
Fruitlets - a Kind of Mobile Component

Master's Thesis

Juerg Gertsch

January 27, 1997

Abstract

Keywords: Mobile Code, World-Wide-Web, Software Composition, Java.

Mobile software entities are becoming increasingly important in the domain of local area

networks (LAN) and wide area networks (WAN). Di�erent kinds of mobile entities are a

rapidly evolving area of research in the �eld of World-Wide-Web, distributed and open

systems. The �rst part of this thesis surveys di�erent approaches in order to develop open,

exible and distributed systems. We focus on an approach of stateless mobile software

entities. The second part of this thesis introduces the notion \fruitlet" and \run-time

framework" and classi�es \fruitlet" within other existing mobility meanings and compares

them with other concepts related to mobile code. We describe a prototype of a basic

software architecture for stateless mobile software entities. The third part shows examples

of open,
exible and extendable software applications using the described technology of

\fruitlets".

Contents

1 Introduction 7

1.1 Introduction : 7

1.2 Goal : 8

1.3 Overview : 8

2 Problem Analysis 9

2.1 Current Situation : 9

2.1.1 New Application Domains : 9

2.1.2 Technological Innovations : 10

2.2 Problems : 11

2.3 Requirements : 11

2.3.1 Mobility and Heterogeneity : 11

2.3.2 Adaptability : 12

2.3.3 Security : 12

2.4 Conclusion : 13

3 Available Technologies 14

3.1 Object-Oriented Technologies : 14

3.2 Microsoft's Component Object Model : 15

3.2.1 COM Components : 16

3.2.2 COM Interoperability : 16

3.2.3 COM Local/Remote Transparency : : : : : : : : : : : : : : : : : : : 16

3.3 CORBA : 16

3.3.1 CORBA Component : 17

1

CONTENTS 2

3.3.2 CORBA Interoperability : 17

3.3.3 Conclusion COM/CORBA : 18

3.4 Applets and Java Enabled Web Browsers : : : : : : : : : : : : : : : : : : : 19

3.4.1 Applets : 19

3.4.2 Application Domains of Applets : 20

3.4.3 Applets and Security : 21

3.5 Mobility : 22

3.5.1 Mobile Code Representation : 22

3.5.2 Mobile Stateful Software Entities : 23

3.5.3 Mobile Stateless Software Entities : : : : : : : : : : : : : : : : : : : 23

3.5.4 Security and Mobile Code : 24

3.6 Conclusion: Where to Go From Here : 25

4 Programming Languages for Mobile Programming, a Comparison 26

4.1 Obliq : 27

4.1.1 Visual Obliq : 28

4.1.2 Discussion : 28

4.2 Telescript : 28

4.2.1 Language Characteristics : 29

4.2.2 Language Concepts : 29

4.2.3 Class Libraries : 30

4.2.4 Discussion : 30

4.3 Safe-Tcl/Incr Tcl : 30

4.3.1 Discussion : 31

4.4 Java : 31

4.4.1 Object-Oriented Properties : 32

4.4.2 Security : 32

4.4.3 Class Libraries : 32

4.4.4 Discussion : 32

4.5 Conclusion : 32

CONTENTS 3

5 Model 34

5.1 De�nitions : 34

5.1.1 Component : 34

5.1.2 Mobile Component : 35

5.2 Proposed Model : 35

5.2.1 Fruitlet : 35

5.2.2 Plugs of Fruitlets : 36

5.2.3 Naming and Locating Fruitlets : 37

5.2.4 Run-Time Framework : 37

5.2.5 Security Impacts : 37

5.3 Conclusion : 38

6 Prototype 39

6.1 The Prototype meaning of \Fruitlet" and \Run-Time Framework" : : : : : 39

6.2 Design : 40

6.2.1 ManagerIfc : 40

6.2.2 ComponentIfc : 41

6.2.3 Fruitlet Parameterization : 43

6.2.4 Security : 43

6.2.5 Component Loader : 46

6.3 Prototype Packages : 46

6.3.1 Class Diagram of Package unibe.componentloader : : : : : : : : : 47

6.3.2 Class Diagram of Package unibe.net.http : : : : : : : : : : : : : : 47

6.3.3 Package unibe.security : 48

6.3.4 Class Diagram of Package unibe.run : : : : : : : : : : : : : : : : : 48

7 Use Cases 49

7.1 General Internet Server : 49

7.1.1 Design : 50

7.2 HTTP Server : 50

7.2.1 Design : 50

CONTENTS 4

7.2.2 Conclusion: HTTP Server : 51

7.3 Open Message Organizer : 51

7.3.1 Design : 52

7.3.2 Omo Run-time Connector/Composer : : : : : : : : : : : : : : : : : : 52

7.3.3 The Ada 95 Experiment : 53

7.3.4 Conclusion: Open Message Organizer : : : : : : : : : : : : : : : : : 54

7.4 Conclusion : 54

8 Conclusion 55

8.1 Conclusion : 55

8.1.1 Adaptability : 55

8.1.2 Heterogeneity : 56

8.1.3 Mobility : 56

8.1.4 Security : 56

8.1.5 Fruitlet Granularity : 56

8.2 Open Problems : 57

8.2.1 Security Concept : 57

8.2.2 Performance : 57

8.3 Further Work : 57

8.3.1 Run-time Composition : 57

8.3.2 Synchronization during Run-time : 58

8.3.3 New Trend: Java Beans : 58

8.4 Acknowledgments : 58

A Use Cases: Design 59

A.1 General Internet Server : 59

A.1.1 Design : 59

A.1.2 ServerIfc : 60

A.1.3 ServiceRequestIfc : 61

A.2 HTTP Server : 62

A.2.1 Design : 62

CONTENTS 5

A.2.2 HTTPTaskIfc : 64

A.2.3 HTTPRequestIfc : 64

A.2.4 HTTPResolveIfc : 65

A.2.5 HTTPResponseIfc : 66

A.2.6 Conclusion: HTTP Server : 67

A.3 Open Message Organizer : 68

A.3.1 Design : 68

A.3.2 Interfaces : 69

A.3.3 Examples of Omo fruitlets : 81

A.3.4 Conclusion: Open Message Organizer : : : : : : : : : : : : : : : : : 84

B A Closer Look at Java 85

B.1 Introduction : 85

B.2 Basic Concepts of Java : 86

B.3 The Java Programming Language : 86

B.3.1 Java's Object Model : 86

B.3.2 Encapsulation : 87

B.3.3 Inheritance : 87

B.3.4 Polymorphism : 87

B.3.5 Dynamism : 87

B.4 The Java Virtual Machine : 88

B.5 Concurrency : 88

B.6 Class Loading Mechanism : 88

B.7 Safety and Security : 89

B.7.1 Language and Compiler : 89

B.7.2 The Byte-Code Veri�er : 89

B.7.3 The Class Loader : 90

B.7.4 Security Manager : 90

B.8 The Java Libraries : 91

B.8.1 java.lang : 91

B.8.2 java.net : 91

CONTENTS 6

B.8.3 java.awt : 91

B.8.4 java.io : 91

B.8.5 java.util : 92

B.8.6 java.applet : 92

C Diagram Notation 93

C.1 Introduction : 93

C.2 Classes : 93

C.3 Association : 93

C.4 Inheritance : 94

C.5 Interfaces : 95

C.5.1 Rei�ed Interface Notation : 95

C.5.2 Symbolic Interface Notation : 95

Chapter 1

Introduction

1.1 Introduction

Current software systems have to satisfy great demands in various application domains.

We need applications which can be easily extended, which are easy to adapt to new

requirements, and which can run in widely distributed networking environments, like the

Internet. In addition, applications should be platform-independent, reusable, easy to

develop and maintain.

The tremendous growth of the Internet, especially the popularity of the World-Wide-Web

service led to new situations and problems of software applications. Thus, we can observe

a new application domain of software entities which appeared in the last few years and

which poses for new requirements.

This thesis deals with an approach in the �eld of mobile code systems within networking

environments. We discuss special stateless mobile software entities and describe a basic

software layer in order to deal with such stateless mobile components.

The discussion about general problems and requirements leads us to a survey of available

technologies in the �eld. Afterward, we restrict ourselves to a kind of stateless mobile

components and we de�ne properties and demands of such components.

The remaining part of the thesis deals with the implementation of a technology for our

stateless mobile components. We use the Java programming language [Sun95a] as the

implementation language. We show some examples of applications developed using our

approach. Such applications are dynamically extendable in a restricted way during run-

time and startup-time with stateless mobile components. Furthermore, such applications

can also exchange software parts under some circumstances during run-time.

7

CHAPTER 1. INTRODUCTION 8

1.2 Goal

We would like to analyze some problems within the current situation of distributed net-

working systems focusing on the World-Wide-Web. Furthermore, we give a review of some

related technology concerning our requirements.

The prototype implementation of an open run-time architecture and the explanation of

stateless mobile components shows a development approach of open,
exible applications,

especially within the development area of open servers and open browsers.

1.3 Overview

In chapter 2 we discuss some problems of current software applications, mainly in the �eld

of World-Wide-Web. Next, chapter 3 shows and discusses available technologies in our

�eld of interest and related ideas and projects. Chapter 4 gives a comparison between

four programming languages in the �eld of mobile code systems. In chapter 5 we give

de�nitions and introduce the notions \fruitlet" and \run-time framework". We discuss a

set of properties of these notions. Chapter 6 is about a prototype \run-time framework"

which we implement in Java. In chapter 7 we show examples running within our prototype

\run-time framework" and we present our conclusions in chapter 8.

Chapter 2

Problem Analysis

This section focuses on some view points of the current situation of software evolution

related to the World-Wide-Web (Web for short) �eld. The �rst part of the chapter de-

scribes the current situation of the Web application domain. The second part gives an

overview of problems which arise in this �eld and the last part lists some requirements of

applications based on distributed networking environments like the Web.

2.1 Current Situation

2.1.1 New Application Domains

The tremendous growth of wide area networks (WAN for short) in the last few years,

led to di�erent new application domains of software applications. Especially the Internet

gained an incredible importance around the globe. Within the Internet di�erent services

like electronic mail, news groups, �le transfer, telnet, and the World-Wide-Web became

very popular. Since three or four years the World-Wide-Web service is undoubtably the

most popular service on the Internet. The Web was originally developed as a distributed

hypertext information system on top of the Internet. Because of the easy-to-use han-

dling it caused an explosion of new available hypertext information on the Internet and

thus an explosion of the Internet itself. Information about every imaginable (and also

unimaginable) topic appeared over the globe.

Moreover, the Web also became the role of an integration technology of other Internet

services. The Web is now able to transfer �les and to perform database queries as well as

to send electronic mail messages around the globe.

In short, the Web introduced a new platform of distributed computing (we will also refer

to this new platform as \new application domain") on top of the Internet. This platform

shows the following characteristics:

� Clients participating within this new application domain are working on many dif-

ferent platforms. Thus, software tools (e.g. browsers, servers) must be able to run in

9

CHAPTER 2. PROBLEM ANALYSIS 10

a distributed heterogeneous networking environment. This networking environment

consists of arbitrary platforms running di�erent windowing systems like Macintosh,

MS Windows and UNIX derivates with X windowing systems.

� The community taking part in this application domain is �rstly very large and sec-

ondly distributed over the world.

� The technology in the Web application domain is quite unstable and technological

environments rapidly evolves in new directions. The standards in this application

domain evolve very fast and became outdated in a very short period of time. In ad-

dition, these new standards and technologies are rapidly introduced and distributed

to the end user community.

� Most of the users in the application domain of the Web are non computer profes-

sionals (e.g. journalists, marketing specialists, advertising specialists, web publishers

etc.). Thus, technologies and standards have to take care about the di�erent knowl-

edge of users within the Web application domain.

2.1.2 Technological Innovations

There are a lot of technological innovations in the �eld of the World-Wide-Web concerning

protocols, browser techniques, server design, security techniques and techniques related to

integration e�orts. One interesting and innovative �eld in the application domain of the

Web and the networking application domain in general, is the �eld of mobile code systems.

Along the wealth of innovations we want to focus here on mobile code systems.

Various systems and technologies related to mobile code systems appeared in the last few

years. Most of them are based on a transportable, platform independent code represen-

tation, which allows for execution on the client side within a safe compartment. Popular

examples of mobile code systems are Java1, Penguin2 and Safe-Tcl [BR93].

Java applets for instance, enables Web browsers to render active documents. Parts of such

active documents may be controlled by imported mobile Java code (see section 3.4). In

the Web application domain, Java applets overcome the limited �eld of passive documents

and open the doors to active documents. Thus, Java applets introduce technologies like

animation and sophisticated user interfaces to the Web application domain (see also sec-

tion 3.4.2). In contrast to common software applications, applets show examples of mini

\instant" applications (or parts of applications) which are able to run in a Web browser

environment without explicit installation steps (the installation process is reduced to the

\binding" process of an applet into the well de�ned browser environment). Furthermore,

applets �t well into the simple browsing scheme of current Web browsers.

1Java: http://java.sun.com/
2Penguin: http://www.eden.com/~fsg/penguin.html

CHAPTER 2. PROBLEM ANALYSIS 11

2.2 Problems

As described in the previous section, the current situation leads to new application do-

mains. Within these new application domains we can recognize new (and old) problems.

Besides technical problems like network capacity problems, transport medium problems,

protocol problems the Internet also causes quite a few social problems. In this thesis we

focus on technological problems, more precise on problems related to software technology.

We feel that the following list of problems gives an interesting overview.

� Applications (and parts of applications) become quickly outdated because of the

technological evolution in the �eld. Rapidly changing standards and protocols lead

to obsoleted software components. In a widely distributed environment, outdated

applications cause new integration problems and interoperability problems.

� The missing portability of applications leads to an obstacle of the participants in the

networking environment. Thus, standard applications and services must be ported

to every popular platform.

� Applications or parts of applications normally need a big installation e�ort on a

particular system.

� Applications (and parts of applications) cannot be moved within a distributed envi-

ronment. Applications lack suitable code representations and mechanisms to trans-

port them.

� The procedure of down-loading and installing applications from the Internet is com-

monly in use. The problem remains that such code is not always trustworthy. We

never exactly know if the code a�ects our system in a dangerous way.

2.3 Requirements

In consideration of the discussion of current problems in the previous section, we try to

declare requirements of current applications in the �eld of the World-Wide-Web and the

Internet. Although these requirements cannot lead to the perfect solution, we hope to gain

some improvements in the mentioned �eld. The previous list shows that portability and

movability are quite related (we use movability and mobility interchangeably). Portability

can even be regarded as a kind of mobility between di�erent platforms (see section 3.5).

Thus, we see mobility as a central requirement of applications within the �eld of widely

distributed networking environments. Mobile components can help to improve the current

status of the Web application domain.

2.3.1 Mobility and Heterogeneity

One central requirement we want to focus on is mobility. As a matter of fact a distributed

networking environment (e.g. the World-Wide-Web) is the natural platform for mobility.

CHAPTER 2. PROBLEM ANALYSIS 12

Mobility can have a lot of meanings and di�erent views in a networking environment (see

discussion in section 3.5). We focus on the requirement that network applications should

be able to import mobile software entities into their run-time system. This view of mobility

leads us also directly to requirements like \platform independency" and \security".

The openness we require from our applications naturally leads to the requirement of plat-

form independent software. We refer to this point as heterogeneity . Models like COM

and CORBA [Mic95, Obj92, Vin93] (see section 3.2 and 3.3) already hide di�erences be-

tween di�erent platforms and di�erent programming languages. Especially in networking

environments, we are forced to design and implement parts and services in a portable way.

2.3.2 Adaptability

We should be able to adapt existing applications in order to ful�ll changing requirements of

standards and protocols in the �eld of World-Wide-Web. This naturally leads us to open,

exible applications. It is also imaginable that we need adaptability during run-time. We

refer to this point as recon�gurability of applications. In the �eld of open servers and

open browsers (especially Web browsers) it is necessary to achieve recon�gurable software

applications.

Changing requirements of software applications can also be referred to as evolution [ND95].

Adaptability may also be viewed as a form of reusability, because existing structures (e.g.

applications) can be reused to create slightly di�erent applications [MN96].

2.3.3 Security

Security has many di�erent facets within computer science and computer security itself is a

very large research topic. Important areas of security are for instance data loss (hardware

errors, software errors) and protection of system resources . Because we are interested in

mobile code systems, we restrict security to protection of system resources like �le system

and network access. Throughout the thesis we also use the term security with the meaning

of resource protection.

