. Without this feature the individuals can’t change
effectively, which results in stagnation.

3.5. EXAMPLE FROM NATURE 21

Selection There must exist a partial ordering of the individuals which is given by
the fitness function. The fitness function should rate individuals nearer to the
envisioned goal higher. Selection (survival of the fittest) is the actual promoter of
the evolution. It favors good individuals over bad ones. Over a big history of
populations and equally big variation the quality of the individuals can steadily
increase.

Every system on which we want to be evolvable, has to actually fulfill these crite-
ria.

3.5 Example from nature

As an example from nature, one can look at the well-known evolution of the peppered
moth [1]. This originally white moth lived on birch trees, on which it was very well
concealed on the equally white bark. While there were always some mutations, which
made some moths slightly darker, they stood out in contrast to the white moths. Hence
they were more likely to be eaten by birds.

Then, in the beginning of the 19th century, the bark of the trees became dark because of
the pollution from the industrialization. To be white in this case, was a very bad feature.
Being gray on the other hand was a huge advantage. The feature for ”grayness” spread
over the population and replaced the feature for white color. But at the same time some
even darker moths appeared, which replaced the lighter gray moths. Eventually all
moths ended up having the color of the black bark.

Later on, when the industry stopped using charcoal, a lot less carbon was emitted.
This made the birch trees white again, which led to the inverse evolution from black to
white moths.

3.6 Conclusion

In the previous chapter we decided to use Parsing Expression Grammars to represent
our solutions. While we could still write them as strings (or in some binary tree
structure) to be mapped onto a value list in order to fit the encoding GA. It is a lot
simpler to use Genetic Programming. Since PEGs can already be executed as parsers
and are themselves the definition of a grammar, they fit the encoding of Genetic
Programming. They are unambiguous by construction which minimizes the required
user interaction.

With an Evolutionary Strategy an unmodifiable parsing graph would be another option.
We didn’t adopt that approach, since it would confine the search space of our grammars
too much to bear useful results.

22 CHAPTER 3. GENETIC PROGRAMMING

Chapter 4

Combination of PEGs and
Genetic Programming

In the two previous chapters, we explained the two principal techniques which we will
use to automatically generate grammars for existing source code. We will use Parsing
Expression Grammars to characterize the grammars and Genetic Programming as the
search algorithm.

In this chapter we will look at the details of the manipulation of PEGs. We will search
for a good fitness function to find better solutions. Finally we will look at the list of
parameters which we determined with comparative evaluations.

4.1 Tuning PEGs for Genetic Programming

As described in the previous chapter, we need to meet three conditions for PEGs to
build an evolvable system : heritability, variability and selection.

Heredity is easily implemented by deep copying the graph. The restriction of small
steps from chapter 3 will be addressed in the different ways of modifications of
PEGs.

With PEGs an infinite number of grammars are possible. There are a lot of syntactically
different although semantically identical grammars. We will have to make sure that
every modification of a grammar leads to another valid grammar.

The last condition, Selection, is defined with the fitness function. It has to be able to
generate a partial order of the grammars. The fitness function will try to parse the
existing code with the grammar and rate quality of the parsing.

23

24 CHAPTER 4. COMBINATION OF PEGS AND GENETIC PROGRAMMING

To transform PEGs to evolvable structures, some adaptions have to be made. In
the definition by Bryan Ford [7] sequence and choice operators only have two child
parsers. Longer sequences (or choose statements) can be built by nesting them. To
make profitable changes more probable and to keep the number of nodes down (which
also increases the execution speed as well) they have been generalized to an arbitrary
length.

First we will look at the modifications that are possible for grammars and are commonly
used in evolutionary algorithms: mutation and crossover.

4.1.1 Mutation

A mutation of a grammar is the modification of one of its randomly chosen nodes.
Every parser node is different and therefore it has to change itself in a different way
according to its type. So for instance the character parser will mutate the character it
parser. Similarly a range parser alters its range.

There are though some more common mutations that affect the structure of the gram-
mar and are not dependent on the node. They will only affect not primitive and not
unary parser nodes:

add child A new randomly generated parser will be inserted in the list of children (fig.
4.1)

Figure 4.1: Add a node

add link Works similarly to adding a child. Although in this case the new parser is not
randomly generated but selected from one of the nodes of the already existing
PEG. This results in a link to this parser (like a CFG rule, fig. 4.2)

remove child A randomly selected child will be removed. No effect, if there is only
one child. Remark that we don’t allow composite parsers with no children, since
they don’t constitute a valid grammar (4.3)

The mutation has no effect on unary or primitive parsers like the character parser.

4.1. TUNING PEGS FOR GENETIC PROGRAMMING 25

Figure 4.2: Add back link node

...

...

Figure 4.3: Delete a node

To ensure the evolvability of more complex parsers we need more complex mutations.
After the initial population got sorted mostly only single character parsers were left
and couldn’t mutate to parsers with more nodes.

The following mutations add the possibility to insert nodes between the current parser
and the root parser:

deletion The selected parser first moves all its children to the parent parser, thus
replacing itself by its children (fig. 4.4)

insertion The selected parser is replaced by a composite parser (sequence or choice).
The selected parser is then added to the new parser. This results in the insertion
of a new parser in between the selected parser and its parser. If the selected
parser is the root, the new parser becomes the new root. (fig. 4.5)

26 CHAPTER 4. COMBINATION OF PEGS AND GENETIC PROGRAMMING

C

A B

A B

Figure 4.4: Push a node up

Insertion ensures diversity in graph depth. Graph depth is important for the emergence
of more complex structures. The deletion, on the other hand, puts a counterweight
to it. This ensures that grammars do not grow too big and that is possible to simplify
structures.

4.1.2 Crossover

Crossover is the second, less often used modification. The term is borrowed from the
biological chromosomal crossover, where it describes the exchange of genes of two
paired up chromosomes (one from the mother and one from the father) in the process
of the Meiosis 1.

Applied to grammars, this results in copying a subgraph of one grammar into another
graph. If one has two grammars p1 and p2, a new grammar is created by selecting a
random node of p1 and adding it to random node of p2. Note that the parsers will
not be directly linked. Rather the subgraph of p1 is copied independently from its
parent.

The motivation for crossover is to preserve useful, more complex structures that have
already evolved. By combining two modestly performing parsers one can generate a
new one that combines the useful parts of the parents into a parser that performs well
in the two places of the parents.

1Process of generating reproductive cells like sperms and eggs

4.1. TUNING PEGS FOR GENETIC PROGRAMMING 27

C

A B

C

A B

Figure 4.5: Insert a node

4.1.3 Fitness function

The fitness function is the most important part of the evolutionary algorithm by in-
directly defining the envisioned goal. It determines the quality of PEGs which is a
representation of the distance to the solution. Without an elaborate fitness function, the
search will head in the wrong direction. There is also the risk of finding non-intended
solutions or to be trapped in local extrema.

Normally the fitness function is defined as a number which stands for a better rating,
the higher it is. We decided to define the fitness function the other way around: worse
PEG have a higher fitness number; the fitness of 0 defines the best achievable solution.
This makes sense because we use the size metric of a PEG which is worse the bigger a
PEG gets. Furthermore, we have found a possible solution if all the characters of the
source code have been parsed. Hence we measure the number of characters to parse
which is better the smaller it is.

For our problem we first implemented the most straightforward solution. We let each
PEG parse every source code file. The number of characters that it cannot parse is
added to the final fitness. There is an additional penalty for not being able to parse a
file at all (parser fails on the first character). The reason behind this is that we wanted a
stronger differentiation between the grammars that could at least parse one character
and the completely useless grammars. In this way a better grammar is a grammar with
a lower fitness, a grammar with fitness zero being one that can fully parse every source
code. We don’t allow negative fitness (the reason is explained later).

28 CHAPTER 4. COMBINATION OF PEGS AND GENETIC PROGRAMMING

The fitness function for a PEG p therefore looks as follows:

fitness1(p) =
sources∑

s

unparsed(p, s)

The unparsed function takes a parser p and a string s and computes the string part that
could not be parsed and returns a constant value for unparsable strings (unparsable
regarding the parser p).

However, if we apply the previously defined fitness function directly we notice that the
grammars become very long with a lot of junk nodes in it. For instance epsilon parsers
accumulate in sequences. Similarly ”parasitic” parser nodes hide in dead (never
executed) branches of choose parsers. This is unwanted since the user can hardly
understand it. Furthermore the computational time increases with every additional
node, hence the search slows down for every generation. The fitness function can be
enhanced by by adding the number of nodes of the parser to the fitness.

fitness2a(p) = fitness1(p) + |p|

where |p| counts all the nodes in p.

The new fitness function improves the resulting parsers. The length of parsers should
lie in an interval though. The linear approach though does not address it, thus an
exponential function is more suited. It grows slowly for a certain range of small number
and ever more for bigger numbers. A parser can evolve in the small length interval
and can’t go beyond (unless it is lot better in parsing).

fitness2b(p) = fitness1(p) + c|p|

where c is a constant so that c > 1

To refine the interval we have to add a lower limit as well. Normally the best parsers
in the first few generations are very short and simple parsers. The step from a very
short parser to a longer better one is very improbable with the one-sided exponential
approach. A penalty for very short parser lengths can be achieved with a negative
exponential function (see graph 4.6):

fitness2c(p) = fitness1(p) + c
|p|
1 + c

−|p|
2

This fixes solve the length problem and the junk is discarded without inhibiting the
evolution process.

While we can tackle the issues of length, it is not enough to generate useful parsers.
After running a couple of tests a pattern emerged. The surviving parsers add more and
more characters to a choice parser till it has used all of the characters of the sources.
This parser is equivalent to the Any parser and can parse any character source string.
An additional repetition parser as the parent of the choose gives it the power to parse
all the sources without an error:

4.1. TUNING PEGS FOR GENETIC PROGRAMMING 29

Figure 4.6: Fitness graph designating the fitness (vertical) depending on the length of
the parser (horizontal)

Listing 4.1: Cheating Parser

((’a’ | ’b’ | ’c’ | ... | ’z’ | ...))+

The reasons for this to evolve is on hand that it can evolve easily step by step, by adding
a character at a time. On the other hand the first functional ancestor that has the same
structure consists only of three parsers (character, choose, repetition). However such a
parser brings no additional layer of abstraction to the code.

A way of encountering this kind of problem is to add penalties to certain - strongly
generalizing - parsers like the choose and the repetition parsers, while not giving any
to the sequence and character parsers.

We could also redefine the penalty as a bonus for parsers like sequence and character
parsers, giving them negative penalties. While these penalties favor restricting parser
nodes, it adds a lot of junk to the parsers in the long run. Since boni would be
added regardless of the function of a parser node, they can be deliberately added
to dead branches without changing the ability to parse strings. Dead nodes with
boni enhance the fitness value of the parser by giving no further improvement to the
capabilities. Hence although they will survive, no improvement is gained over the
former generation and the evolution stagnates. Therefore we need to define the penalty
on the parsers we don’t want rather than boni to the ones we want, to preserve the link
between a good fitness and good parsers.

fitness3(p) = fitness2c(p) +
∑

node
(penalty(node)) penalty(p) ≥ 0

30 CHAPTER 4. COMBINATION OF PEGS AND GENETIC PROGRAMMING

The added penalty leads to an improvement of the result, although in most cases it
only increases the number of generations needed to find the same solutions as the ones
found without penalty. One approach would be to look at the dynamic information
of the parser. By analyzing the performance of the different nodes while parsing we
could penalize dead branches. Alternatively there could be a bonus for the richness
of structure, although the ”richness” would be difficult to define. We didn’t consider
these options in this thesis.