Security is an important problem in the �eld of mobile code systems, mainly because

untrusted code can damage the integrity of a host computer in many ways. Thus, the

requirement of mobility undoubtably leads to the requirement of security . Taking into

account that mobile code is often loaded implicitly with documents (e.g. HTML docu-

ments), it becomes even more important to protect host computers from untrusted mobile

code.

All pieces of software running in a networking environment have to conform to security

rules. This requirement will become more and more important in the near future.

CHAPTER 2. PROBLEM ANALYSIS 13

2.4 Conclusion

This chapter discussed the current situation and some problems of applications within a

distributed networking environment like the World-Wide-Web. We gave a short list of

requirements we demand of current applications in distributed networking environments.

In chapter 3 we survey di�erent approaches in the �eld of open systems, distributed pro-

gramming and in the World-Wide-Web �eld, which helps to ful�ll particular requirements

of the last chapter. Chapter 3 gives also an overview of the central notion \mobility".

In fact, section 3.6 concludes chapter 2 and chapter 3. At this point we shall give an

outline of the remaining chapters of this thesis.

Chapter 3

Available Technologies

This chapter contains an overview of solutions related to the problems discussed in chapter

2. We choose mainly technologies which are relevant in our domain of interest. This means

networking environments, mobile code, World-Wide-Web and software composition.

The second part of the chapter contains a discussion about the notion \mobility". We

discuss the various usage of the notion and we �nally try to integrate our meaning of

mobility into the existing hierarchy of mobility.

3.1 Object-Oriented Technologies

Object-oriented programming is one of the current approaches to solve problems in the

software industry. The object model helps us to realize principles like encapsulation, ab-

straction, modularity and hierarchical decomposition. The object-oriented paradigm can

be described as the nineteen eighties successor of structured design and structured pro-

gramming of the seventies. Object-oriented technology has several advantages. Firstly, the

object model leads to reuse possibilities of implementation and design. This property leads

to reusable application frameworks. Frameworks provide not only reusable code, but more

importantly, they carry a lot of information about design [GHJV95]. Secondly, objects

re
ect a natural concept in a human point of view. However, object-oriented frameworks

often become large, complex class structures. This results in hard to learn and hard to

understand class hierarchies and often makes it impossible to specialize a framework by

less expierenced framework users. The specialization of an object-oriented class hierarchy

is often realized using class inheritance. Inheritance implies a direct implementation de-

pendency between super- and subclasses in an \is-a" relationship manner. If super- and

subclasses are maintained by di�erent groups of developers, this fact can lead to serious

integration problems. An application framework can cover a well de�ned problem domain.

The combination of two or more di�erent frameworks seems to be very hard, because the

di�erent designs often disturb each other. There are some discussions about framework

integration in the literature [Hoe93].

Often the frameworks themselves are platform dependent, because most of them are writ-

14

CHAPTER 3. AVAILABLE TECHNOLOGIES 15

ten in languages like C++ and deal directly with the operating system and/or graphical

user interface on a special platform. Thus, the derived applications are platform dependent

anyway.

Object-oriented programming can of course improve the reusability of software and design.

Especially, if the software has to run on a speci�c system and is maintained by a controlled

group of developers.

3.2 Microsoft's Component Object Model

The component object model (COM for short) was introduced by Microsoft Corporation

in 1995 and provides a solution in the direction of software components [Mic95]. COM1

was introduced to cover some problems in the software industry and to improve software

development. Microsoft gives an overview of the current problems with the software

developing and maintaining process:

� Applications are large and complex.

� Applications are monolithic.

� Applications are not easily integrated.

� Programming models are inconsistent.

We can observe some corresponding items to our chapter 2. On the other hand Microsoft

lists some requirements focusing on

� Client/server computing

� Object-oriented concepts

� Distributed computing

COM is a basic standard to reuse binary components. The basic standard relies on a

client/server model. The advantage is that the usage of all components is transparent in

respect to the location. The programmer can refer to any component exactly in the same

manner, independently of the location.

COM is not a speci�cation for how applications are structured: it is a speci�cation for

how applications interoperate.

1COM: http://www.microsoft.com/intdev/sdk/docs/com/comintro.htm

CHAPTER 3. AVAILABLE TECHNOLOGIES 16

3.2.1 COM Components

Microsoft describes the solution as a system, where application developers create reusable

software components. They de�ne a component as \a reusable piece of software in binary

form that can be plugged into other components from other vendors with relatively lit-

tle e�ort." COM is an object-based programming model designed to promote software

interoperability.

COM provides a binary standard and a network standard to enable interoperability be-

tween applications (or parts of applications) developed by di�erent vendors or companies.

Applications interact through a de�ned set of functions. We call a set of function signa-

tures an interface. An interface in this sense is a strongly typed contract between software

components. An interface is an articulation of expected behavior and responsibilities of

software components.

3.2.2 COM Interoperability

In COM, the interaction between objects and the users of those objects is based on the

client/server paradigm. All objects, which a client can access live on a server site. This

server can be a In-Process Server a Local Server or a Remote Server . A client can ask a

server to create a new object and the server returns an interface to the created object.

3.2.3 COM Local/Remote Transparency

The binary standard allows COM to intercept a method call and to handle the call in a

transparent fashion. COM makes an RPC (Remote Procedure Call) to the real instance of

an object, which can be running in another process or even on another machine. From the

developers point of view there is no di�erence between local and remote objects. Thus, the

developer can use the COM objects in a transparent fashion with respect to the location

of a COM object.

One problem of local/remote transparency is to determine the life-cycle of objects. Clients

of COM objects do not know about the location of a concrete object. The server of an

object has to deal with reference counting in order to notice whether an object can be

deleted.

COM objects are not mobile entities. COM itself is purely a remote object technology,

but there are some technologies on top of COM which allows for mobile code systems (e.g.

ActiveX components2).

3.3 CORBA

CORBA stands for Common Object Request Broker Architecture and is a speci�cation

from OMG [Obj92, Vin93]. CORBA speci�es a standard which provides interoperabil-

2ActiveX: http://www.microsoft.com/ActiveX/

CHAPTER 3. AVAILABLE TECHNOLOGIES 17

ity between objects in a heterogeneous, distributed, object-oriented environment. Thus,

CORBA allows the access of distributed objects in a networking environment. Similar

to the COM speci�cation (see section 3.2), CORBA provides services of remote objects

through interfaces (in contrast to COM, CORBA objects can only implement one inter-

face). CORBA is also called an Object Bus .

At the time of writing, CORBA does not have any speci�cations about security.

3.3.1 CORBA Component

A client program can invoke an operation of an object by requesting the operation through

the ORB (Object Request Broker). The ORB has to manage the transfer of request

messages and response messages between the involved objects. The ORB must de�ne a

standard network representation in order to transmit the CORBA data types. Objects

themselves are never transmitted, just object references.

The interface de�nition language (IDL) is used to describe and de�ne object interfaces in

a way that is independent of the programming language used to implement the objects.

IDL de�nes a set of built-in data types like short, unsigned short, unsigned long, char,

unsigned char, octet, boolean and string. IDL allows interface names to be used as types.

New interfaces can be derived from other interfaces, multiple inheritance is possible.

A tool called the IDL compiler generates code in order to use at the client side and

the server side respectively. These fragments of code are called stubs for the client and

skeletons for the server.

3.3.2 CORBA Interoperability

Like in the Component Object Model (see section 3.2), the interaction between objects

is always based on the client/server paradigm. All objects, which a CORBA client can

access live on a server site.

CORBA maintains an interface repository and an implementation repository. The inter-

face repository collects run-time information on the IDL interfaces, while the implemen-

tation repository is a run-time data structure that can be queried to discover what classes

a server supports or what objects are instantiated. CORBA can also assemble a method

invocation dynamically, during run-time, via the Dynamic Invocation Interface (DII).

CORBA can be referred to as an interoperability standard. The standard overcomes

programming language boundaries and hides the exact locations of objects. This leads to

a homogeneous, transparent programming model concerning the object instances.

Figure 3.1 shows an overview of the basic CORBA architecture.

CHAPTER 3. AVAILABLE TECHNOLOGIES 18

IDL ORB

Interface Interface
Invocation
Dynamic

IDL Skeletons

Object Adapter

Application

Client

Implementation

Object

Stubs

Object Request Broker Core

Figure 3.1: Basic CORBA Architecture

3.3.3 Conclusion COM/CORBA

The approaches of CORBA and COM realize the idea of platform and programming

language independency of software parts by breaking down the binding of method calls

(usually platform and language dependent method calls). An underlying system uses

communication to call methods of distributed objects (Remote Procedure Call). The

used mechanisms in both cases are quite similar. Objects interact through interfaces,

where an interface represents a strongly typed contract between software components.

Both approaches are very useful to reuse software (or software parts), because a robustly

developed component can later be accessed by new pieces of software using the same

technology.

COM and CORBA do not really address mobility in the sense we discuss in section 3.5.

Both approaches de�ne interoperability standards and they do not de�ne standards with

respect to code representation or mobility.

Further technologies in the �eld of distributed object models with similar characteristics

as COM/CORBA are for instance SOM, DSOM, DOE, and DCE.

A comparison between Java, CORBA, and DCE (Distributed Computing Environment)

can be found in [WJK96a].

CHAPTER 3. AVAILABLE TECHNOLOGIES 19

3.4 Applets and Java Enabled Web Browsers

This section deals with a current example of mobile code in the World-Wide-Web domain.

The Web is at the moment a playground for new technologies, especially in the domain of

active documents, mobile code and software development in general. As Sun Microsystems

introduced Java in the early 1995, the magic word \applet" appeared in the Word-Wide-

Web domain. HotJava is the name of the �rst Java enabled browser, also developed by

Sun Microsystems. HotJava is fully developed using the Java technology and Sun was able

to introduce the applet technology with HotJava. In the World-Wide-Web community a

browser is called \Java enabled", if it is able to import, run and render Java applets.

At the moment there are three well known browsers, which are Java enabled. Firstly,

the already mentioned HotJava browser from Sun Microsystems, secondly the Netscape

browser (version 2.0 and later) and thirdly the Microsoft Explorer 3.0 browser. Whilst

the HotJava browser is fully implemented in Java technology, the browser from Netscape

is written in conventional C/C++ with additional support for Java.

3.4.1 Applets

Applets show a trend to change the client/server model. Instead of accessing a special

service on a remote server side, applications tend to load code needed for a special service

and run the service directly on the client side.

Applets are small applications written in the programming language Java. Like common

documents on the Web, applets are referenced by an URL (Uniform Resource Locator).

Exactly like documents, applets are transferred from a Web-Server side to the Web browser

client side. In contrast to documents applets are an active part of a particular web page.

An applet consists of executable program code. A \Java enabled browser" must be able to

run the code of an applet and to render the graphical representation of the applet inside

the browser.

The HotJava browser is able to import such mini applications into its run-time system and

let them run within its own run-time system. In fact, applets consist of one or more Java

classes. The Java technology (see appendix B) enables the browser to extend the run-time

type system of the browser with those classes. The browser expects that an applet �ts

into the class hierarchy and that it has knowledge of several interfaces. Thus, it is possible

for a browser to integrate and run applets in a meaningful way. It is especially important

that applets �t into the class hierarchy of the graphical user interface, which allows the

browser to pass partial control to the applet. The browser is also able to forward events

(mouse click, key strokes) to a given applet. The current speci�cation of applets declares

a protocol for using such components. This protocol includes mechanisms to initialize,

start and stop applets.

During run-time an applet is composed of run-time entities provided by the browser.

Therefore, an applet can control a limited subset of the browsers functionality. Figure 3.2

shows as an overview the class diagram of an applet and a browser environment (for an

explanation of the diagram notation see appendix C).

CHAPTER 3. AVAILABLE TECHNOLOGIES 20

"interface"

"Browser Stub" "Browser Context"Applet

Panel

Container

Component

AppletStub AppletContext

AppletStub AppletContext
"interface"

Figure 3.2: Class Diagram: An Applet and its environment

At the moment, applets are web-document based. This means applets belong to a well

de�ned web-page and are rendered (and scrolled) within this page from the browser. If

one leaves the page the browser stops the applet.

Applets are special kinds of mobile components (see section 3.5). The browser application

can import a description of small components and can integrate such code fragments into

the application itself.

The applet approach is of course very limited to the �eld of World-Wide-Web browsers.

The abstraction of an applet is not general enough to use as a general component abstrac-

tion to extend and change applications at run-time (see chapter 5).

3.4.2 Application Domains of Applets

In the following sections we show three examples of domains where applets are used.

Multi-Media Applets

Most of the common Web browsers know how to handle embedded graphics in GIF and

JPEG format, but they fall short in handling audio and video data directly. Further-

more, they fall short in presenting and controlling multiple streams of multi-media data

concurrently.

In the multi-threaded applet environment, it is possible to start and control several threads

of multi-media data concurrently. Since applets can react to mouse and keyboard events

the user can in
uence the presentation of multi-media data if the applet provides the

respective user interface.

CHAPTER 3. AVAILABLE TECHNOLOGIES 21

Active Forms

The current Web technology o�ers passive forms which only provide an interface for enter-

ing data. There is a small set of possible elements for forms which can neither be extended

nor in
uenced by the user. This set contains elements for entering text, radio buttons,

selectable lists and two types of buttons bound to the actions send and reset form. The

possible elements are part of HTML. No actions can be performed unless the data entered

on the form is sent to the corresponding http server.

Applets give rise to more
exible forms concerning �rstly the visual representation and

secondly (and more important) the control of events and action
ow, which can be handled

in a very general way. Thus, applets open the door for active forms and spreadsheet-like

active documents in the Web �eld.

Interfaces to Remote Services

The Web can be interpreted as a globally distributed information system. Information

providers (servers) and information consumers (clients) normally interact using common

Internet protocols, which are strongly related to di�erent kind of servers.

Applets o�er a way to implement graphical user interfaces to remote services in a more

exible way. Since applets are platform-independent and mobile, they can provide remote

access from clients on di�erent platforms and di�erent locations. Furthermore, the code

which implements an interface does not have to be installed on the local machine, rather

it is fetched from the information provider's site when required. Finally, since code never

has to be installed permanently, the information provider keeps full control over the code

provided to the clients: it is possible to distribute upgrades, bug �xes, and the like,

immediately to all clients whenever they request the interface.

3.4.3 Applets and Security

A browser which directly imports mobile code from a network must take care about various

security issues (see section 3.5.4). Browsers run imported code in a black-box manner,

thus they have no idea what (and how) a speci�c code fragment will execute. Java-enabled

browsers should protect themselves and the computer system from any attack by imported

code [WJK96b].

Several design decisions help to lead Java in the direction of a safe language right from

the beginning. The Java technology provides several layers of security (see appendix

B). Firstly, the language itself o�ers basic mechanisms to write safe code. Next, on the

Java byte-code level, we are able to perform some security checks. Finally, the Java core

libraries o�er security mechanisms (SecurityManager) to control system calls, �le access

and network access (see appendix B). Java can be referred to as enabling technology (safe

environment) for secure mobile code. There are a lot of criticisms and rumors about Java

and security at the moment. Indeed, there are some non-trivial security problems with

Java (for more details see [DFW96]). For a general discussion about security and mobile

CHAPTER 3. AVAILABLE TECHNOLOGIES 22

code refer to section 3.5.4.

Java does not implement any security policy. Every application (e.g. a Java-enabled Web

browser) has to implement its own security policies for imported code. Thus, a browser

has to implement a security policy for imported applets. This means it has to de�ne the

operation range of applets. This could range from restricting local �le system access to

restricting network access to various hosts.

3.5 Mobility

If we consider movable software entities in networking environments, we can observe mainly

two di�erent kinds of such entities. Firstly, there are entities which are able to move the

state of their run-time representation to another location. Secondly, there are entities

which move templates along the network in order to instantiate new run-time representa-

tions on another location and thus they cannot move the state of a run-time structure to

di�erent location. We refer to the �rst kind as stateful software entities and to the second

kind as stateless software entities.

We discuss in this section the meaning of mobility in the networking �eld. The notion

of mobility has a wide range of meaning and the survey in this section can never be

exhaustive. We restrict ourselves to the �eld of software abstractions with code mobility.

Of course, a similar survey could be done focusing on mobility of data abstraction.

Firstly, we discuss the meaning related with the term code and code representation. Sec-

ondly, we classify mobility in conjunction with software entities in general.

Usually, there are two di�erent views of software mobility. Firstly, we understand mobility

with respect to movability between di�erent platforms. And secondly, we understand mo-

bility with respect to movability between di�erent locations in a networking environment.

We refer to these as \platform mobility" and \location mobility" respectively.