The biggest problem is overgeneralization. We can’t eliminate it with tweaks in the
fitness function. By adding negative examples that the parser should reject and not be
able to parse, all too general parsers can be discarded easily. The number of parsed
characters of the negatives would then be added to the fitness as an additional penalty.
The new fitness function then looks as follows:

fitness4(p) = fitness3(p) +
∑

wrong
(len(wrong)− unparsed(p, wrong))

This last step substantially increases the quality of the evolved parser. Overly generic
parsers are sorted out rapidly, since they can parse wrong files as well. This gives them
a worse fitness.

As we want to have an automated algorithm with as little input as possible, we face
the problem that the user has to give negative files. We tried to solve this problem by
generating negatives by cutting the available source code into pieces, shuffling them
and gluing them together again. Like that files are created that have a lot in common
with the correct code (same character set, similar constructions) but hopefully with
broken syntax structures.

Obviously a big code base of another language (for instance the Linux kernel source)
can serve as database of negative examples as well. It is not clear if the parsers will
find subtle language constructs though, since it is easier to reject a completely different
language. On the other hand scrambled code of the language to be found can still be
valid syntax and would be a false negative, thus breaking the validity of the fitness
function.

4.2 Left recursion and endless loops

Genetic Programming only allows valid individuals, in our case parsers. However,
syntactically valid programs might be semantically bogus because of left recursions.
Left recursions occur when a PEG points to itself (even indirectly), without a character
consuming PEG in between. This leads to endless loops during parsing, since the
pointer on the string to parse does not change. Similar endless loops can occur for
instance in zero or more parsers, which iterates as long as it’s child succeeds. If the
child does succeed, but does not consume anything (like the epsilon parser), the system
hangs.

4.2. LEFT RECURSION AND ENDLESS LOOPS 31

Since we generate parsers randomly, we quickly produce invalid grammars and run
into the mentioned problem. There are different ways of avoiding left recursion.
Alessandro Warth, James R. Douglass, and Todd Millstein enhanced PEGs to be re-
sistant to left recursions as well as endless loops [12]. In their work they modified
Memoization, the optimization cache, which stores parser results on substrings, which
have been computed already. Memoization can be expanded to just fail or at least omit
parsing, if at the parse position a parser has already been applied. While this method is
useful to avoid a hanging system, we don’t want to generate grammars which contain
left recursions. They break in canonical implementations of PEGs and are more difficult
to understand.

Instead of using the PEGs robust to left recursion, we check if our randomly generated
parsers are left recursive. If they are, we reject them without testing the fitness. Calcu-
lationg the fitness is done through parsing of samples and could thus already end in
infinite recursion. We will have to test every PEG which has been generated through
the evolutionary process (mutation and crossover) again.

To check the validity of a PEG we need three functions which rely on each other. By
recursively checking the PEG graph we will be able determine whether a grammar is
valid or not. The functions check a certain property of a PEG: validity, consumption
type and consumption loop.

Validity is the function we have to call to determine, if the PEG has any kind of
structure that can lead to an infinite loop. It relies on the consumption type function.
Consumption type determines all the kinds of consumptions the PEG could possibly
perform (for details see below). The consumption loop function searches for direct
loops of non-consumption.

The consumption loop check identifies all the possible types of consumption the
parser can do. It produces a combination of the three types of consumption: failure
(F), success with consumption (SC) and success without consumption (SNC). So for
instance the character parser can fail (while trying to parse a wrong character) as well
as succeed with consumption (when the character is correct). But it can’t succeed
without consumption. The following table depicts all the outcomes of the various PEG
parser types:

’x’ (SC, F)
”xy...z” (SC, F)

[x-y] (SC, F)
. (SC, F)

(e) consumptiontype(e)
e? consumptiontype(e) ∪ (SNC)
e* consumptiontype(e) - {F}
e+ consumptiontype(e)

e1 e2 . . . en

{ ⋃
consumptiontype(ei) ,∀ei {SNC} ∈ ei⋃
consumptiontype(ei) - {SNC} , else

{e1 | e2 | . . . | en}
⋃

consumptiontype(ei).

32 CHAPTER 4. COMBINATION OF PEGS AND GENETIC PROGRAMMING

In a second step we will define the well-formedness of a parser recursively. This is the
place where on one hand the left recursion is tested with the recursion check and on
the other hand loops are detected.

’x’ True
”xy...z” True

[x-y] True
. True

(e) wellformed(e)
e? wellformed(e)

e*
{

False , {SNC}∈ consumptiontype(e)
wellformed(e) , else

e+
{

False , {SNC}∈ consumptiontype(e)
wellformed(e) , else

e1 e2 . . . en

∧
ncl(e1) and

∧
wellformed(ei)

{e1 | e2 | . . . | en}
∧

ncl(ei) and
∧

wellformed(ei)

Finally the ”no consumption loop”-check (ncl) as used above is defined. It checks
if there is a potential loop in the grammar graph where there is nothing consumed
of the string. V defines a list of already visited nodes and p is the currently checked
parser.

’x’ False
”xy...z” False

[x-y] False
. False

(e) ncl(e)
e? ncl(e) or (e ∈ V ∧{SNC} ∈

consumptiontype(e)) (
e* ncl(e) or (e ∈ V ∧{SNC} ∈

consumptiontype(e))
e+ ncl(e) or (e ∈ V ∧{SNC} ∈

consumptiontype(e))
e1 e2 . . . en Holds true if for one of the ei ncl(ei)

holds true or (e ∈ V ∧{SNC} ∈
consumptiontype(e))

{e1 | e2 | . . . | en} Holds true if for one of the ei ncl(ei)
holds true or (e ∈ V ∧{SNC} ∈
consumptiontype(e))

The well-formedness filters all non-left recursive and endless loop containing gram-
mars. Since they will end in erratic behavior they’re not wanted by the user anyway, so
they can be dropped.