3.5.1 Mobile Code Representation

In order to construct meaningful mobile abstractions we use a representation of the code

which is transportable within a network. In the case of code representation, we can

say that \platform mobility" always implies \location mobility". If we only consider

location mobility between similar platforms we can use hardware or platform dependent

code representations. For instance ActiveX components use this approach by transporting

hardware dependent code along the network. With respect to platform mobility we can

distinguish between low-level representations and high-level representations.

Low-Level Code Representation

By low-level representation we mean code representations, which are not in a human

readable form. For example, the Java byte-code [Sun95b, Jol96] is a real low-level repre-

CHAPTER 3. AVAILABLE TECHNOLOGIES 23

sentation, which can be executed on a virtual machine. For example, the Telescript engine

[Gen95] uses a low-level scripting representation. The Juice3 technology for instance, uses

a optimized tree-shaped program code representation in order to transport programs writ-

ten in the Oberon4 programming language. The Juice tree representation can be compiled

into native platform code by using fast \just in time" compilers. Also this representation

technology can be referred to as low-level.

High-Level Code Representation

We refer to high-level code representation as human readable representations. Thus, this

category consists mainly of scripting code representations. Examples are JavaScript5,

Perl6, Tcl7, SafeTcl [BR93] and AgentTcl8.

3.5.2 Mobile Stateful Software Entities

This section discusses software entities, which are movable with their state. The state of a

software entity is given by all run-time instantiations, which belong to a speci�c software

entity. This category includes the big �eld of mobile agents [HCK95, Har95, Hoh95] and

movable (stateful) application systems [KL96]. Within this category we can distinguish

between \autonomous" and \non-autonomous" mobile stateful software entities. \Au-

tonomous" means that a stateful entity can itself decide to migrate to another location.

In the case of a \non-autonomous" stateful entity, the entity itself cannot decide to mi-

grate. An example of \non-autonomous" stateful entities in the domain of electronic mail

is \active mail" [Bor92, BR93].

Code representation of mobile stateful entities can be low-level or high-level. For instance,

an example of a mobile agent system with low-level code representation is [Hoh95] (see also

the MOLE project9) and \Aglets" (mobile agents in Java10). Examples with high-level

code representations are active mail with Safe-Tcl [BR93] and Penguin11. One example of

a stateful mobile application system written in Obliq is described in [KL96].

3.5.3 Mobile Stateless Software Entities

This section discuss software entities which are not movable with state. Mobile stateless

entities are used to generate new instantiations at di�erent locations and/or platforms.

The instantiations have a well de�ned state after the instantiation step. Usually, these

instantiations are non-movable.

3Juice: http://www.ics.uci.edu/~juice/
4Oberon: http://www.ics.uci.edu/~oberon/
5JavaScript: http://home.netscape.com/eng/mozilla/Gold/handbook/javascript/index.html
6Perl: http://www.perl.com/
7Tcl: http://ourworld.compuserve.com/homegape/efjohnson/tcl.htm
8AgentTcl: http://www.cs.dartmouth.edu/%7Eagent/
9MOLE: http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole.html

10Aglets: http://www.ibm.co.jp/trl/project/aglets/
11Penguin: http://www.eden.com/~fsg/penguin.html

CHAPTER 3. AVAILABLE TECHNOLOGIES 24

The most popular examples of mobile stateless entities are located in the �eld of World-

Wide-Web. Mini applications called Applets [Sun95a] were introduced to enhance various

aspects of Web browsers (see section 3.4). Applets are typical examples of mobile stateless

entities. Web browsers import mobile code and create new instantiations which are non-

movable. Because Applets use the Java byte-code representation, we can categorize the

code representation as low-level.

A similar example is the Grail-Browser12 which is able to import code fragments written

in Python [van95]. While Java applets are document based, Python applets can also

in
uence some parts of the browser itself.

Other examples are scripts written in the scripting languages like JavaScript, Tcl and

SafeTcl.

3.5.4 Security and Mobile Code

One important subject within any discussion about mobile code systems is of course

security. Mobile code systems have a natural accumulation of possible security threats.

[WJK96b] subdivides possible attacks of mobile code into three parts: Trojan horses,

viruses and denial of service.

Trojan Horses

Trojan horses are normally programs that have an o�cial, visible part but also an uno�-

cial, hidden one. The hidden functionality usually has some unwished for e�ects. Mobile

code systems can be misused to implement and spread trojan horses.

Viruses

Viruses are programs that insert copies of themselves into other programs on a host system.

Platform independent and mobile code systems are possible invitations for viruses and

make them much more dangerous. Platform independent code gives viruses a chance to

run (and thus to spread) on most common computer systems and thus a much wider area

of spreading.

Denial of Service

When a piece of software starts to use excessive amounts of a system resource, other

legitimate requests to the same resource will consequently fail. This sort of attack is

known as denial of service (or sometimes as \resource deprivation"). For example a piece

of mobile code could start to �ll up a disk and thus e�ect the functioning of other programs.

12Grail-Browser: http://monty.cnri.reston.va.us/grail/

CHAPTER 3. AVAILABLE TECHNOLOGIES 25

3.6 Conclusion: Where to Go From Here

In this chapter we listed a few existing approaches and examples within the �elds of net-

working environments, mobile code systems, World-Wide-Web and software composition.

We like to argue here in which direction the remaining chapters of this thesis evolve. Some

of the problems addressed are mainly research topics in the Software Composition Group

at the University of Berne13. Especially solutions in the direction of software composition,

for instance composition languages, composition environments and visual composition

environments [NT95, MN96].

Other topics discussed like distributed object systems [Mic95, Obj92, Vin93] and mobile

agent systems [HCK95, Har95, Hoh95] are already well understood.

The previous discussion about available technologies shows that \mobility" remains as a

central property in the �eld of open,
exible systems. This leads us to requirements like

adaptability , heterogeneity , security and of course mobility (see section 2.3).

Because we are also interested in the World-Wide-Web domain, we want to solve problems

in the direction of open architectures, especially in the direction of open servers and

browsers. The Web is an example of a very quickly evolving, distributed system and

thus an excellent domain to test and apply new technologies in software development. In

addition the Web demands requirements such as platform-independent code, mobile code,

updatable code and secure code systems. We want to show examples and new approaches

to software architectures, which can extend their run-time system in contrast to well known

client/server models. The idea is to show clients, which mobile code abstractions they can

import (e.g. related to the applet mechanism) into the their own run-time system in order

to ful�ll the requirements of
exible open systems.

In chapter 4 we compare four interesting programming languages with capabilities for

movable code. We will decide which programming language we should use to implement

a prototype. In chapter 5 we de�ne and introduce a basic architecture and the notions

\fruitlet" and \run-time framework". Chapter 6 describes the prototype of a \run-time

framework". In chapter 7 we describe three examples in the �eld of open server and open

application technology, which uses the technology introduced in chapter 5.

13SCG: http://iamwww.unibe.ch/~scg/

Chapter 4

Programming Languages for

Mobile Programming, a

Comparison

This chapter contains a description of various programming languages in the �eld of mobile

programming. It will lead to an evaluation of the language, which we will use to implement

a prototype.

We decided to have a closer look at the following programming languages: Obliq, Tele-

script, Safe-Tcl and Java1.

Our selection is mainly motivated by the following reasons: all these languages are object-

oriented (except Safe-Tcl, see section 4.3) and all the languages are used in projects related

to mobile code and mobile agent systems. Thus, our selection includes four of the most

known and most mature languages at the moment of writing. In fact, there are a lot

of ongoing projects leading to systems and languages that would also possibly ful�ll our

requirements2.

In the following we state six criteria, which we expect from a programming language to

ful�ll our needs. We list the criteria in sequence of priority, higher priorities �rst.

� OO technology: the language must be based on object-oriented technology. OO

technology can stand for software reuse/software design and it is the state of the art

software technology. Thus, we see OO as a base technology to build our components.

� Platform independent and mobile code: The language must provide the possibility

to write mobile code. Platform independent code is needed in order to overcome the

platform islands connected to a network. In contrast to a piece of software that is

written for a dedicated platform, a platform independent piece of software can be

loaded over a network to be run on any computer with any platform.

1a Java, Phantom, Python comparison: http://www.cgl.uwaterloo.ca/~anicolao/termpaper.html
2see a list of mobile code systems: http://www.w3.org/pub/WWW/MobileCode/

26

CHAPTER 4. PROGRAMMING LANGUAGES FOR MOBILE PROGRAMMING 27

� Concurrency: the language should provide concurrency mechanisms. Because mod-

ern applications have to interact simultaneously to di�erent events like user interac-

tion and network tasks we would like to have basic concurrency mechanisms in the

language. Mobile pieces of software often have to react with networked resources

and such tasks can be done most e�ciently by using independent threads.

� Security: the language should provide basic mechanisms to create safe components.

Because we plan to use our components in networking environments, it is essential

to have the possibility to write safe components (e.g. preventing such components

from a�ecting the host computer).

� Communication: the language should provide basic communication libraries for

TCP/IP sockets.

� GUI: we need a library/framework which supports access to a graphical user interface

from our programming language, because our components should be able to use a

graphical user interface. The abstraction of the library/framework has to be platform

independent.

The chapter starts with a short description of each language, including discussions related

to our criteria.

4.1 Obliq

Obliq3 was developed by Luca Cardelli [Car95]. Obliq supports object-oriented distributed

computation. Obliq is a lexically scoped, untyped, interpreted language. In a lexically

scoped language, the binding location of every identi�er is determined by simple analysis

of the program text surrounding it. Obliq takes the view that identi�ers in procedures

transmitted over the network are bound to their original locations, even when these loca-

tions belong to di�erent network sites. Objects in Obliq are local to a site and do not move.

In contrast, network references to objects can be easily transmitted over the network.

Obliq procedures and methods can be freely transmitted over a network. Computations are

transmitted using closures instead of source text and lexically scoped free identi�ers remain

bound to their original site. Thus, an agent without free identi�ers is fully disconnected

from its original location. In general, a closure consists of a piece of source code and an

evaluation stack. Obliq implements closures as pairs consisting of source text and a table

of values for free identi�ers.

Because of the lexical scoping, transferred computations only have access to data via free

identi�ers or explicitly received procedure parameters.

Although Obliq is an untyped language (no static type checking), the Obliq run-time is

strongly typed.

3Obliq: http://www.research.digital.com/SRC/Oblique/Oblique.html

CHAPTER 4. PROGRAMMING LANGUAGES FOR MOBILE PROGRAMMING 28

In Obliq a thread is a virtual sequential instruction process. A thread may stop execution

on one site and continue execution on another site. Multiple threads may be executed

concurrently.

Obliq is object-based according to the classi�cation of Wegner [Weg87]. Objects can be

constructed directly or cloned by other objects (prototype approach). All methods as well

as value �elds are embedded in the object itself and thus suitable for networking purposes.

4.1.1 Visual Obliq

Visual Obliq is an environment for programming and running distributed multi-user GUI

applications. The interface builder is a visual composition environment, similar to the

Visual Basic environment. It outputs code in the Obliq language. A Safe Visual Obliq

Interpreter is a special purpose interpreter used to interpret the applications that come over

the network. The interpreter is considered safe, because it screens all unsafe operations

based on their arguments. A user speci�c con�guration �le contains regular expressions

that specify which operations are to be allowed and which are to be locked. One interesting

work using Visual Obliq in the �eld of agents is described in[KL96].

4.1.2 Discussion

Distributed lexical scoping allows for
exible distributed computation and transferred

computations behave correctly. However, the
exibility can result in hard to estimate

and undesirable network tra�c. The current Obliq implementation supports access to

many Modula-3 libraries. Unfortunately, Visual Obliq supports the GUI using the Tres-

tle toolkit, thus the abstractions of the GUI classes are not platform independent. But

Obliq/Visual Obliq satisfy all our requirements.

4.2 Telescript

Telescript4 is a technology to integrate computers and networks that link them [Gen95].

The Telescript environment helps to implement active, distributed network applications.

The Telescript model assumes an electronic world, which consists of places, each occupied

by mobile agents. Mobile agents are able to travel from place to place. The authority

of places and agents is represented by a telename. Mobile agents and places can neither

withhold nor falsify these telenames. Each place is associated with a teleaddress.

In general, an agent is a piece of code which travels along di�erent places to meet other

agents. Rather than using remote procedure calls to interact, agents use remote program-

ming to interact with remote places. This can improve the performance of interactions.

4Telescript: http://www.genmagic.com/Telescript/index.html

CHAPTER 4. PROGRAMMING LANGUAGES FOR MOBILE PROGRAMMING 29

4.2.1 Language Characteristics

� Safety: an agent is not allowed to in
ict damage to the host computer

� Portability: an agent or place can be executed on di�erent platforms

� Exdendability

� Elevation: the language makes no distinction between volatile and non volatile stor-

age.

The Telescript language is an object-oriented remote language. Telescript uses interpreters

to execute pre-compiled code. A Telescript engine allows execution of the language's object

programs. Telescript knows about di�erent API interfaces to the resources of the system

(e.g. storage, communication, access to external applications). The External Application

Framework of Telescript will phase out in the next major release of Telescript and will be

replaced by a di�erent mechanism that provides greater security.

4.2.2 Language Concepts

Objects in Telescript can be passive (e.g. String, Boolean) or active (e.g. an agent or a

place). An object represents both information and information processing. An object has

an externally invisible implementation and an externally visible interface. The interface

consists of operations and attributes. Operations are tasks that an object (responder)

performs on a request from another object (requester). The requester and the responder

may be the same object. A requester provides one or more objects as the operation's

arguments to the responder. An operation can fail or succeed. If it succeeds the responder

can return a single object as a result to the requester. If the operation fails, the responder

throws a single object (exception) to the requester. Every operation has an interface and

an implementation. The interface re
ects the signature of an operation.

An attribute is itself an object. An attribute can be set or read at a another's request. A

normal attribute is the product of two operations, called setter and getter. If an attribute

is read only it only has a getter operation.

The state of an object is represented by zero or more objects, its properties.

Constraints are used to dictate the type of an object and the types of arguments in

operations. These constraints are statically checked by the compiler and dynamically by

the engine (interpreter).

In Telescript, every object is owned by an agent or a place. Agents and places own

themselves. An object can modify other objects, that the current owner of this object

owns.

In Telescript a class is an object itself. A class speci�es its own interfaces and implemen-

tation as well as those of its instances. As in other OO languages a class determines its

instances.

The class family concept of Telescript allows for parameterized classes (templates).

CHAPTER 4. PROGRAMMING LANGUAGES FOR MOBILE PROGRAMMING 30

Telescript has more complex inheritance mechanisms than other OO languages. Two

di�erent kinds of classes are known: mix-ins and
avors. A mix-in class can not have

instances. Every immediate subclass of a mix-in is a subclass of a class the mix-in desig-

nates as its anchor. The ancestor or its anchor is a
avor. Interface and implementation

inheritance is de�ned in the language.

4.2.3 Class Libraries

The prede�ned Telescript classes are based on the following concept. Major abstractions

are used for:

� Places: places represent meeting points for agents. Places help agents to interact.

� Agents: a basic unit, which is able to travel from place to place.

� Processes: an abstraction for places and agents.

� Permits: an abstraction of process permissions.

� Patterns: analyzing and modifying tools for strings.

� Calendar: analyzing and modifying tools for times.

There are no abstractions for graphical user interfaces (GUI) or widgets available. Basi-

cally, it is possible to call external functions (e.g. C++) and therefore use external libraries

to access the graphical user interface. Doing so, we will lose the feature of platform inde-

pendent code and new security questions will appear.

4.2.4 Discussion

The programming language re
ects object-oriented technology. Pre-compiled code enables

execution on di�erent platforms (tele-engine) and a process abstraction to write concur-

rent programs is also available. The language concepts (unfortunately) seem to be quite

complicated. The lack of platform independent abstractions for communication (TCP/IP)

on one hand and the lack of abstractions for graphical user interfaces on the other hand

are major drawbacks of Telescript at the moment.

4.3 Safe-Tcl/Incr Tcl

The Safe-Tcl language was developed by Nathaniel Borenstein [Bor92, BR93] as a deriva-

tion of the Tcl (Tool Command Language) scripting language. The application domain

of Safe-Tcl is active mail, which we can classify as stateful mobile components (see sec-

tion 3.5). The syntax of Safe-Tcl is identical to the syntax of Tcl. The author describes

Safe-Tcl as an \extended subset" of Tcl. Although Tcl is not an object-oriented language

(and thus Safe-Tcl is not object-oriented), we discuss Safe-Tcl here, for two reasons. First,

CHAPTER 4. PROGRAMMING LANGUAGES FOR MOBILE PROGRAMMING 31

there is an object-oriented version of Tcl, called incr Tcl, and second, Safe-Tcl addresses

some basic problems about security in the �elds of active mails and mobile components.