4.3. EXAMPLES 33

4.3 Examples

To illustrate the solution we will analyze the algorithm performing on some example
grammar. First we look at a simple left recursion:

Listing 4.2: Parser with an endless recursion

0 -> (0 ’a’)

When checking well-formedness from this grammar we have to look at sequence defi-
nition which tells us to perform ”no-consumption-loops” on every child. Here already
we get a ”no-consumption-loop” which is a direct recursion. So this grammar is not
valid (well-formed). An example for an endless loop is the following grammar:

Listing 4.3: Parser with an endless loop

0 -> (e)*

where ”e” is the epsilon parser. If this PEG is fed a string it will endlessly consume
epsilon. To detect this loop we will first apply a well-formedness check on the zero-
or-more parser which tells us to check if the consumption type of its child is not SNC
which means that it can success without consuming any characters. Since epsilon is
typically among this type of consumers the well-formedness test will fail in the epsilon
parser and thus the loop is detected.

4.4 Optimization of Genetic Programming

We looked at the optimizations of the fitness function in the last section. There are more
optimizations for GP which speed up the search. The optimization include strategies
to avoid local extrema.

After a couple of generations the populations consist of many copies of only a few
distinct grammars. The diversity falls to a minimum. Therefore the very first action is to
disallow duplicates in the population for a new generation, thus increasing the amount
of information available for each generation that can be shuffled together.

A solution to this problem is to add more different types of mutations in order to
decrease the probability of certain more complex transformations, like adding nodes,
collapsing nodes or putting a node in between two others. While that speeds up the
search, it is still not satisfactory enough.

A second, more difficult to detect scenario where duplicates can emerge poses an extra
problem. We discard all but the k best grammars from the list. So if a grammar g is
generated for generation i and is then discarded because it was not fit enough, it can
be regenerated for the generation i + 1. Hence the fitness function is applied on g one

34 CHAPTER 4. COMBINATION OF PEGS AND GENETIC PROGRAMMING

more time. Since the minimal fitness over all the surviving grammars cannot decrease
from one generation to the next, and the fitness for a given grammar is static, g will
be discarded again. That leads to two problems: increased computation time for the
evaluation of the fitness for a useless grammar as well as less variability.

A straightforward solution for the problem is to hold a list of already discarded gram-
mars and to check if the newly generated grammars are in the list. Grammars had to
be completely identical to be equal. More sophisticated algorithms could have been
used but on the one hand they would have decreased performance drastically and on
the other hand the diversity of grammars would have suffered. Even with this simple
equality check the number of generations needed to get to a certain fitness decreased
remarkably.

After a while such cached results become obsolete as the top grammars grow further
away from the discarded parsers. This allows us to remove them from the cache, in
order to free up memory.

4.5 Parallelization

To improve performance on one side and results on the other, we distribute the com-
putation into different processes. This is easily done by the distribution of the fitness
calculation of the grammars. This calculation is computationally the most intensive.
For the calculation of the fitness, a certain grammar has to parse all the input files.
Since neither the grammar nor the input files change after parsing, this process can be
easily distributed on different processors. To diminish the overhead, the computation
should be divided by grammar and not for every source file.

We decided to take a slightly different approach to improve the results as well. We
often noticed that the algorithm got stuck for quite long times in local minima. One
way of preventing this problem, is to run the algorithm on the different processors
independently and from time to time to merge the results. This idea is once again taken
from nature: distinct species have evolved mostly thanks to isolation of one previously
uniform specimen. First this leads to different races (like in dogs) and later to species
of their own that cannot interbreed.

The reason why the algorithm gets stuck at local extrema is mainly that after some
time the grammar gets bigger and the number of possibilities of grammar definitions
increases. For instance, the parsers ’a’ and (’a’ e) are able to parse exactly the same set
of strings (which consists only of the letter a). Hence after a while the best grammars
are all very similar to each other, although exact duplicates are eliminated. In biology
that phenomenon is called a low biodiversity. With a low biodiversity though is smaller
probability to get out of a local extrema situation, since the ground on which novel
parsers can grow does not allow for much variation.

One idea to prevent this would be to increase the percentage of the grammars taken to
the next generation. The problem in this case is that the selection is not strong enough

4.6. PRELIMINARY DATA 35

anymore and the process takes a lot more time.

To prevent thinning out the diversity, we added a server/client structure to our algo-
rithm. The server is the main evolution going on and the clients simulate an isolated
environment to increase the variability of grammars. It takes the idea again from
real evolution where species differentiate from one common ancestor being seper-
ated (for instance via island formations). Similarly this separate evolving system
tries again to ”revive” worse grammars, increasing the paths of mutations tried, to
find a better solution. Splitting GP into islands is known as Multipopulation Genetic
Programming[6].

On startup the server generates grammars randomly as before and computes one
generation. Before it reiterates though it pushes some of the rejected grammars to a
”waste basket”. Clients can then connect to the server and take grammars out of the
waste basket to perform evolution on them.

After a predefined number of generations the client pushes back its best grammars back
to server. These new grammars are then handled like any other grammars generated
on the server.

4.6 Preliminary data

To further decrease the number of generations needed, and to improve the quality
of the resulting grammar, we need preliminary information to steer the algorithm in
the right direction. The main reason for this is due to wrongly set parameters of the
Genetic Programming. This issue will be covered in the next chapter.

Some languages do not use all characters of the available character set, so the first thing
we did was to scan the code files and find all actually used characters. However, the
inherent grammar could be defined using more characters than actually used in the
available code samples. We still preserved the ability to introduce any character, but
characters unused in the source would have a lower probability.

Parsing scoped code with this setup is still a problem. So we define matching characters
beforehand and introducing them as new kind of mutation. Though this helped for
instance for brainfuck code, it wasn’t as successful as we hoped (see 5.3). The problem
was again that we only looked at matching characters, while there are languages where
whole words are matched.

4.7 Tweaking the parameters

A lot of the (implicit) parameters in the mentioned processes cannot be computed
beforehand and have to be adjusted with heuristics. On one hand we have parameters
for PEGs. While normal PEGs have no parameters, their evolvable counterparts have

36 CHAPTER 4. COMBINATION OF PEGS AND GENETIC PROGRAMMING

some parameters that have to be found heuristically. Certain mutations, like the
mutations of a character, rely on probabilities on which character to choose (see last
section). The mutation that inserts a new random child node to a parser will choose
the index with a uniformly distributed probability. A new random parser is created by
randomly adding parsers to other parsers, until a certain tree depth has been reached.
Here the only parameter is the maximal tree depth. It has to be chosen to fit the
population size, otherwise the number of possible grammars might be too small. This
would decrease the diversity and annihilate the advantages of a bigger population.
Finally we have the probability of choosing a node in a parser to be mutated. Again
we used an uniformly distributed probability over all the nodes of the parser.

Genetic Programming itself on the other hand, has a lot more unclear parameters that
have to be determined stochastically due to its own stochastic nature. There are the
parameters for selection and population size, which we called k and n respectively. n
here is the total number of individuals per generation a k the number of individuals that
are passed on to the next generation unchanged (and n− k the number of individuals
that are discarded).

Additionally we investigated the differences between mutations and crossover. We
determined which one is better at improving the fitness, or rather which ratio of
combination is most beneficial. First we will take a look at n and k. To determine the
best values for n and k, we computed test runs for combinations of the two parameters.
To visualize the results we plotted them on a grid as shown in figure 4.7.

The values of n are represented on the horizontal axis, while the values of k are repre-
sented on the vertical axis. The position of a pixel therefore indicates a combination of
an n and k. Gray values show the attained fitness of that test run: the worst are white
going over bright and dark gray to black, which indicates a very good fitness.

In the case of this image, the test run was performed beginning with an n = 3 to
n = 450. Accordingly all the k from 1 . . . n − 1 were run so that we got a triangle.
By ignoring k = 0 and k = n we avoided the impossible or completely random (no
selection) cases respectively. Since this process is very time intensive we only computed
20 generations per n,k-pair.

What this image shows is that the algorithm performs best for bigger n and smaller
k. However there is a problem with very small k. While it improves the speed (and
decreases the needed number of generations), it often leads to dead ends, i.e. local
extrema. With a small k the diversity of the individuals is radically lowered, which
decreases the probability to improve after a local minimum is reached. Thus the best
choice is a k which is still in the fully dark zone but not too low at the bottom.

On the other hand, the fitness gets better as n increases. This is expected, since a
higher n means that more new individuals are generated; the coverage of all possible
mutations is higher.

Unfortunately, as n grows, computational time increases. A small k, which we already
showed to be beneficial, increases the computational time as well. For every generation

4.7. TWEAKING THE PARAMETERS 37

Figure 4.7: Heat map of the fitness

a lot of new individuals have to be generated and checked for duplicates. Additionally
every new individuals need to be rated with the fitness function.

Similarly we test for the best mutation/crossover ratio. According to the tests with n
and k we choose a relatively big n = 300 and a small k = 20. Very low values for this
ratio (0 = all crossover, 1 = all mutation) take a long time to compute. The reason for
this is that crossover does not introduce novel structures. It is only a reshuffling of the
already present information. Since we want every individual to be different from the
other in the new generation, it takes more time to find distinct ones by only shuffling
nodes around. So we only calculate fitness above the 0.5% mutation.

The following image depicts the results of the evaluation. We run 20 tests for every
ration between 50% and 100% mutation over crossover. The colors are used as in the
previous analysis. Dark stands for a better fitness down to bright grey and white for

38 CHAPTER 4. COMBINATION OF PEGS AND GENETIC PROGRAMMING

a worse fitness, like in the n/k-picture. The x-axis has no meaning in this context.
As one can see, there is no significant difference between the results. While there are

Figure 4.8: Heat map of mutation over crossover ratio

fluctuations, they are not consistent for any value of the mutation/crossover ratio. It
almost looks like crossover has no impact on the quality of the results. The only effect
measurable, was an increased computational time. Finally we dropped the crossover
completely.

Sean Luke and Lee Spector [13] compared crossover and mutation in classical Genetic
Programming problems. With four different (hard and easy) problems they tried to
figure out the merits of both modification methods. They tried to correlate population
size to the success of mutation or crossover as well. There were some minor advantages
for the mutation when they tried to solve a hard problem with a small population size.
Overall crossover performed a little better. They used a lot bigger population sizes and
generations as we did in the test above. However, they had to conclude that there is no
statistically significant difference between mutation and crossover. Crossover never
performed very well, if it was used without mutation.

Similarly to our tests the size of the population improved the fitness result. They didn’t
measure the performance of the k though. In this case they used the traditional value
of ten percent.

4.8 Conclusion

As we saw in this chapter, PEGs can be easily adapted to fit to the evolutionary
requirements of Genetic Programming. Different types of mutations were added to be
able to alter PEGs. More mutations had to be added as a reaction to excessively low
probabilities of certain structural changes.

4.8. CONCLUSION 39

We addressed the problem of left recursion and endless loops in grammars, which
emerge constantly due to the random nature of generation and mutation of PEGs in
the process of evolution.

The fitness plays one of the more important roles in the formation of useful grammars.
A set of steps are needed to get an suitable fitness function. It has to take into account all
the the fundamental problems while generating PEGs. We experience the well-known
phenomenon of over-generalization which forced us to introduce negative examples.
Finally we isolated the most important parameters of GP: mutation over crossover rates
and the reproduction ratio. Although our setting comprehends a variety of different
techniques with their own parameters which have nothing to do with GP, we found
the same results as a much larger analysis of the GP evaluations of Sean Luke and Lee
Spector for these parameters.