The major concept of Safe-Tcl is to remove all dangerous primitive functions/procedures

of the Tcl language to obtain a safe language. Dangerous functions/procedures means

everything which is able to destroy the integrity of the host computer (e.g. read/write

from/to the disk, read/write from/to the network). In addition Safe-Tcl adds certain

new primitives to the restricted Tcl. A Safe-Tcl program will always use two interpreters

to execute. An unrestricted (trusted) full Tcl interpreter and a restricted (untrusted)

interpreter for Safe-Tcl. Untrusted programs only have access to the trusted interpreter

via a mechanism de�ned in Safe-Tcl language.

Tcl is an interpreted scripting language with a strong emphasis on strings. Tk is the

most commonly used extension to Tcl. It represents easy to use abstractions of graphical

user interface components usable with Tcl. Tk is also the major reason for the current

popularity of Tcl (often referred to as Tcl/Tk). Tk helps to cut down the development time

of an application. Another popular extension to Tcl is DP (distributed programming),

which helps to write client/server applications in an easy fashion5.

Both, Tcl and incr Tcl have an extra language extension (incr Tcl and incr Tk), which

helps to build large applications with Tcl/Tk using object oriented technology.

4.3.1 Discussion

Safe-Tcl is not really object-oriented. That means that we would need to modify the incr

Tcl language towards a \Safe-incr-Tcl" language. Tcl interpreters are available on UNIX,

Macintosh, Windows and NT platforms. Tcl supports no built-in concurrency constructs.

Unfortunately Tk and incr Tk, which helps to access the graphical user interface are based

on Motif widgets and thus not platform independent.

4.4 Java

The object-oriented programming language Java was recently developed by Sun Micro-

system[Sun95a, GM95]. Java is in many way related to C++, but the designers removed

many unsafe constructs of C++ (e.g. there are no pointers in Java). Sun uses pre-compiled

code (Java byte-code) to reach the goal of platform independent code. The pre-compiled

Java code usually runs on an interpreter (Just-In-Time compilers, which compile byte-code

to machine code, now becoming available). Currently there are interpreters available for

all common platforms (Solaris, Linux, Microsoft NT, Mircosoft Windows 95, MacIntosh).

Java was designed to improve network based information environments, like the World-

Wide-Web. In order to implement concurrent programs, Java provides a multi-threaded

programming environment. The Java language does not support mechanisms to move

objects directly within a networking environment, but Java allows the loading of new

classes during run-time. New classes can either be loaded from a local machine or from

5DP: http://ftp.aud.alcatel.com/tcl/extensions/tcl-dp3.2.README

CHAPTER 4. PROGRAMMING LANGUAGES FOR MOBILE PROGRAMMING 32

any other remote machine in the network.

4.4.1 Object-Oriented Properties

Java is class based and every class is a type. Every object is instantiated from a class.

In contrast to C++, Java also has a notion of interfaces and these interfaces are also

types. An interface is a set of function signatures. Regardless of the class hierarchy, any

arbitrary class can implement any number of interfaces. A class can inherit from another

class (single inheritance). Interfaces can only inherit from other interfaces. The Java run-

time keeps a lot of meta-information about classes, objects and inheritance. For example

an object is able to determine its ancestors or its interfaces.

4.4.2 Security

The Java run-time system loads every class (even built-in classes) either from the local

�le system or from the network. The �rst of several security levels is to type-check all

classes after the loading step. In fact, Java passes the byte-code through a simple theorem

prover, which ensures a safe execution of the byte-code (e.g. no interpreter crash, no unsafe

operations). The possibility of handling network-loaded code di�erently from code loaded

from the local �le system helps to check imported code. For example, it is possible to lock

basic I/O facilities (or at least do some monitoring) for classes loaded from a remote side.

4.4.3 Class Libraries

Java provides a standard set of classes structured into packages to extend the basic lan-

guage facilities. All these packages re
ect abstractions in a platform independent manner.

One interesting package is the AWT (abstract windowing toolkit) package. AWT is a com-

pletely platform-independent framework in order to implement graphical user interfaces.

4.4.4 Discussion

Java ful�lls all our requirements. The main di�erence to the other languages is the absence

of a real object moving mechanism. Although this is not impossible [Hoh95], we have

no direct language constructs which supports mobile agents. Java enables some basic

mechanisms in order to implement security issues (see appendix B).

4.5 Conclusion

It seems that Java best �ts our needs. Because we do not want to design another agent

package, the lack of really movable objects does not carry too much weight. Java is

very popular at the moment and thus there are a lot of running projects related to the

Internet, World-Wide-Web and mobile agents. Projects like PJava (Glasgow Persistent

CHAPTER 4. PROGRAMMING LANGUAGES FOR MOBILE PROGRAMMING 33

Java) [AJDS96] or Active Objects (Doug Lea)6 will help to improve the language. Java

is already strong in the sense of platform neutrality. Interpreters for most of the common

platforms are available. Concurrency constructs are integrated into the language itself,

which makes concurrent programming very easy and natural. Major design decisions

related to security provide the basics to write safe, open applications. First of all, the

absence of pointers and pointer arithmetic in the programming language itself helps to

prevent coding mistakes and provide basic security. The Java compiler also prevents illegal

cast operations. Furthermore, the interpreter checks every class before execution to ensure

that the code plays by the rules [Yel96]. The object-oriented standard libraries provide

good abstractions to write platform independent code. Especially the AWT framework

and the abstraction of basic TCP/IP communication mechanisms, are very suitable. The

language itself is very simple and clean.

Telescript is a very interesting language, and it is very suitable for any agent-like remote

programming task. The major drawback is the lack of a platform independent abstraction

to access the graphical user interface. At the time of writing, Telescript has not gained

wide popularity in the Internet community.

Although the lexical scoping approach of Obliq is interesting, it leads to a di�erent view

of distributed/mobile components. In Obliq the basic cells of distribution are identi�ers,

which are somehow \too small".

Safe-Tcl is not really object-oriented at the moment. The related Tk extension of Tcl

is Motif based. The procedural approach would prevent the use of object-oriented base

technology.

6Active Objects: http://g.oswego.edu/dl/pats/aopintro.html

Chapter 5

Model

This chapter describes the model and gives some details of our \component understand-

ing" which we use in this thesis. The central point of this chapter is the de�nition of

mobile components and fruitlets. Furthermore, the description of the relationship between

fruitlets and the run-time framework is central. The run-time framework is considered as

the basic shell to import fruitlets and as a provider of basic services needed by fruitlets.

The �rst section de�nes the notions of \Component", \Mobile Component" and the second

section is about the terms \Fruitlet" and \Run-time Framework".

5.1 De�nitions

This section provides some de�nitions that we use in this thesis. Whenever possible we

rely on available de�nitions in the context of software composition. The main question is

to �nd de�nitions for component and mobile component.

5.1.1 Component

The term \Component" already has very wide application in computer science. On the one

hand, components can be single software applications within a whole application package,

but on the other hand components can also be objects within their run-time environment.

In computer science, we usually use the notion component, if any abstraction of software

can be referred to as an encapsulated entity (and to some degree stand alone) which is

able to live within a bigger environment (but not necessarily).

Especially in �elds like open software applications, distributed applications and of course

software composition, people increasingly use the notion of component (although usually

with slightly di�erent meanings).

Thus, it is very hard to �nd corresponding de�nitions of the important term \Component".

We refer in this thesis to a basic de�nition in [ND95]. The paper focuses on software

components and declares a component as a \static abstraction with plugs". Where \static"

34

CHAPTER 5. MODEL 35

means a long-lived entity that can be stored independently and \abstraction"means a more

or less arbitrary boundary around a piece of software. \Plugs" can be any well-de�ned

ways to communicate and interact with the component, in short any mechanism which

helps to use or reuse the component.

5.1.2 Mobile Component

The notion \mobile component" is applicable to many common software entities. For

instance, a mobile software agent can be referred to as a \mobile component". In the

same way we can apply the notion \mobile component" to an Applet (see section 3.5).

We can say that a mobile component is a component where the encapsulated software

abstraction is transportable. Mobile components can be stateful or stateless software

entities (see section 3.5). The code representation within the software abstraction may be

\low-level" or \high-level" (see section 3.5.1).

5.2 Proposed Model

In chapter 2 and chapter 3 we uncovered and described some requirements of open,
exible

systems within distributed networking environments.

Starting with the Applet approach in mind (see section 3.4), we want to build a more

general software architecture with stateless mobile components as building blocks. Ap-

plets are used to build animated Web pages and they can also be used to develop whole

applications within a browser environment. From their very design, Applets are always

\visual" during their lifetime within a Web browser. In short, Applets require a �xed

protocol also including methods for graphical operations and thus they are not always

general enough. In contrast, our approach does neither impose a graphical representation

nor a Web browser environment.

In this section we explain a small model in order to outline a general structure of stateless

mobile building blocks.

5.2.1 Fruitlet

Open network applications could consist of stateful and stateless entities (see section 3.5).

This thesis wants to deal with non-movable instantiations of mobile components. Thus,

we introduce at this point the notion of a \fruitlet"1.

Usually the boundary of a component in general is no longer visible during run-time.

Because we want to attain some degree of adaptability during system's run-time, we

require knowledge about the boundary of \fruitlets" during run-time (e.g. in order to

load, delete, update, recompose fruitlets).

1With thanks to Theo Dirk Meijler for the invention

CHAPTER 5. MODEL 36

We can also refer to \fruitlets" as a sort of template in order to create fruitlets instantia-

tions (e.g. a set of objects).

We de�ne properties of fruitlets as follows:

� Fruitlets are mobile components with \stateless software abstraction" (thus the in-

stantiations of fruitlets may be non-movable, see section 3.5.3).

� Fruitlets are \platform mobile" and \location mobile" (e.g. by using a low-level

platform independent code representation, see section 3.5).

� Fruitlets can ask the run-time framework to create new non-movable instantiations

by providing the address of a fruitlet.

� Fruitlets provide their functionality through one or more interfaces. No other entry

points to a fruitlet are available.

� Every fruitlet provide a well-known unique interface, which allows for basic queries

to a fruitlet (e.g. accessing fruitlet parameter, checking implemented interfaces).

� After the importing step, prede�ned parameters of a fruitlet can be set using the

well-known interface (e.g. by specifying addresses of other fruitlets).

� Fruitlets have to be \security checkable" (i.e. the surrounding run-time framework

must control all the accesses of fruitlets to system resources and system services).

\Stateless software abstraction" means that the mobile part of fruitlets must not carry

any state (see section 3.5.3).

Because fruitlets are stateless, it is su�cient to use platform independent code repre-

sentation to gain \platform mobility" and \location mobility". Platform independent

means that code fragments behave equally, independent of hardware, operating system

and graphical user interface.

By \security checkable" we mean that each fruitlet contains mechanisms to �t into a

particular security concept. The reason is that clients of fruitlets can apply a security

policy to ensure the integrity of the component itself, of other components and of the

system (see section 6.2.4). The security concept protects various system resources (e.g.

�le system, network) from uncontrolled access by fruitlets.

Thus, fruitlets must live on a software layer on the top of a speci�c platform in order to

ful�ll all the requirements. Such a layer has to ensure a unique \software interface" to

di�erent platforms.

5.2.2 Plugs of Fruitlets

We use a set of function signatures (interfaces) in order to communicate with fruitlets (see

also section 3.2 and section 3.3). An interface in this sense is a strongly typed contract

between software entities. An interface is also an articulation of expected behavior and

responsibilities of software entities.

CHAPTER 5. MODEL 37

5.2.3 Naming and Locating Fruitlets

We de�ne the \address" of a fruitlet as an URL, which consists of a host part and a type

part to locate a speci�c fruitlet on the Internet. For instance, http://foo.unibe.ch:7000

re
ects the host part and /unibe/omo/Omo the type part in the fruitlet address

http://foo.unibe.ch:7000/unibe/omo/Omo. The same fruitlet can have several ad-

dresses, for instance if it resides on two di�erent hosts. The run-time framework makes a

clear distinction between di�erent addresses.

5.2.4 Run-Time Framework

We use a basic software environment on top of a speci�c platform which provides basic

mechanisms to integrate and run new fruitlets. We call such a basic software environment

\run-time framework". Basically, a run-time framework is responsible for instantiation of

new fruitlets during run-time. It should also provide concrete transport mechanisms to

import fruitlets over the network. In order to check for security constraints a run-time

framework must provide a security concept.

We can summarize the properties of a run-time framework:

� A run-time framework is able to instantiate fruitlets, by using the address of a

fruitlet.

� A run-time framework checks all system accesses of imported fruitlets during run-

time in order to guarantee the system integrity.

� A run-time framework collects information about fruitlets (e.g. which interfaces a

speci�c fruitlet implements).

� A run-time framework instantiates one (parameterizable) default fruitlet at startup-

time.

5.2.5 Security Impacts

Because software reuse was mainly based on a white-box reuse scheme, security did not

concern the software developer directly. Security issues were mostly relegated to the

underlying operating system. If we introduce systems and mechanisms for black-box reuse

(black-box frameworks, component frameworks) and especially mobile code and mobile

components, we should start to think about security as an essential point of software

development. If we dream of robust components, developed by di�erent vendors and

assembled by programmers or users, we have to build mechanisms, which help to take

care of security. We think that component security should be introduced as a general

topic into the context of software composition. Any component framework or component

system, which is able to load or to use/reuse components has to provide some basic

security features. Otherwise the risk of integrating dangerous components into our own

CHAPTER 5. MODEL 38

applications, especially components from untrusted vendors or developers, will be very

high.

In our model we provide a solution, which restricts access to dangerous resources of a

computer system a given component (fruitlet) can have (see also section 3.5.4).

In chapter 6 we introduce a concrete security concept for fruitlets (see section 6.2.4).

Figure 5.1 gives an overview of the principle of our Fruitlet approach.

HTTP Server

HTTP Server

import

import

Stored Fruitlets

Stored Fruitlets

Fruitlet Loader

HTTP Client

Security Checker

Run-time Framework

Figure 5.1: Overview of the Run-time Framework

5.3 Conclusion

Within the description of a model we discussed notions like \Component" and \Mobile

Component". We gave de�nitions of our meanings of \Fruitlet" and \Run-time Frame-

work". On the one hand \Fruitlets" are conceptually higher-level than other concepts like

movable classes (e.g. Java classes). They include, for instance, a security concept as well

as basic parameterization mechanisms. On the other hand \Fruitlets" are more general

than the related Applet approach.

Fruitlets lead us to an approach where applications consists of distributed code fragments.

During run-time the instantiations of these mobile building blocks form the local run-time

structure of an application. Thus, fruitlets help to improve
exibility and openness of

a system and also help to maintain the evolution of an application (e.g. adaptation of

systems to new requirements and \automatic" code upgrades).

The properties of fruitlets also help to attain requirements like mobility, heterogeneity,

adaptability and security of networking based open applications (see also section 2.3).

Chapter 6

Prototype

This chapter discusses and describes the design and implementation details of the basic

architecture.

With respect to the results of chapter 4, we decided to use the Java technology and the

Java programming language from Sun Microsystems [Sun95a] to implement the prototype.

The Java technology best �ts our needs for platform neutrality, security, communication,

concurrency mechanisms and also provides solid OO-technology.

With Java in mind we can give a more concrete idea of the notions \fruitlet" and \run-time

framework" in the next section.

6.1 The Prototype meaning of \Fruitlet" and \Run-Time

Framework"

The central notions of chapter 5 (fruitlet, run-time framework) lead us to most of the

design decisions within this chapter. We give more precise meanings of \Fruitlet" and

\Run-Time Framework" concerning the concrete implementation of our prototype.

As a basic decision, we will use the Java byte-code to describe the software abstractions of

fruitlets. A fruitlet contains one or more classes written in Java byte-code. We consider this

decision to be su�cient to ful�ll the requirement of platform independence abstractions of

fruitlets (surely su�cient for a prototype implementation). The Java byte-code [Sun95b]

has also some basic properties which can be used to ful�ll the requirement of \security

checkable" (see appendix B). It allows us to implement a security concept into the run-time

framework of the prototype [WJK96b].

Java allows for a notion of interfaces (a set of function signatures), which we use in order

to communicate between fruitlets and the run-time framework. At the moment we regard

the interface terminology as su�cient in order to articulate expected behavior of fruitlets.

Therefore, we can propose a �rst approach concerning the run-time framework. The run-

time framework consists of a Java byte-code interpreter as well as some additional Java

39

CHAPTER 6. PROTOTYPE 40

byte-code, which runs on the interpreter and helps to guarantee security issues and helps to

ful�ll the basic properties of the run-time framework. Amongst other things, we are forced

to integrate a loader for fruitlets into the run-time framework. Because Java interpreters

allow us to introduce new class loaders, this should be possible.

In general, we prefer to use the Java programming language in order to create the necessary

Java byte-code. This decision is not fundamental to our concept but is the most convenient

way at the moment. For an alternative see \The Ada 95 Experiment" in section 7.3.3.

6.2 Design

This section describes the design and implementation details of the prototype. The sub-

sections explain the prototype's solution of various points like security, component loader

and class loader. First of all we introduce the two most important interfaces of the design.

Firstly, the interface ManagerIfc, which re
ects the interface to the component manager

of the run-time framework. Secondly, the interface ComponentIfc, which is the generic

interface that all fruitlets must provide to the public. Both interfaces are located in the

package unibe.interfaces.

6.2.1 ManagerIfc

The component manager is a central part of the run-time framework. It is responsible for

loading fruitlets and creating new instances. In fact, it is the only part of the run-time

framework which is allowed to load and create new instances of fruitlets. The manager

also enables various security checks in cooperation with the class loader of the run-time

framework (see section 6.2.4).

Basically the ManagerIfc provides methods of creating new instances of a fruitlet. The

fruitlet is speci�ed by its address. After a request for a new instance appears, the manager

searches the speci�ed fruitlet in a hashtable and decides if the fruitlet is already available.

If the speci�ed fruitlet is not available it forwards the request to the WebLoader. The

WebLoader then searches for the fruitlet on the Internet using the speci�ed address. Both

methods return a reference to the created instance. The reference is of type ComponentIfc.

ComponentIfc newComponent(String name)

ComponentIfc newComponent(String name, boolean forceNetLoad)

"interface"

ManagerIfc

Figure 6.1: Interface ManagerIfc

The program listing of the interface in Java:

CHAPTER 6. PROTOTYPE 41

package unibe.interfaces;

/**

* This interface enables access to the manager in order to

* load and instantiate new fruitlets.

*/

public interface ManagerIfc {

/**

* Creates a new instance of a fruitlet.

*

* @param name the address of the fruitlet

*/

ComponentIfc newComponent(String name);

/**

* Creates a new instance of a fruitlet. If forceNetLoad is

* true, the fruitlet will always be loaded from the Internet.

*

* @param name the address of the fruitlet

* @param forceNetLoad true, in order to force loading from Internet

*/

ComponentIfc newComponent(String name, boolean forceNetLoad);

}

The only class in the run-time framework, which implements the interface ManagerIfc is

Manager (see section 6.2.5).

6.2.2 ComponentIfc

The ComponentIfc is the central interface of any fruitlet. Every fruitlet of the prototype

has to implement at least this interface. The interface provides a set of methods we

can expect from every fruitlet. ComponentIfc provides a minimal set of methods in the

prototype. For future usage we have to extend this interface with more functionality (e.g.

access to meta information of a fruitlet, see chapter 8).

The methods parameters, getParameter, setParameter can be used to manage prede-

�ned slots of a fruitlet (see section 6.2.3).

The program listing of the interface in Java:

package unibe.interfaces;

import java.lang.String;

import java.util.Enumeration;

/**

* This interface is the basic access plug of any fruitlet.

* Each fruitlet has to implement this interface.

*/

public interface ComponentIfc {

CHAPTER 6. PROTOTYPE 42

"interface"

void init(ManagerIfc manager)

boolean isReady()

boolean hasIfc(String ifc)

Enumeration parameters()

String getParameter(String name)

void setParameter(String name, String value)

ComponentIfc

Figure 6.2: Interface ComponentIfc

/**

* The run-time framework starts this method after the creation step

* of an new instance.

*

* @param manager the manager of the run-time framework

*/

void init(ManagerIfc manager);

/**

* Returns true, if the instance is ready.

* (e.g. all predefined parameters are set)

*/

boolean isReady();

/**

* Returns true, if the fruitlet implements interface ifc.

*

* @param ifc the interface name to check

*/

boolean hasIfc(String ifc);

/**

* Returns an enumeration of all settable parameters

*/

Enumeration parameters();

/**

* Returns the value of parameter name.

*

* @param name the name of the parameter

*/

String getParameter(String name);

CHAPTER 6. PROTOTYPE 43

/**

* Sets the parameter name to a new value.

*

* @param name the name of the parameter

* @param value the value of the parameter

*/

void setParameter(String name, String value);

}

6.2.3 Fruitlet Parameterization

Parameterization is a general composition mechanism. We introduce a general parameter-

ization mechanism into our prototype understanding of fruitlets. Often, a fruitlet A will

use functionality of another fruitlet B in a particular design an thus the main purpose of

fruitlet parameters is to set addresses of other fruitlets within a given fruitlet (e.g. fruitlet

A has the address of fruitlet B as a parameter).

In order to parameterize a fruitlet, we can de�ne a set of slots for each fruitlet. At the

moment a slot has a name and a value. In the prototype the name and the value must

always be of the type string. A fruitlet can de�ne default values for each slot.

There are two ways to set slots of a fruitlet. Firstly, during the instantiation phase of a

fruitlet the component loader looks for a text �le with the extension

.parameter at the same location as the fruitlet itself (for instance we use the address

http://idefix.isburg.ch:7000/unibe/foo.parameter). The �le can contain line ori-

ented pairs <name> = <value>. The component loader sets these slots (if the correspond-

ing fruitlet recognizes such parameters) during the instantiation phase of a fruitlet. Sec-

ondly, after the instantiation a client of a fruitlet's instance can use the ComponentIfc to

manipulate the slots.

6.2.4 Security

Mobile components introduce a central security problem. Imported components could

damage the integrity of the host computer by uncontrolled use of the local services. In

order to ensure a secure environment, we have to control and restrict the access and use

of locally available resources and services on a computer system (see also section 3.5.4).

The Java language in cooperation with the Java packages leads to a basic environment to

write secure code. The Java technology can be referred to as an enabling technology to

build secure systems for mobile code (Java should in fact do that, see [DFW96]).

Each standalone Java program can specify and implement a \security manager". Every

method in the Java packages which could damage the system integrity, calls a correspond-

ing method in the system security manager, before executing any dangerous system calls.

The security manager o�ers some methods to determine the current execution environ-

ment and can therefore decide to stop the execution. The security manager can evaluate

the class loader which is responsible for imported code. More details about Java's security

concept can be found in appendix B.

CHAPTER 6. PROTOTYPE 44

We use the mechanism of the security manager and class loaders in our prototype to

implement security policies.

The system wide security manager which we introduce in the run-time framework is called

GeneralSecurityManager. It dispatches all calls related to security constraints to the re-

sponsible class loader. Every class loader has an instance of ComponentSecurityManager

which knows about the security policy of a speci�c fruitlet. The component loader

(Manager) of the run-time framework creates a new class loader for every imported fruitlet

type. In the prototype implementation all class loaders are of the type WebLoader. There

are several ways to authorize a fruitlet (see also [WJK96b]) that wants to use resources

and services. The design of the prototype allows the use of the type and the source (the

address) of a fruitlet to specify the security policy of a fruitlet. Thus, we can specify

di�erent security policies for each fruitlet by using the fruitlet's address.

This leads us to an overview of the class diagram:

Manager WebLoader

ManagerIfc
"interface"

ComponentSecurityManager

SecurityIfc
"interface"

1 1

RunFrame

GeneralSecurityManager
SecurityIfc

1

1

"Fruitlet"

*

1

1

1

1

Figure 6.3: Class Diagram: Overview Run-Time Framework

Fruitlet Security

We decided to implement the following security concept in our prototype. Each fruit-

let has its own security policy. The security issues of a speci�c fruitlet are controlled

by the run-time framework. Thus, we can specify the security policies on the local

system. In the prototype implementation security constraints of fruitlets are stored in

a text �le. The name of the �le is constructed by the address of a fruitlet. For in-

stance, if the address is http://idefix.isburg.ch:7000/unibe/foowe use the �le name

<SecurityDirectory>idefix.isburg.ch.7000.unibe.foo.security. The directory of

all security �les (<SecurityDirectory>) is a parameter of the run-time framework (spec-

i�ed in RunFrame.txt).

The responsible class loader tries to �nd its security �le (using the address of the fruitlet).

CHAPTER 6. PROTOTYPE 45

If no security �le is present, the fruitlet has no access to the controlled resources.

The basic idea is, that a provider of a fruitlet can distribute a suitable .security �le.

The provider must then justify the opening of �les and the use of network connections.

The administrator of the local site can then decide to install the .security �le or not.

We restrict ourselves to control only the following system resources in the current proto-

type:

� Disk access

� Network access

� Possibility to shut down the run-time framework

We never allow execution of other programs from within a fruitlet. All graphical win-

dows created by fruitlets will be decorated with a warning string (RunFrame: Fruitlet

Window). Other access controls (e.g. access to running threads) could be implemented in

a similar way.

If the run-time framework does not �nd a security �le for a particular fruitlet, all accesses

are restricted.

Security Files

The .security �les contains line oriented entries. Each entry has a keyword and a value.

The keyword speci�es the access mechanism and the value declares the resource. The

syntax of the .security �le is:

� FileRead=<filename>: this entry enables the fruitlet to read the �le <�lename>.

If <�lename> ends with a *, every �le starting with <�lename> will match.

� FileWrite=<filename>: this entry enables the fruitlet to write to the �le

<�lename>. If <�lename> ends with a *, every �le starting with <�lename>

will match.

� Connection=<host>,<port>: this entry enables the fruitlet to open a network con-

nection to the speci�ed connection end point.

� ServerPort=<port>: this entry enables the fruitlet to create a listening port (server

port).

� Exit=<status>: this entry enables the fruitlet to shut down the run-time framework

with status code <status>.

Example of a .security �le:

CHAPTER 6. PROTOTYPE 46

FileRead = /home/gertsch/*

FileWrite = /home/gertsch/temp/*

Connection = server1.isburg.ch,110

Connection = 193.5.168.13,110

6.2.5 Component Loader

This section describes the design of the component loader. The component loader is

a central feature of the run-time framework. The run-time framework has exactly one

instance of the component loader. The component loader creates a new class loader

(type WebLoader) for each new fruitlet type. The system wide security manager (type

GeneralSecurityManager) ensures, that only the component loader is allowed to create

new class loaders. Thus, there is no possibility for imported fruitlets to create new class

loaders. The class retriever mechanism of the class loaders is based on the HTTP 1.0

protocol. This means that all HTTP servers are able to distribute fruitlets. The WebLoader

class implements a restricted HTTP 1.0 client in order to retrieve .class Java byte-code

�les and .parameter text �les (see section 6.3.2).

The private class loader object of every fruitlet implements the security policy of a speci�c

fruitlet. Because all related classes of a fruitlet also refer to the private class loader object

(see \A closer look at Java" in appendix B) the loader can control all access requests to

guarded resources and services of the fruitlet (e.g. disk access, network access) and all

related classes it has loaded (see section 6.2.4).

Class Cache

Our prototype WebLoader maintains a code cache for all imported classes. Firstly, every

instance of WebLoader maintains a class cache in the memory and secondly the instances

of WebLoader maintain a class cache on the disk. This means they use the \if-modi�ed-

since" mechanism of the HTTP/1.0 protocol if a requested class already exists in the

disk cache. The cache directory is a parameter of the run-time framework (speci�ed in

RunFrame.txt). The name of the �le in the cache is generated using the address of a

class. For instance, if the address is http://idefix.isburg.ch:7000/unibe/foo we use

the �le name idefix.isburg.ch.7000.unibe.foo.class.

6.3 Prototype Packages

This section contains a collection of class diagrams. We show the important design de-

tails of the di�erent packages which belong to the core implementation of the run-time

framework.

More detailed information about the implementation of the classes is available in HTML

format.

CHAPTER 6. PROTOTYPE 47

6.3.1 Class Diagram of Package unibe.componentloader

This package contains the implementation of the component loader (see section 6.2.5).

Figure 6.4 shows the class diagram of the component loader package.

Manager WebLoader

ManagerIfc
"interface"

ComponentSecurityManager

SecurityIfc
"interface"

*
1

1

Figure 6.4: Class Diagram: Component Loader

6.3.2 Class Diagram of Package unibe.net.http

The package unibe.net.http contains a restricted HTTP/1.0 client. The WebLoader

class uses this client implementation to fetch the .class and .parameter �les from the

Internet. As an overview we provide here a class diagram of the main classes in the

package.

HTTPFetcher

HTTPRequest

HTTPHeaderHeaders

HTTPSocket

Headers

HTTPSocket

HTTPHeader

*

*

HTTPResponse

Figure 6.5: Class Diagram: HTTPFetcher

CHAPTER 6. PROTOTYPE 48

6.3.3 Package unibe.security

The package unibe.security contains the security manager of the run-time framework

(GeneralSecurityManager). It also contains the ComponentSecurityManager which is

responsible for the security policy of a particular fruitlet (see �gure 6.3).

6.3.4 Class Diagram of Package unibe.run

In package unibe.run we �nd the core of the prototype. The class RunFrame reads the

parameters SecurityDirectory and CacheDirectory from the �le RunFrame.txt. Fur-

thermore, it instantiates a Manager and a GeneralSecurityManager. The last step is to

load the fruitlet provided on the command line.

For example: % java unibe.run.RunFrame http://idefix.unibe.ch/unibe/foo

Figure 6.6 shows the basic class structure.

RunFrame GeneralSecurityManager

SecurityManager

Manager

1

1

1

1

Figure 6.6: Class Diagram: RunFrame

Chapter 7

Use Cases

This chapter introduces three examples in which we use the approach of fruitlets.

This chapter should help to verify the approach of our model (see chapter 5) and also test

the basic functionality of the prototype.

In this chapter we discuss the design of the example on a relatively high level. For a more

detailed description of the design we refer to appendix A.

As a �rst example, we explain a general server fruitlet. This example shows a general

server architecture to build TCP/IP based Internet servers [Com95, CS93]. In example

two, we show a prototype of an open HTTP server, which uses the basic architecture of

example one.

With example three we introduce an open message system. This architecture shows an

open message organizer in order to integrate di�erent common message systems.

All examples use the basic architecture of the prototype (see chapter 6).

7.1 General Internet Server

Servers are one kind of generic software entities on the Internet. Internet servers provide

a basic architecture for most of the well known Internet services, like electronic mail,

World-Wide-Web and �le transfer, because all the responsible protocols are based on the

client/server paradigm on top of the TCP/IP protocol.

The basic architecture of a TCP/IP based server is quite simple and remains the same for

most of the common protocols [CS93]. Usually, a server is listening on a socket with a well

known port number in order to accept incoming calls. Once a call has been accepted, the

server starts a new task with the communication channel (usually a socket) as a parameter.

49

CHAPTER 7. USE CASES 50

7.1.1 Design

We introduce a fruitlet GenericServer included in the package unibe.internet to im-

plement a generic server architecture. GenericServer has two slots (see section 6.2.3).

Firstly, a slot with name \Port" and secondly a slot with the name \RequestService-

Component". The \Port" slot speci�es the port on which our server should listen and

the \RequestServiceComponent" slot speci�es the \helper" fruitlet, which performs an

incoming request. This fruitlet has to implement the interface ServiceRequestIfc. The

GenericServer itself implements ServerIfc (see appendix A).

For each incoming request the GenericServer fruitlet takes the fruitlet address in the

slot \RequestServiceComponent" and creates a new instance of this fruitlet in order to

perform the request.

Even during run-time the GenericServer fruitlet would be able to change the address in

the slot \RequestServiceComponent" and thus vary the behavior of the server. This helps

to keep the server as open as possible and helps to reuse the fruitlet.

7.2 HTTP Server

This section describes an example of an open, extendable HTTP server (see also the

design of another open HTTP server called Jigsaw1). We use the GenericServer fruitlet

of section 7.1 to implement the HTTP server. The server should be open concerning

di�erent HTTP protocols and concerning exchangeable parts within the request-resolve-

response chain during a task performance.

7.2.1 Design

First of all, our fruitlet has to �t into the \RequestServiceComponent" slot of

GenericServer, i.e. it has to implement the interface ServiceRequestIfc (see appendix

A).

We call this fruitlet HTTPVersionChooser. The main task of this fruitlet is to recognize

the HTTP version of the incoming request. Depending on the result it has to load the cor-

responding \protocol" fruitlet and passes the open communication channel to this fruitlet.

HTTPVersionChooser de�nes two slots. The slot \Version09" speci�es the address of the

HTTP version 0.9 fruitlet and the slot \Version10" speci�es the address of the HTTP

version 1.0 fruitlet.