40 CHAPTER 4. COMBINATION OF PEGS AND GENETIC PROGRAMMING

Chapter 5

Case studies

We applied our approach to different types of grammars. We gradually made the
languages more difficult to be able to tell when we got to the point where our approach
was not sophisticated enough to find any useful solutions anymore. We looked at
the grammars of canonical identifiers, a simple configuration file and a programming
language, namely brainfuck.

5.1 Identifier

Since the identifier is used in virtually every language, we needed to know that our
algorithm was able to find a solution to this problem. Although the definition in
language differs in the details, they mostly look like this:

Listing 5.1: Envisioned parser

([a-z] (‘_‘ | [0-9] | [a-z])*)

An identifier is completely lowercase and has to start with a lowercase character. It
is followed by alphanumerical characters including the underscore character. We
provided the character with a small set of correct identifiers and an equal number of
negative examples. After approximately 200-300 generations the algorithm consistently
found the following or a similar grammar:

Listing 5.2: Found grammar

(([a-z] ({‘\n‘ | ‘_‘ | [0-9]})*))*

This is not exactly the grammar we searched for. It is able to parse the same string as
the envisioned parser though. The additional line break is due to the fact that the input

41

42 CHAPTER 5. CASE STUDIES

strings are stored in files which have a line break at the end of the file. It is interesting
to see that the algorithm finds a way to reuse the range parser [a-z]. As we designed
the envisioned grammar we had an intention of what the different parsers mean (”first
character has to be a lowercase”). The algorithm can’t know this intended meaning, so
the result is satisfactory for our purpose.

In image 5.1 we see a run of the program. It shows the behavior of evolution with stable
plateaus for several generations on one hand and rapidly changing and optimizing
individuals in between plateaus on the other hand. The rapidly changing parts indicate
a new successful mutation being optimized until it reaches a new plateau.

Figure 5.1: Best fitness per generation

5.2 Keyword

Our next quest was to determine if the algorithm is able to figure out keywords. For
this purpose we invented a simple configuration file language:

Listing 5.3: Envisioned parser

0 -> (‘c‘ ‘a‘ ‘t‘ ‘:‘ ‘ ‘ ([a-z])+ 1 -> {2 -> (‘\n‘ 0) | e})

5.3. REAL LANGUAGE 43

We want to find the keyword ”cat:” followed by an arbitrary number of lowercase
characters. The language can parse multiple lines with this same pattern. This is a
slightly more difficult problem. On one hand it enforces the grammars to use the exact
characters which is more difficult than just using a range parser. On the other hand the
pattern is repeated an arbitrary number of times, so the algorithm has to abstract a line
as an entity.

After 1000-2000 generations the algorithm found grammars similar to the following
one:

Listing 5.4: Found parser

(0 -> (‘c‘ ‘a‘ ‘t‘ ‘:‘ ‘ ‘ 2 -> (([a-z])+ ‘\n‘)))+

It gradually improves by starting with the simple character parser ‘c‘ and subsequently
the whole keyword ”cat:” and the rest of the line. Unfortunately the algorithm is not
able to parse files with more than one line. When trying with a higher population (from
100/10 to 300/30) we achieved a much better results similar to the following:

Listing 5.5: Found parser

0 -> (‘c‘ ‘a‘ ‘t‘ 2 -> (‘:‘ ‘ ‘ e 3 ->
([a-z] (4 -> {5 -> (0) | ‘\n‘ | 6 -> ([a-z])})*)))

With this configuration we could find grammars which could parse whole files com-
plying to our simple language. This particular example of a solution uses recursion
to accomplish the repetition of the lines. A solution with a repetition did not evolve.
Note that the grammar is not as restrictive as our hand crafted one. This is due to the
set of examples which did not include negative examples for instance for consecutive
newlines.

5.3 Real language

To test parenthese matching we used the very simple but Turing complete esoteric
programming language brainfuck. The language consists of eight characters, each one
denoting an operation on a tape. Two of them are square brackets which stand for a
while loop. They can be nested and have to be matched. With this simple language
we have a prototype for matched parentheses. Having so few grammatical structures
it is ideal to perform a lot of small tests with different parameters. Keywords in this
case are just characters, further speeding up the search by making it easier to focus
on the structure. We already showed that keywords can be found with the previous
example.

As before we have a grammar in mind which should be found. The following is the
envisioned grammar:

44 CHAPTER 5. CASE STUDIES

Listing 5.6: Envisioned brainfuck grammar

0 -> (‘+‘ | ‘-‘ | ‘<‘ | ‘>‘ | ‘,‘ | ‘.‘ | 1 ->
(‘[‘ 2 -> (0)* ‘]‘))

It consists of all the keywords which designate tape operations and the loop marked
with square brackets. It contains a backlink to the root of the grammar so they can be
nested.

Trying many different combinations of n and k (see 4.7) we were not able to reproduce
a similar PEG with our algorithm. It didn’t manage to find the matched parenthesis in
the stream of characters and almost always produced a result like the following:

Listing 5.7: Found brainfuck grammar

(0 -> {‘<‘ | ‘]‘ | ‘.‘ | ‘,‘ | ‘>‘ | ‘-‘ | ‘[‘ | ‘+‘})*

The situation occured that the algorithm just found the easiest way of matching the
source code. It just listed all the existing characters in a list without adding structure.
Early generations produce simple character parsers or sequences with a few characters.
These parsers are better than the rest since they can parse the beginning of source code.
The easiest way to expand this simple parsers is by adding a choice and just add the
rest of (in this case) the small set of possible characters.