Furthermore, we implement fruitlets for restricted HTTP/0.9 and HTTP/1.0 protocol.

Both implement the interface HTTPTaskIfc (see appendix A) and thus �t into the

HTTPVersionChooser fruitlet.

We subdivide the job of an HTTP task into three parts. Firstly, a request part which

parses the request. Secondly a resolution task, which takes a request part and generates

1Jigsaw: http://www.w3.org/pub/WWW/Jigsaw/

CHAPTER 7. USE CASES 51

a response part as a result. In order to keep the server as open as possible we imple-

ment all these parts as fruitlets. Thus a HTTPTask fruitlet accesses these parts through

corresponding interfaces (see appendix A).

7.2.2 Conclusion: HTTP Server

The HTTP server example shows a few fruitlets, that use the general server fruitlet

GenericServer (see section 7.1).

This example shows how we can free ourselves from protocol dependent server technology

and move in the direction of protocol independent server technology. As a matter of

principle it is possible to plug new protocols into an existing server (even during run-time).

In some cases (e.g. Network Management) it is essential to attain run-time updatable

services.

The server is also
exible (open) with respect to \code choosing". For example, it would be

possible that an HTTP request can decide itself (or at least suggest) which code fragment it

wants to use for its own resolving-step (e.g. by sending a special header �eld ResolveCode:

<fruitlet-address-for-resolver> with the request). Our fruitlet approach enables

steps in this direction.

7.3 Open Message Organizer

The various message systems on the Internet lead indisputably (amongst other factors)

to the current success of the Internet. There are a lot of examples of standard message

systems like electronic mail, news groups and bulletin boards. Often, the user has to deal

with two or more message systems at a time and thus use di�erent client applications for

each message system.

We want to show an example of an open message organizer that can integrate various

message systems into one application. Furthermore, the organizer is open to the addition

of new message systems.

Message systems will evolve over time, e.g. there will be new message systems using new

protocols. From the users point of view the process of fetching, structuring and managing

messages remains the same and it would be a nuisance to install a new client for each

message system. Fruitlets o�er a solution because the provider of a message system is

able to provide both the message and the mobile component (fruitlet) for integration into

the message organizer environment.

The organizer can even add new parts during run-time. Thus, the user can seamlessly

integrate new message systems from di�erent information providers into the organizer

(possibly very specialized message services) and mix them, for example with standard

message systems.

CHAPTER 7. USE CASES 52

7.3.1 Design

We restrict ourselves in the current example to the reception mechanisms of message

systems. In order to keep the organizer as open as possible we subdivide the process of

receiving messages.

We introduce a chain of software abstractions that an incoming message runs through. At

the moment we distinguish between four software abstractions:

� Retriever : a retriever is able to fetch messages from the Internet. In order to retrieve

a message, it uses a standard or a specialized non-standard protocol. Our message

organizer can contain arbitrary types of retrievers.

� Storage: a storage is the representation of an interface to a non-volatile storage

system. For example, it can map a set of messages to a local �le system as well as

to a remote �le system.

� Folder : a folder is a visual representation of a set of stored messages. Normally it

provides a mechanism to select and display a particular message.

� FolderRetrieverConnector : is a piece of software between a retriever and a folder. It

receives a message from its retriever and can decide if it should handle the message

to its folder. It can also transform or �lter (parts of) a particular message before

passing it on.

Each of the described abstractions implement a corresponding interface. We introduce

the interface RetrieverIfc (implemented by any retriever), FolderIfc (implemented

by any folder), StorageIfc (implemented by any storage system) and ConnectorIfc

(implemented by any FolderRetrieverConnector). For a more detailed description see

appendix A. Of course we try to design these abstractions as fruitlets. Thus, all the parts

have to ful�ll the needs to �t into the fruitlet scheme (e.g. implementing ComponentIfc).

Through these interfaces it is possible to combine the various fruitlets to become a
exible

message organizer. The constraints are: We can only connect a single FolderRetriever-

Connector to exactly one retriever and exactly one folder. A storage can have exactly one

folder and vice versa.

7.3.2 Omo Run-time Connector/Composer

In order to connect and \compose" di�erent fruitlets of the open message organizer during

run-time, we equip the system with a little visual connecting tool. This tool helps to

import, connect and parameterize message fruitlets (e.g. some fruitlets may need input

from the user) during run-time. This little tool makes it possible to in
uence and change

the whole behavior of the open message organizer during run-time. Figure 7.1 shows a

screen shot of the Omo connector/composer.

CHAPTER 7. USE CASES 53

Figure 7.1: Composer/Connector of Omo

7.3.3 The Ada 95 Experiment

Because of the similar properties and goals of Java and Ada 95 (Object-oriented, type safe,

concurrent language constructs) it seems to be possible to map the Ada 95 programming

language quite well to the virtual machine speci�cation of Java [Taf96, Sun95b, Bar95].

Thus, Intermetrics provides a beta version of an Ada 95 to Java byte-code compiler, called

AppletMagic.

We use this compiler in order to develop a fruitlet for the open message organizer. We

implemented another FolderRetrieverConnector fruitlet fully in Ada 95. The functionality

is exactly the same as described in section A.3.3.

In order to achieve this goal we had to rewrite a couple of interfaces as Ada 95 source (e.g.

ManagerIfc, ComponentIfc, OmoIfc, ConnectorIfc, see appendix A). The interface parts

to the original Java packages are available as Ada 95 source (e.g. java.lang, java.awt).

Thus it was relatively easy to integrate the AdaFolderRetrieverConnector fruitlet into the

open message organizer.

This example shows the possibility of decoupled development of fruitlets, even by using

another programming language.

CHAPTER 7. USE CASES 54

7.3.4 Conclusion: Open Message Organizer

The open message organizer shows that our prototype concept ful�lls quite a few of the re-

quirements. Firstly, we can show the adaptability of the system with respect to previously

unknown message systems. Secondly, we show the heterogeneity of the system with respect

to platform independence and also (in a restricted sense) to language independence.

7.4 Conclusion

The examples of this chapter shows some possible applications of our fruitlet approach.

Our approach seems to be general enough to build a wide variety of applications. In

contrast to Applets, fruitlets do not expect a graphical user interface and therefore they

are more general (see section 7.1).

The HTTP server example also validates that the approach is useful to build open server

(and browser) applications for the Internet.

Chapter 8

Conclusion

8.1 Conclusion

The �rst part of this thesis discussed several requirements of open,
exible software sys-

tems. We brie
y surveyed di�erent kinds of existing mobile software entities. We restricted

ourselves to stateless types of mobile software entities for the rest of this thesis.

In the second part we introduced the notion of a \fruitlet" as a kind of stateless mobile

component and we also introduced the term \run-time framework" as a basic software

architecture in order to host \fruitlets".

The third part showed a prototype implementation of the run-time framework written

in the Java programming language. Furthermore, we designed some examples of open,

exible software applications developed in our \fruitlet" technology.

The following sections summarize the experiences we made with the prototype and the

examples concerning the requirements listed in the �rst part of the thesis.

8.1.1 Adaptability

Our basic software layer (run-time framework) shows a way to improve adaptability and

recon�gurability of applications.

For instance, the open message organizer (see section 7.3) shows a
exible design in order

to evolve the application in the direction of new requirements (e.g. new message protocols,

new message systems). The run-time framework also enables the extension of applications

during run-time (recon�gurability).

Our approach uses a relatively simple composition mechanism, thus fruitlets can only be

used in a prede�ned way (using well known interfaces). This fact restrict the (possible)

adaptability and evolution of a system.

55

CHAPTER 8. CONCLUSION 56

8.1.2 Heterogeneity

The decision to use the Java technology (especially the Java byte-code), let us improve

software systems in the direction of heterogeneity. The introduced examples in chapter 7,

show prototypes of software applications which are able to run in heterogeneous networking

environments and thus overcome platform and location boundaries. There is some e�ort

going on to improve the performance of the Java byte-code (e.g. using platform dependent

\just in time" compilers).

Although there are some problems concerning the Java byte-code (e.g. the byte-code has

not exactly the same behavior on di�erent graphical user interfaces), we think it is an

excellent approach (although not new) in order to gain heterogeneity within networking

environments.

8.1.3 Mobility

Mobility is doubtlessly a basic requirement of modern applications which live in a network-

ing environment. Our approach of \fruitlets" only shows one special aspect of mobility

(see section 3.5). \Fruitlets" never transport any state, but carry functionality along a

network. In order to attain the full capacity of mobility, we use both stateful mobility

(e.g. mobile agents) and stateless mobility. The stateless mobility of fruitlets helps to

attain requirements like adaptability and recon�gurability.

Even in the case of very static entities within a networking environment (e.g. databases),

the concept of stateless mobile entities is very suitable in order to provide mobile access

code to such static entities (see section 3.4.2, see also JoQuer, a mobile database query

optimizer1).

8.1.4 Security

We �t out our fruitlet technology with a basic security concept. The concept is su�cient to

control access to basic resources like network and disk of imported fruitlets. The concept is

not able to check the amount of used resources (e.g. disk space, CPU cycles). At the time

of writing, the Java byte-code does not o�er mechanisms to control \resource deprivation".

It is clear that the security of mobile entities in general is itself a large research topic and

we did not expect a complete solution concerning the security of fruitlets.

8.1.5 Fruitlet Granularity

One important advantage of fruitlets is the freedom of the granularity of a fruitlet design.

On the one hand we can use \conventional" design mechanisms in order to construct a

fruitlet and put the fruitlet boundary around many classes. On the other hand, we can

also abstract one single class as a fruitlet. This fact helps us to reuse existing designs and

to apply promising techniques like design patterns.

1JoQuer: http://wwwis.cs.utwente.nl:8080/skow/phd-pub/

CHAPTER 8. CONCLUSION 57

8.2 Open Problems

In this section we summarize some problems, which are apparent at the time of writing.

8.2.1 Security Concept

In contrast to the current security concept of the run-time framework, we tried also another

security approach of fruitlets. The idea was to introduce a security policy which depends

on the context in which fruitlets are running. For instance, fruitlet C is running as \inner"

fruitlet of fruitlet A and also as \inner" fruitlet of fruitlet B. In this case we could have

di�erent policies for fruitlet C.

The Java security manager o�ers some features to determine the current context of classes

during run-time. It is possible to examine the current execution stack (stack of involved

classes) during a security check. This fact helps us to �nd out the current context of a

fruitlet and thus to implement the described security approach.

If an action within a fruitlet is caused by an independently running thread (e.g. the AWT

main thread which is responsible for user events), we can no longer determine the context

of the fruitlet, because \outer" fruitlets are no longer involved.

Thus, it was not possible to implement this approach. The thoughts about security con-

cepts led us anyway to the basic question: what should a security concept of mobile

components look like? At the moment we are not able to give a de�nitive answer.

8.2.2 Performance

Concerning the performance, we have two di�erent problems. Firstly, the Java byte-

code is interpreted. In contrast to machine code, this fact leads us to a serious loss of

performance (see also \Jigsaw performance evaluation"2). \Just-in-time" Java compilers

are the current answer to this problem and the estimated speed up is about factor 10.

Secondly, our technology consists of loosely coupled mobile abstractions. This fact can

lead to time delays mainly caused by the networking environment itself. This problem

exists predominantly at startup-time of an application.

8.3 Further Work

8.3.1 Run-time Composition

The current approach of fruitlets shows a way to import and compose mobile abstractions

into a system's run-time. What we would like to attain are more powerful composition

mechanisms during system's run-time. Fruitlets could carry much more meta information

and thus enable more powerful compositional features.

2Jigsaw: http://www.w3.org/pub/WWW/Jigsaw/

CHAPTER 8. CONCLUSION 58

8.3.2 Synchronization during Run-time

Another open question is the synchronization policy between fruitlets (possibly active

fruitlets) during run-time. If we are able to connect/compose mobile entities during run-

time, what synchronization mechanisms do we have to introduce in general?

8.3.3 New Trend: Java Beans

Recently, Sun Microsystems released a draft speci�cation of a component model called

\Java Beans"3. The model mainly focuses on mobility and platform independency within

networking environments.

A Java Bean is a stateful run-time entity (see section 3.5). Java Beans are collections of

connected objects, which are movable. Every Java Bean has an outermost object which

serves as a gateway to the encapsulated collection of objects.

A Java Bean has two di�erent types of interfaces. Firstly a design time interface in order

to inspect a \bean" during design time and secondly a run-time interface in order to

in
uence the outermost object of a bean during run-time.

At the time of writing, the available information about Java Beans show us some related

ideas between fruitlets and Java Beans. In contrast to fruitlets Java Beans are stateful

mobile entities, but it seems that the technology also addresses some of our basic ideas of

stateless mobility.

A more exhaustive survey of Java Beans could help to uncover the relationship between

both approaches.

8.4 Acknowledgments

Many people have contributed to the realization of my thesis and I am very grateful to all

of them.

I would like to thank especially Prof. Dr. Oscar Nierstrasz (for supervising my thesis),

Karl Guggisberg (for advising me, for many really helpful discussions, for many valuable

remarks, and for his patience), and all the other members of the Software Composition

Group of University of Berne.

3Java Beans: http://splash.javasoft.com/beans/

Appendix A

Use Cases: Design

This chapter is the appendix of chapter 7. We give a more detailed overview of the

examples introduced in chapter 7.

As a �rst example, we explain the details of the general server fruitlet (see section 7.1).

In addition we also explain the design of the open HTTP server, which �ts into the basic

architecture of example one (see section 7.2).

The last part of this appendix introduces the design of the open message system (see

section 7.3).

A.1 General Internet Server

The basic architecture of a TCP/IP based server is quite simple and remains the same for

most of the common protocols. Our server is listening on a socket with a well known port

number in order to accept incoming calls. Once a call has been accepted, the server starts

a new task with the communication channel as a parameter.

A.1.1 Design

The fruitlet GenericServer included in the package unibe.internet re
ects the imple-

mentation of a generic server architecture. GenericServer has two slots (see section

6.2.3). Firstly, a slot with name \Port" and secondly a slot with the name \Request-

ServiceComponent". The \Port" slot speci�es the port on which our server should listen

and the \RequestServiceComponent" slot speci�es the fruitlet, which performs an in-

coming request. This fruitlet has to implement the interface ServiceRequestIfc. The

GenericServer itself implements ServerIfc.

ServerThread and ServiceThread are not fruitlets, they are just associated classes and

belong to the fruitlet GenericServer. With the class ServerThread the GenericServer

maintains its own thread. In ServerThread we �nd the main loop. For each incoming

59

APPENDIX A. USE CASES: DESIGN 60

"interface"
ComponentIfc

ServiceThread

Thread

ServerThread *

"Service Fruitlet"

ServiceRequestIfc

GenericServer

ServerIfc
"interface"

1 1

Figure A.1: Class Diagram: Generic Internet Server

call, ServerThread starts a new thread ServiceThread. ServiceThread loads then the

\RequestServiceComponent" fruitlet into the server and starts the method newRequest

(of interface ServiceRequestIfc). Thus a new call is separated from the server thread

as soon as possible and the server is able to manage new requests.

A.1.2 ServerIfc

This interface contains two methods to start and stop the server. It helps to use the

GenericServer in other contexts. The GenericServer calls startServer in its init

method as a default.

ServerIfc
"interface"

void stopServer()

void startServer()

Figure A.2: Interface ServerIfc

package unibe.internet.interfaces;

/**

APPENDIX A. USE CASES: DESIGN 61

* This interface provides methods to start and stop a server.

*/

public interface ServerIfc {

/**

* Starts the server.

*/

void startServer();

/**

* Stops the server.

*/

void stopServer();

}

A.1.3 ServiceRequestIfc

ServiceRequestIfc is the interface which a request fruitlet must implement in order to

ful�ll the expected behavior and thus �t into the GenericServer fruitlet. The SocketIfc

is just a basic set of methods to access a socket. In fact we could also use the java.net.Socket

class instead.

"interface"

ServiceRequestIfc

void newRequest(SocketIfc socket)

Figure A.3: Interface ServiceRequestIfc

package unibe.internet.interfaces;

import java.io.IOException;

/**

* This interface is used to send a request to a fruitlet.

*/

public interface ServiceRequestIfc {

/**

* Starts a new request.

*

* @param socket the open communication channel

*/

void newRequest(SocketIfc socket) throws IOException;

}

APPENDIX A. USE CASES: DESIGN 62

A.2 HTTP Server

This section describes the design of an open HTTP server (see also section 7.2). We use

the GenericServer fruitlet of section A.1 to implement the HTTP server. The server

should be open concerning di�erent HTTP protocols and concerning exchangeable parts

within the request-resolve-response chain during a task performance.

A.2.1 Design

First of all, we have to implement a fruitlet which implements the interface

ServiceRequestIfc (see section A.1.3).

We call this fruitlet HTTPVersionChooser (see �gure A.4). This fruitlet should be able

to recognize the version of the HTTP request. Depending on the result it has to load

the corresponding fruitlet and passes the open communication channel to this fruitlet.

HTTPVersionChooser de�nes two slots. The slot \Version09" speci�es the address of the

HTTP version 0.9 fruitlet and the slot \Version10" speci�es the address of the HTTP

version 1.0 fruitlet.

"interface" "interface"
ComponentIfc

HTTPVersionChooser

ServiceRequestIfc

(HTTP Version 1.0)

(HTTP Version 0.9)

"Task Fruitlet"

HTTPTaskIfc

Figure A.4: Class Diagram: HTTPVersionChooser

Furthermore, we implement fruitlets for restricted HTTP/0.9 and HTTP/1.0 protocol.

Both implement the interface HTTPTaskIfc and thus can be used with the

HTTPVersionChooser fruitlet.

We subdivide the job of an HTTP task into three parts. Firstly, a request part which

parses the request. Secondly a resolution task, which takes a request part and generates

a response part as a result. In order to keep the server as open as possible we imple-

ment all these parts as fruitlets. Thus a HTTPTask fruitlet accesses these parts through

APPENDIX A. USE CASES: DESIGN 63

corresponding interfaces.

"interface" "interface"
ComponentIfc HTTPTaskIfc

HTTPRequestIfc

HTTPResolveIfc

HTTPResponseIfc

"Request Fruitlet"

"Resolve Fruitlet"

"Response Fruitlet"

HTTPTask

Figure A.5: Class Diagram: HTTPTask (version 0.9/version 1.0)

As an example we show in �gure A.6 the class diagram of the request fruitlet, which

implements the request part of the HTTP version 1.0.

"interface"
ComponentIfc

"interface"

(HTTP Protocol 1.0)

Request

HTTPRequestIfc

HTTPHeaderIfc

"HTTPHeader Fruitlet"

Figure A.6: Class Diagram: HTTPRequest version 1.0

APPENDIX A. USE CASES: DESIGN 64

A.2.2 HTTPTaskIfc

The HTTPVersionChooser uses a fruitlet with the interface HTTPTaskIfc. This interface

is quite simple, it just forwards the request and the socket.

"interface"

void resolveTask(SocketIfc socket, String request)

HTTPTaskIfc

Figure A.7: Interface HTTPTaskIfc

package unibe.internet.interfaces;

import java.io.IOException;

/**

* This interface provides a method to resolve a HTTP task

*/

public interface HTTPTaskIfc {

/**

* Resolves a task.

*

* @param socket the open socket

* @param request the request string

*/

void resolveTask(SocketIfc socket, String request);

}

A.2.3 HTTPRequestIfc

An HTTPTask fruitlet subdivides its jobs into three parts. The �rst part is to parse the

current HTTP request. Depending on the version, this step also includes the reading and

parsing of HTTP headers.

package unibe.internet.interfaces;

import java.io.IOException;

import unibe.internet.http.HTTPDate;

/**

* This interface provides methods to access a request entity.

*/

public interface HTTPRequestIfc {

APPENDIX A. USE CASES: DESIGN 65

"interface"

HTTPRequestIfc

void read(SocketIfc socket, String request)

String getMethod()

HTTPDate getIfMod()

String getRelFileName()

Figure A.8: Interface HTTPRequestIfc

/**

* Reads the request completely.

*

* @param socket the open socket

* @param request the request string

*/

void read(SocketIfc socket, String request);

/**

* Returns the relative file name of the request.

*/

String getRelFileName();

/**

* Returns the method of the request.

*/

String getMethod();

/**

* Returns the date, if a "if-modified-since" header is present.

*/

HTTPDate getIfMod();

}

A.2.4 HTTPResolveIfc

This part of the HTTPTask resolves a given request (HTTPRequestIfc) and generates a

response (HTTPResponseIfc).

package unibe.internet.interfaces;

import java.io.IOException;

/**

APPENDIX A. USE CASES: DESIGN 66

void resolve(HTTPRequestIfc req, HTTPResponseIfc res)

HTTPResolveIfc
"interface"

Figure A.9: Interface HTTPResolveIfc

* This interface provides a method in order to resolve a request.

*/

public interface HTTPResolveIfc {

/**

* Resolves a request and generates a response.

*

* @param req the request (input)

* @param res the response (output)

*/

void resolve(HTTPRequestIfc req, HTTPResponseIfc res);

}

A.2.5 HTTPResponseIfc

The third part of a HTTPTask fruitlet is the response. The response represents a whole

HTTP response (eventually including HTTP headers).

"interface"

void send(SocketIfc socket)

void setCode(int code)

void setReason(String reason)

void setFile(File file)

void addHeader(String header)

HTTPResponseIfc

Figure A.10: Interface HTTPResponseIfc

package unibe.internet.interfaces;

import java.io.File;

/**

* This interface provides methods to access a response entity.

APPENDIX A. USE CASES: DESIGN 67

*/

public interface HTTPResponseIfc {

/**

* Sends the whole response to an open socket.

*

* @param socket the open socket

*/

void send(SocketIfc socket);

/**

* Sets the return code of the response.

*

* @param code the code

*/

void setCode(int code);

/**

* Sets the reason-phrase of the response.

*

* @param reason the reason-phrase

*/

void setReason(String reason);

/**

* Sets the file to send.

*

* @param file the file to send

*/

void setFile(File file);

/**

* Adds a header to the response.

*

* @param header the header

*/

void addHeader(String header);

}

A.2.6 Conclusion: HTTP Server

The design of our little HTTP server shows that it is possible to build open, extendable

servers with our fruitlet approach. It seems that the design is quite
exible concerning

the openness and the adaptability of the HTTP server.

APPENDIX A. USE CASES: DESIGN 68

A.3 Open Message Organizer

We want to show an example of a system in order to handle di�erent message systems on

the Internet (see section 7.3) within the same application.

A user should also be able to integrate new message systems from di�erent information

providers into the message system (thus Open Message Organizer).

A.3.1 Design

We restrict ourselves in the current implementation to the reception mechanisms of mes-

sage systems. We subdivide the process of receiving messages into multiple parts:

We introduce a chain of software abstractions that an incoming message runs through. At

the moment we distinguish between four software abstractions:

� Retriever : a retriever is able to fetch messages from the Internet. In order to retrieve

a message, it uses a standard or a specialized non-standard protocol. Our message

organizer can contain arbitrary types of retrievers.

� Storage: a storage is the representation of an interface to a non-volatile storage

system. For example, it can map a set of messages to a local �le system as well as

to a remote �le system.

� Folder : a folder is a visual representation of a set of stored messages. Normally it

provides a mechanism to select and display a particular message.

� FolderRetrieverConnector : is a piece of software between a retriever and a folder. It

receives a message from its retriever and can decide if it should handle the message

to its folder. It can also transform or �lter (parts of) a particular message before

passing it on.

We access each of the described abstractions through a corresponding interface. We in-

troduce the interface RetrieverIfc (implemented by any retriever), FolderIfc (imple-

mented by any folder), StorageIfc (implemented by any storage system) and ConnectorIfc

(implemented by any FolderRetrieverConnector). All these abstractions are designed as

fruitlets.

Through these interfaces it is possible to combine the various fruitlets to become a
exible

message organizer. The constraints are: We can only connect a single FolderRetriever-

Connector to exactly one retriever and exactly one folder. A storage can have exactly one

folder and vice versa.

Figure A.11 shows an initial approach and overview of the open message organizer.

Because all of the mentioned fruitlets of the open message organizer show the same behav-

ior with respect to some tasks, we decided to introduce a generic interface

MessageSysCompIfc. The interface MessageSysCompIfc collects methods like delete,

APPENDIX A. USE CASES: DESIGN 69

RetrieverIfcStorageIfc

"Retriever Fruitlet""Storage Fruitlet"

"Folder Fruitlet" "FolderRetrieverConnector Fruitlet"
F

o
ld

e
rI

fc

C
o

n
n

e
c
to

rI
fc

Figure A.11: Class Diagram: Open Message Organizer

connect and disconnect, which we expect all the message system fruitlets to support.

Furthermore, the MessageSysCompIfc allows the message system fruitlets to be integrated

into the visual connector tool of the open message organizer (see section 7.3.2), by pro-

viding access to a graphical component (see method getView()). It is also necessary that

all the message system fruitlets have access to the open message organizer.

Furthermore, we use an abstraction to encapsulate messages within the open message

organizer. A message consists of the message text itself and the header. We introduce

interface HeaderIfc and interface MessageIfc in order to access these abstractions.

This leads us to the class diagram in �gure A.12:

A.3.2 Interfaces

We introduce in this section all the interfaces of the open message organizer.

MessageSysCompIfc

package unibe.omo.interfaces;

import unibe.interfaces.ManagerIfc;

/**

* This interface is the basic access plug of

* fruitlets which belong to the open message organizer.

*/

public interface MessageSysCompIfc {

/**

* Initializes the message system fruitlet.

*

APPENDIX A. USE CASES: DESIGN 70

RetrieverIfcStorageIfc

"Storage Fruitlet"

"Folder Fruitlet"

F
ol

de
rI

fc

C
on

ne
ct

or
Ifc

"Retriever Fruitlet"

M
es

sa
ge

S
ys

C
om

pI
fc

M
es

sa
ge

S
ys

C
om

pI
fc

"FolderRetrieverConnector Fruitlet"

"Open Message Organizer Fruitlet"

M
es

sa
ge

S
ys

C
om

pI
fc

M
es

sa
ge

S
ys

C
om

pI
fc

O
m

oI
fc

Figure A.12: Class Diagram: Open Message Organizer

"interface"

MessageSysCompIfc

String getID()

String getIdentString()

String getComponentName()

OmoIfc getOmo()

ManagerIfc getManager()

void saveState()

CompViewIfc getView()

void connect(MessageSysCompIfc comp)

void disconnect(MessageSysCompIfc comp)

void delete()

Figure A.13: Interface MessageSysCompIfc

APPENDIX A. USE CASES: DESIGN 71

* @param omo reference to the open message organizer

* @param componentName the name of this fruitlet

* @param id the ID of this fruitlet

*/

void initComp(OmoIfc omo,

String componentName, String id);

/**

* Returns the id.

*/

String getID();

/**

* Returns an identification String.

*/

String getIdentString();

/**

* Returns the fruitlet name.

*/

String getComponentName();

/**

* Returns the reference to the open message organizer.

*/

OmoIfc getOmo();

/**

* Returns the reference to the system wide manager.

*/

ManagerIfc getManager();

/**

* Saves the state of this fruitlet.

*/

void saveState();

/**

* Returns the graphical representation of this fruitlet.

*/

CompViewIfc getView();

/**

* Connects this fruitlet to another fruitlet in

* the open message organizer.

* Returns true on success.

APPENDIX A. USE CASES: DESIGN 72

*/

boolean connect(MessageSysCompIfc comp);

/**

* Disconnects this fruitlet from another fruitlet in

* the open message organizer.

* Returns true on success.

*/

boolean disconnect(MessageSysCompIfc comp);

/**

* Deletes the instance of the fruitlet.

* Returns true on success.

*/

boolean delete();

}

RetrieverIfc

RetrieverIfc
"interface"

void getNewMessages()

Figure A.14: Interface RetrieverIfc

package unibe.omo.interfaces;

/**

* This interface provides the retriever functionality.

*/

public interface RetrieverIfc {

/**

* Retrieves new messages. For each new message the retriever

* calls insertMessage() of the connected FolderRetrieverConnectors

* (using interface ConnectorIfc).

*/

void getNewMessages();

}

ConnectorIfc

APPENDIX A. USE CASES: DESIGN 73

"interface"

void addFilter(FilterIfc filter)

void insertMessage(MessageIfc message)

ConnectorIfc

Figure A.15: Interface ConnectorIfc

package unibe.omo.interfaces;

/**

* This interface provides the basic functionality of

* a FolderRetrieverConnector.

*/

public interface ConnectorIfc {

/**

* Adds a filter to the connector.

*/

void addFilter(FilterIfc filter);

/**

* Passes a message to the connector. If the message passes

* through all of the connector's filters, the connector calls up

* insertMessage() from its folder (using interface FolderIfc).

*

* @param message the message

*/

void insertMessage(MessageIfc message);

}

FolderIfc

"interface"

MessageIfc getMessage(HeaderIfc header)

FolderIfc

void insertMessage(MessageIfc message)

void showFolder()

Figure A.16: Interface FolderIfc

APPENDIX A. USE CASES: DESIGN 74

package unibe.omo.interfaces;

/**

* This interface provides the basic functionality of

* a Folder.

*/

public interface FolderIfc {

/**

* Inserts a message in the folder.

*

* @param message the message.

*/

void insertMessage(MessageIfc message);

/**

* Returns a message.

*

* @param header the header.

*/

MessageIfc getMessage(HeaderIfc header);

/**

* Shows the graphical representation of the folder.

*/

void showFolder();

}

StorageIfc

"interface"

MessageIfc getMessage(HeaderIfc header)

StorageIfc

Enumeration getHeaders()

void saveMessage(MessageIfc message)

void deleteMessage(HeaderIfc header)

Figure A.17: Interface StorageIfc

package unibe.omo.interfaces;

import java.util.Enumeration;

APPENDIX A. USE CASES: DESIGN 75

/**

* This interface provides the basic functionality of

* a storage.

*/

public interface StorageIfc {

/**

* Returns an enumeration of the headers in this storage.

*/

Enumeration getHeaders();

/**

* Returns a message.

*

* @param header the header of the message.

*/

MessageIfc getMessage(HeaderIfc header);

/**

* Saves a message in the storage

*

* @param message the message.

*/

void saveMessage(MessageIfc message);

/**

* Deletes a message.

*

* @param header the header of the message.

*/

void deleteMessage(HeaderIfc header);

}

OmoIfc

package unibe.omo.interfaces;

import java.lang.String;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.util.Hashtable;

import java.awt.Frame;

/**

* This interface provides general access to the

* open message organizer.

*/

APPENDIX A. USE CASES: DESIGN 76

DataInputStream getInputStream(String id)

DataOutputStream getOutputStream(String id)

void save()

void startComponent(String name)

void delete(MessageSysCompIfc comp)

void listRetriever()

void listStorage()

void listFolder()

void listConnector()

void showComposer()

String getBaseDir()

String getNewID()

MessageSysCompIfc getRef(String id)

FolderNodeIfc getNodes()

void insertNode(FolderIfc folder)

void connectComponents(MessageSysCompIfc first,
MessageSysCompIfc second)

void disconnectComponents(MessageSysCompIfc first,
MessageSysCompIfc second)

void add(CompViewIfc view)

Frame getFrame()

OmoIfc
"interface"

Figure A.18: Interface OmoIfc

APPENDIX A. USE CASES: DESIGN 77

public interface OmoIfc {

/**

* Returns an input stream, using the id of a message

* system component.

*

* @param id the ID of a message system component.

*/

DataInputStream getInputStream(String id);

/**

* Returns an output stream, using the id of a message

* system component.

*

* @param id the ID of a message system component.

*/

DataOutputStream getOutputStream(String id);

/**

* Saves the state of the open message organizer.

*/

void save();

/**

* Starts a message system component.

*

* @param name the name of the component (fruitlet address).

*/

void startComponent(String name);

/**

* Deletes a message system component from the

* open message organizer.

*

* @param comp the message system component.

*/

void delete(MessageSysCompIfc comp);

/**

* Lists available retrievers

*/

void listRetriever();

/**

* Lists available storages

*/

APPENDIX A. USE CASES: DESIGN 78

void listStorage();

/**

* Lists available folders

*/

void listFolder();

/**

* Lists available FolderRetrieverConnectors

*/

void listConnector();

/**

* Shows the composer/connector

*/

void showComposer();

/**

* Returns the base directory of the open message organizer

*/

String getBaseDir();

/**

* Creates a unique id within the open message organizer

*/

String getNewID();

/**

* Returns the message system component

*

* @param id the id of the message system component

*/

MessageSysCompIfc getRef(String id);

/**

* Returns the visible folder structure of the

* open message organizer.

*/

FolderNodeIfc getNodes();

/**

* Inserts a folder to the visible folder structure of the

* open message organizer.

*

* @param folder the folder

*/

APPENDIX A. USE CASES: DESIGN 79

void insertNode(FolderIfc folder);

/**

* Connects two message system components together.