The reason why this happens is mainly due to the fitness function which can’t properly
give a bonus to the structure of a grammar. An idea would be to add boni for the
maximal depth of a grammar. But this solution mainly just increases the size of
grammars and encourages additions of meaningless sequences and choices.

5.4 Conclusion

In this chapter we evaluated the performance of the algorithm. It operated well on
simple grammars and could detect identifiers and keywords. It struggled to find
matched parentheses. This is mainly due to the fact that sequences (which are needed
for matched parentheses) are more brittle than choice operators in an evolutionary
sense. Parsers can be added to choices more easily without breaking the parser and
therefore they are evolutionary more successful. Solutions to these problems are
outlined in Future work 6.1.

Chapter 6

Conclusion

As software projects grow, we want to be able to maintain an overview, on the one hand
to ensure a good design and on the other hand to enable new team members to quickly
understand a project. To facilitate the understanding of big projects analysis can be
automated. For this purpose we need a parser, and thus a grammar of a language.
Since we don’t want to implement our own parsers and just quickly extract useful
metrics, we need a way to help the user to generate grammars.

The goal of this work is to evolve formal grammars for a given set of sources written in
a programming language. This greatly helps in mapping source code to metamodels,
since we can generate an AST with a parser. The mapping between an AST and
metamodels is different depending on the language and the kind of data that we want
to extract. So the mapping should be done by hand, but the grammar extraction can be
automated.

We used Genetic Programming as an evolutionary search algorithm and Parsing Ex-
pression Grammars as a grammar representation. The evolutionary strategy has been
chosen due to its generic approach to problem solving. It can build solutions gradually
by slightly improving solutions over time. Since the problem at hand is complex, we
couldn’t generate grammars in one step, further encouraging this approach. This work
also looked at how all the crucial parameters had to be selected to get the best result,
focusing on the Genetic Programming parameters.

We saw that indeed PEGs and Genetic Programming combine nicely. PEGs can be
transformed and mutated in an easy way due to their modular nature. It is a prerequi-
site of Genetic Programming. Genetic Programming is powerful tool to find solutions
to a given problem. Due to its abundance of free parameters it is difficult to handle
though. Finding an appropriate fitness function has proven to be challenging. Over
several steps we improved the fitness function and thus the resulting grammars. It
involved finding a pratical definition of a useful grammar. We combined size and the
ability to parse into the final fitness function.

45

46 CHAPTER 6. CONCLUSION

In Genetic Programming the goal lies in finding a solution as quickly and easily as
possible, which can lead to overly simple solutions. So it’s no coincidence that we only
found very simple grammars and had to improve the fitness function.

We also dealt with overgeneralization. Due to the complex task, solutions tend to be
compliant grammars with small restrictions to the syntax of a grammar. We solved
this problem with negative (counter) examples to give a penalty to too general gram-
mars.

To get hold of one of the the many parameters we had to set, we ran tests on the
parameters of Genetic Programming. We found the same results as in literature. On the
one hand a high population size combined with a strong selection. On the other hand,
still according to literature, we found that crossover didn’t have a great impact on
the results compaired to simple mutation. Crossover just decreased the performance
which led us to drop it completely.

Good results were achieved with small token languages. We run into problems for
more complex languages for which no grammar has been found with our algorithm.
The main reason for this was that we used parsers which were very simple and not
domain specific. This approach helps keep the steps that can be taken from one
generation to next small, Nevertheless sometimes (too) many mutations are needed to
generate higher abstractions. This often occurs when the algorithm is stuck in local
minima. Although we took measures to avoid local minima in the fitness function, by
having lengths limits (lower and higher), negative examples, etc., we couldn’t get rid
of them.

As the search process is very CPU expensive we implemented a distributed system with
one main search program which communicates with several smaller search programs.
Besides being now able to distribute the computating we gained another important
advantage. By exchanging results between isolated search spaces we improved the
grammar diversity and thus increased the chance of finding a good grammar.

6.1 Future work

We found some promising results but a lot of work has still to be done. We will look at
some ways how the algorithm could be improved in the this section.

One idea would be to allow predefined grammars. They would be defined by the user
for some parts of the final grammar that are already known. For instance identifiers,
parentheses matching or keywords could be introduced as prefabricated PEG trees.
This would accelerate the search process and lead it into the correct direction.

Smaller grammars are easier to find. Thus the source code could be cut into pieces. The
search would then be applied to each part separately. For instance in an object oriented
language method declarations, class declaration etc. could be separated into groups
of with the same grammar. This approach would need a manual concatenation of the

6.1. FUTURE WORK 47

different generated grammars later on. This approach is similar to the approach of the
Example-Driven Reconstruction of Software Models [10]. Our approach would replace the
part where a sub grammar is generated. In order to enlarge the search space, equivalent
grammars could be rejected. If two grammars are equivalent, one of both should be
preferred. Either based on their size or complexity. This would lead to more different
grammars and enrich the diversity.

Improvements can also be achieved by analyzing parser runtime behavior of the PEGs.
For instance one can look at activity of the different nodes of a PEG. Small and active
subgraphs of PEGs . So on the one hand, nodes which are never or seldomly used,
should get a penalty. Highly active nodes, on the other hand, should be reused and
have a higher probability of crossover. PEGs are well suited for runtime behavior
analysis. We can define functions on all the nodes and easily track their behavior.
Particular attention has to be given that we only count the successes on a node to
determine it’s fitness.

Genetic Programming allows for improvement as well. The biggest problem for this is
to determine the parameters correctly. It can be done more or less manually, like in this
thesis. One could also think of evolving the parameters themselves. To process many
GP runs at the same time is computationally expensive though.

A similar approach would be to adapt the parameters over a GP run. As we saw in
chapter 4, the conditions in the beginning of a run are different from the subsequent part.
In the beginning grammars tend to be simple and small, while with increasing time the
complexity grows. If the parameters would be adapted to the various situations, the
solution might be improved.

48 CHAPTER 6. CONCLUSION

Chapter 7

Appendix

7.1 Quickstart

In this section we will give a quickstart for our implementation of the evolutionary
search for grammars. It can be executed either as single application with only one
population running or it can be run as a server/client application (see 4).

7.1.1 Prerequisites

In order to use the program you will need an installation of Python. The source can be
checked out via svn from https://svn.origo.ethz.ch/geneticgrammarextraction/
GGEPython/src. All the source to be analyzed has to be put into a single folder, along
with the negative examples.

7.1.2 Single Evolution

With single evolution grammars are searched with one single population. The Python
file is found in src/singleevolution.py. Execute the search with

Listing 7.1: Single Evolution

python singleevolution.py
<population size> <surviving population size> <mutation/crossover ratio>

<generations> <folder> <positive> <negative>

49

https://svn.origo.ethz.ch/geneticgrammarextraction/GGEPython/src
https://svn.origo.ethz.ch/geneticgrammarextraction/GGEPython/src

50 CHAPTER 7. APPENDIX

7.1.3 Master/Slave Evolution

The fully fledged program is used as a client/server-application. For this purpose the
server is started with

Listing 7.2: Single Evolution

python serverevolution.py

and subsequently a small number of clients with

Listing 7.3: Single Evolution

python clientevolution.py

Server and client communicate with each other. The result is printed from the server
program.

List of Figures

2.1 Example of parsing with a PEG . 11

3.1 Principles of an Evolutionary Algorithm 18
3.2 The evolved space antenna . 19

4.1 Add a node . 24
4.2 Add back link node . 25
4.3 Delete a node . 25
4.4 Push a node up . 26
4.5 Insert a node . 27
4.6 Fitness graph designating the fitness (vertical) depending on the length

of the parser (horizontal) . 29
4.7 Heat map of the fitness . 37
4.8 Heat map of mutation over crossover ratio 38

5.1 Best fitness per generation . 42

51

52 LIST OF FIGURES

Listings

2.1 Simple grammar . 9
2.3 PEG grammar . 13
4.1 Cheating Parser . 29
4.2 Parser with an endless recursion . 32
4.3 Parser with an endless loop . 33
5.1 Envisioned parser . 41
5.2 Found grammar . 41
5.3 Envisioned parser . 42
5.4 Found parser . 43
5.5 Found parser . 43
5.6 Envisioned brainfuck grammar . 44
7.1 Single Evolution . 49

53

54 LISTINGS

Bibliography

[1] Grant, Bruce and Rory J. Howlett. Background selection by the peppered moth (Biston
betularia Linn.): individual differences. Biological Journal of the Linnean Society 33:
217-232, 1988.

[2] Marjan Mernik, Goran Gerlič, Viljem Žumer, Barret R. Bryant. Can a Parser be
Generated From Examples?. University of Maribor, 2000

[3] Sander Tichelaar, Modeling Object-Oriented Software for Reverse Engineering and
Refactoring Ph.D. thesis, University of Bern, December 2001

[4] Bryan Ford. Packrat parsing:: simple, powerful, lazy, linear time, functional pearl. ICFP
’02, October 2002

[5] Jason D. Lohn, Derek S. Linden, Gregory S. Hornby, William F. Kraus, Adaan
Rodriguez-Arroyo. Evolutionary Design of an X-Band Antenna for NASA’s Space
Technology 5 Mission Proceedings of the 2003 NASA/DoD Conference on Evolvable
Hardware, 2003

[6] Marco Tomassini, Leonardo Vanneschi, Francisco Fernández and Germán Galeano.
Genetic and Evolutionary Computation GECCO 2003. Springer Berlin / Heidelberg

[7] Bryan Ford. Parsing Expression Grammars: A Recognition-Based Syntactic Foun-
dation. Massachusetts Institute of Technology, January 2004

[8] Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundation.
POPL ’04, January 2004

[9] Oscar Nierstrasz, Stéphane Ducasse, Tudor Gǐrba. The story of moose: an agile
reengineering environment. Universität Bern, September 2005

[10] Oscar Nierstrasz, Markus Kobel, Tudor Gı̂rba, Michele Lanza, Horst Bunke.
Example-Driven Reconstruction of Software Models. Universität Bern, March 2007

[11] Ralph Becket and Zoltan Somogyi. DCGs + Memoing = Packrat Parsing - But is it
worth it?. University of Melbourne, January 2008

55

56 BIBLIOGRAPHY

[12] Alessandro Warth, James R. Douglass, Todd Millstein. Packrat Parsers Can Support
Left Recursion. University of California, Los Angeles and Viewpoints Research
Institute, The Boeing Company

[13] Sean Luke, Lee Spector. A Comparison of Crossover and Mutation in Genetic Program-
ming. University of Maryland, Hampshire College

	Abstract
	Acknowledgements
	Contents
	Introduction
	Related work
	Solution in a nutshell
	Overview

	Parsing Expression Grammars
	Operators
	Representation and parsing
	Bound behavior
	Memoization
	Example

	Conclusion

	Genetic Programming
	Evolutionary algorithms
	Example of Evolutionary Algorithms - Antenna
	Types of EA
	Restrictions to individuals
	Example from nature
	Conclusion

	Combination of PEGs and Genetic Programming
	Tuning PEGs for Genetic Programming
	Mutation
	Crossover
	Fitness function

	Left recursion and endless loops
	Examples
	Optimization of Genetic Programming
	Parallelization
	Preliminary data
	Tweaking the parameters
	Conclusion

	Case studies
	Identifier
	Keyword
	Real language
	Conclusion

	Conclusion
	Future work

	Appendix
	Quickstart
	Prerequisites
	Single Evolution
	Master/Slave Evolution

	List of Figures
	Listings
	Bibliography