*

* @param first the first component

* @param second the second component

*/

void connectComponents(MessageSysCompIfc first,

MessageSysCompIfc second);

/**

* Disconnects two message system components.

*

* @param first the first component

* @param second the second component

*/

void disconnectComponents(MessageSysCompIfc first,

MessageSysCompIfc second);

/**

* Adds the visible part of a message system components to

* the composer/connector of the open message organizer.

*

* @param view the view

*/

void add(CompViewIfc view);

/**

* Returns the graphical frame of the open message organizer.

*/

Frame getFrame();

}

MessageIfc

package unibe.omo.interfaces;

import java.lang.String;

/**

* This interface provides the basic access to

* message entities.

*/

public interface MessageIfc {

/**

APPENDIX A. USE CASES: DESIGN 80

String getID()

HeaderIfc getHeader()

int getLineCount()

String getLine(int line)

MessageIfc
"interface"

Figure A.19: Interface MessageIfc

* Returns the ID of the message.

*/

String getID();

/**

* Returns the header of the message.

*/

HeaderIfc getHeader();

/**

* Returns the number of lines of the message.

*/

int getLineCount();

/**

* Returns a line of the message.

*

* @param line the line number

*/

String getLine(int line);

}

HeaderIfc

package unibe.omo.interfaces;

import java.lang.String;

import java.util.Enumeration;

/**

* This interface provides the basic access to

* headers of message entities.

*/

APPENDIX A. USE CASES: DESIGN 81

"interface"

String getID()

void addHeader(String line)

String getHeaderValue(String headerkey)

Enumeration getAll()

HeaderIfc

Figure A.20: Interface HeaderIfc

public interface HeaderIfc {

/**

* Returns the ID of the message.

*/

String getID();

/**

* Adds a header to the message.

*

* @param line the header line

*/

void addHeader(String line);

/**

* Returns the value of a header entry.

*

* @param headerkey the key

*/

String getHeaderValue(String headerKey);

/**

* Returns an enumeration of the headers.

*/

Enumeration getAll();

}

A.3.3 Examples of Omo fruitlets

In order to show the functionality of the open message organizer prototype we implement

four fruitlets. With these four fruitlets it is possible to con�gure and run the prototype.

APPENDIX A. USE CASES: DESIGN 82

POP3 Retriever

The Post O�ce Protocol (POP for short) [MR96] is one of the most popular Internet

protocols in order to retrieve electronic mail. We implement an example of a restricted

POP3 client. In order to fetch new messages constantly from a POP server, our retriever

maintains its own thread. The thread is dormant during a de�ned time period before

calling the getNewMessages() method using the RetrieverIfc.

"interface"
ComponentIfc

"interface"
RetrieverIfc Thread

CheckThread

Pop3Dialog

Dialog

Pop3Client

Pop3Retriever

Figure A.21: Class Diagram: POP3 Retriever

Standard FolderRetrieverConnector

The standard FolderRetrieverConnector can contain zero or more �lters. If an incoming

message passes all the �lters the standard FolderRetrieverConnector inserts the message

into its folder.

Standard Folder

We show a simple folder example, which lists the currently available messages. The folder

can display the messages in a text box.

Disk Storage

A storage fruitlet of the open message organizer is responsible for managing arrived mes-

sages in a non-volatile store. We implement a simple storage fruitlet, which stores the

messages on the local �le system. We simply use the ID of the storage fruitlet to create a

directory. Within this directory we store the messages as text �les.

APPENDIX A. USE CASES: DESIGN 83

"interface"
ComponentIfc

"interface"

FolderRetrieverConnector

"Retriever Fruitlet""Folder Fruitlet"

ConnectorIfc

FolderIfc RetrieverIfc

"Filter Fruitlet"

FilterIfc

*

Figure A.22: Class Diagram: FolderRetrieverConnector

"interface"
ComponentIfc

"interface"
FolderIfc

Folder

"Store Fruitlet"

FolderDialog

Dialog

FolderView

1

1StorageIfc ConnectorIfc

"FolderRetrieverConnector Fruitlet"

1

1

Figure A.23: Class Diagram: Standard Folder

APPENDIX A. USE CASES: DESIGN 84

"interface" "interface"
ComponentIfc StorageIfc

DiskStorage DiskDialog

Dialog

"Folder Fruitlet"

FolderIfc

11

Figure A.24: Class Diagram: Disk Storage

A.3.4 Conclusion: Open Message Organizer

The design of the open message organizer (see also section 7.3) shows that the fruitlet

concept provides adaptability concerning the openness of the message organizer.

Appendix B

A Closer Look at Java

This section should give a more detailed overview of Java, for readers who wish to go

deeper into the Java topic or who are not very familiar with Java, yet.

This chapter discusses the following topics of Java: the programming language, the object

oriented properties of Java, details of Java's class loading mechanism, the virtual machine,

the security concept of Java and Java's core class libraries.

B.1 Introduction

The growth of networks superseded stand-alone non-networked computing in the nineteen

eighties. The idea of distributed computing replaced the stand-alone and local use of

resources and led us to the model of client/server. Client computers were able to use

services from other computers, called servers. Obviously this model helped to decrease

the cost of the client computers and let us concentrate the high cost services on one

machine.

The early nineties saw a incredible growth of wide area networks (WAN), especially the

growth of the Internet. These networks allow people to connect easily to other machines

around the globe. Between two machines, we may have very di�erent media of physical

transport layers, like telephone lines, optical �ber or wireless connections. The response

time of such a WAN is hard to estimate and can change during any given period of

time dramatically. The client/server model loses its power more and more in such an

environment, because special services may no longer be accessible within a set (or useful)

period of time.

One approach to the given problems is the idea of mobile code. In such a scenario people

try to transfer code from one machine (server) to another (client). The client itself is then

able to run the code and thus provides a requested service itself with minimal network

access during the computation. The service can remain on the client computer as long the

client wants to use it.

In early 1995 Sun Microsystem released such a mobile code technology. The concept

85

APPENDIX B. A CLOSER LOOK AT JAVA 86

includes a new object-oriented programming language, called Java, and libraries to enhance

the core language. After the success of the �rst Java release, the potential of Java becoming

an industrial standard for mobile computing is high.

B.2 Basic Concepts of Java

Java is not only the name of a new object-oriented programming language, but also re
ects

the whole mobile code paradigm from Sun Microsystem. The basic idea of Java is very old

(UCSD p-system1). The main problem of any mobile code system is to get a representation

of code which is mainly independent of the platform it runs on.

In doing so, Sun has created a platform independent abstract code representation for

compiled Java source. This representation is called Java byte-code. The idea is to intro-

duce interpreters (virtual machines) for each platform which can run the Java byte-code.

A compiler can create portions of such Java byte-code, and the code is ready to travel

through a network and is able to run on di�erent computers within this network. With

some restrictions it is also possible to compile other languages than Java into the Java

byte-code (e.g. Ada 95 [Taf96]). This fact leads us to the interoperability between di�erent

programming languages.

Mobile code concepts raise a lot of questions concerning the safety and security of such a

system. We discuss the security solutions of Java in section B.7.

B.3 The Java Programming Language

The object-oriented programming language Java is related to well-known languages like

Smalltalk, Objective-C and C++. The syntax of Java is similar to the C++ syntax, but

there are some important di�erences. In order to obtain a safe language, Java does not use

any pointers (see section B.7). The Java language provides an integrated module concept

in order to get a better structure in the source code.

Java is strongly typed. Thus, every variable and every expression must have a type. Java

checks these types by rigorous static type checking.

B.3.1 Java's Object Model

Like other common object-oriented programming languages, Java uses a class based ap-

proach. Classes are descriptions for objects, and every object must be instantiated from

a class. Classes can contain variables and methods, both can either be class-based or

object-based. Every method is virtual and there are no possibilities to overload operators.

Java does not support parameterized types, like the C++ \template" mechanism (\cat-

egory" in Objective-C). There is some e�ort going on to introduce parameterized types

1UCSD: http://infopad.eecs.berkley.edu/CIC/archive/cpu.history.html#pMachine

APPENDIX B. A CLOSER LOOK AT JAVA 87

into the Java core language [BLM96] (see also the Pizza project2).

B.3.2 Encapsulation

The Java environment forces each public class to be declared in a single �le. This mech-

anism helps to separate speci�cation from implementation. Java compilers translate Java

class sources into byte-code representations of a class. Such a class is stored in a single

�le and contains a platform independent representation in the Java byte-code format of a

class. Java helps to group related classes into packages, where each package de�nes a new

name space for its classes.

B.3.3 Inheritance

Java only provides a single inheritance model for implementation. The notion of inter-

faces allows a multiple inheritance hierarchy beside the single inheritance hierarchy of the

classes. Interfaces can specify a set of (abstract) method signatures (protocols). Every

class is able to implement any number of interfaces. Thus, two non-related classes can

implement to the same protocol.

Java introduces an new keyword \�nal" for classes, methods and variables in order to

restrict subclassing and overriding respectively. This notion was also introduced because

of security reasons.

B.3.4 Polymorphism

The only polymorphic mechanism provided by Java is method overriding. A subclass

can re-implement a method of its ancestors classes and thus change the behavior of the

subclass by re-using code from its ancestors classes.

B.3.5 Dynamism

Java allows for dynamic loading and binding of classes and instantiations and thus for

the dynamic extension of any program during run-time. The byte-code representation

of Java classes allows Java to keep encapsulation until run-time. The executable code

of a Java application is not a big binary �le, but consists of all classes, which belong to

the application. The Java run-time loads all the classes into the memory as and when

they are needed. The run-time system must check imported classes in various ways to

ensure integrity and safety of the run-time system itself and of the environment. Similar,

the run-time system is able to fetch classes from the network or from any other source.

Because there is no registration of class names at the time of writing, this leads to a

name-space problem. The current way to reduce the problem is to encapsulate classes

in packages and use the naming convention from Sun (class names should start with

companyname.packagename.).

2Pizza project: http://www.dcs.gla.ac.uk/~wadler/topics/pizza.html

APPENDIX B. A CLOSER LOOK AT JAVA 88

B.4 The Java Virtual Machine

The Java virtual machine is the run-time system of Java [Sun95b]. The virtual machine

is able to execute programs written in Java byte-code. The Java byte-code itself recog-

nizes about 200 machine instructions. The virtual machine acts as an interpreter for the

byte-code instructions. The virtual machine consists of registers, operand stack and an ex-

ecution environment, the garbage collected heap and exception handling is also maintained

on the level of the virtual machine.

The virtual machine is important to obtain some of the security features of Java (see

section B.7).

B.5 Concurrency

Java provides language-level concurrency mechanisms. The class Thread of the core pack-

age java.lang is the basic unit of concurrency. A Thread is the basic notion of sequential

computations. The Java run-time is fully multi-threaded. The Thread concept helps to

integrate the concurrency concept seamlessly into the language.

B.6 Class Loading Mechanism

One important and interesting part of Java is the class loading mechanism. As we discussed

in one of the previous sections, the Java run-time can load new classes into the run-time

system. The run-time uses so called class loaders to import new classes. For every class,

the run-time knows which loader is responsible for this class. Classes from the local �le

system can be imported with the default class loader.

Normally, classes depend on one or more other classes or interfaces and this implies the

knowledge of the related classes/interfaces to instantiate an object of a particular class.

Let's assume the following example: we want to load class S, which is a subclass of B. S

also has a private variable of type class C. If we try to instantiate an object of class S,

we also need to have the knowledge about class B and class C. The Java run-time uses

the following strategy to solve this problem: if the class S requires other classes (say B),

the run-time tries to get the class de�nition of B in the same manner as it received the

de�nition of class S. This means the run-time uses exactly the same class loader as with

class S but asks it for a de�nition of B.

Every standalone Java application is able to introduce new class loaders. A class loader

can implement the way a class is retrieved from any source (e.g. using HTTP protocol

via Internet to retrieve a class). And the class loader can also implement the strategy to

obtain related classes. One strategy for example is to �rst ask the local �le system for a

class de�nition, and if this fails, ask a host on the network for the de�nition.

APPENDIX B. A CLOSER LOOK AT JAVA 89

B.7 Safety and Security

Java's mechanism to extend the type system during run-time, makes it necessary to intro-

duce safety and security mechanisms, �rstly in the language and secondly in the run-time

system as well.

The Java system provides several layers of safety and security for a stand alone application.

An overview of the layers can be given as follows (see also section 3.5.4):

� Layer one: the language and the compiler

� Layer two: byte-code veri�er

� Layer three: class loader

� Layer four: Security Manager

B.7.1 Language and Compiler

The Java programming language itself provides a �rst layer of safety. One advantage of

Java over other existing programming languages is that Java was designed right from its

early days to be a safe language. In Java the size of all primitive data types is well de�ned.

Thus two di�erent, but correct Java compilers will never give di�erent results for program

execution. Other languages (e.g. C++) have di�erent de�nitions of their primitive types,

which can be machine and/or compiler dependent. Dangerous pointer arithmetic was

strictly removed from the language, thus Java does not support any pointers. In fact,

references to objects cannot be modi�ed in a dangerous way. Every cast operation is

rigorously checked during compile-time and run-time. For instance, it is not possible to

cast an object into an array of bytes and thus it is not possible to access private data areas

of an object.

As we mentioned earlier, the Java language is strongly typed. The compiler checks all the

references to methods and variables to ensure the correct types. The compiler also rejects

all accesses to uninitialized variables of any program.

B.7.2 The Byte-Code Veri�er

If we use a trusted compiler, we can ensure all the safety features described in the previous

section. Because Java is able to import new types (classes) in the form of Java byte-code

from other sources (e.g. networks) we do not know which compiler has produced these

code fragments. It is even possible that classes were compiled from other programming

languages into Java byte-code. Thus, the Java run-time system performs a series of tests

before running any piece of code.

These tests will be performed directly after the loading of a class. Once a class has passed

all the tests it can run without restrictions on the interpreter. Thus the byte-code veri�er

can help to improve the performance of the interpreter because run-time tests for every

APPENDIX B. A CLOSER LOOK AT JAVA 90

instruction can be eliminated. In short, the byte-code veri�er passes the code through

four veri�cation phases.

� Pass one: check class �le format

� Pass two: test �nal , superclass constraints

� Pass three: analyzes each method; does data
ow analysis

� Pass four: performs some postponed checks of pass three

Pass one occurs when the interpreter loads a class �le. It checks some format properties of

class �les, like the magic number, attribute length and the constant pool. Pass two checks

some constraints of the class hierarchy, for example: every class (except Object) must have

a superclass, �nal classes are not subclassed. Pass three is the most complex test. This

pass checks the code of each method and does a data-
ow analysis. Pass three ensures

that at any given point of the code, no matter what code path is taken to reach that

point, some type constraints are valid. For instance: The stack is always the same size

and contains the same type of objects, methods are called with appropriate arguments,

�elds are modi�ed with values of the appropriate type. Pass four does some postponed

tests of pass three. For more detailed information about the byte-code veri�er and low

level security in Java see [Yel96].

B.7.3 The Class Loader

Class loaders of a stand alone application can help to implement security policies. Class

loaders can be used to ensure that a unique name space for classes from di�erent sources

(e.g. di�erent network hosts) exists. Classes loaded from the local �le system (often called

built-ins) are located in a separate name space in any case. Thus it is not possible that

classes from di�erent name spaces can access each other without control of the system. If

a class is requested from a class loader, it should always look in the built-ins for the class

�rst. There is no way to spoof a built-in class by an imported untrusted class.

Any standalone application is allowed to implement its own class loaders at will. The Java

system is not longer directly involved. Thus, an application can in
uence its own security

policy by writing an appropriate class loader.

B.7.4 Security Manager

This layer is also housed on the application level. A stand alone Java application is able to

fully implement security policies by introducing a SecurityManager . A Java application

has zero or one security managers. All dangerous operations of the built-ins call methods

of the security manager. For instance, the constructor of the class InputStream always

calls the security manager's method checkRead(String name). Every time, a class tries

to open a �le via the InputStream class, the security manager is called. The security

manager o�ers some methods of evaluating the current execution environment running on

APPENDIX B. A CLOSER LOOK AT JAVA 91

the interpreter and the security manager can decide to allow or disallow a special access

request.

The current security manager is called from the following events: read/write the local

�le system, read/write the network, execute other programs, exit the current application,

instantiate a new class loader, read/write system properties, create a top level windows

and access threads.

B.8 The Java Libraries

Java provides an initial class hierarchy to the user. The main goal of this class hierarchy is

to provide the basic tools to write platform independent software. The classes are grouped

into Java packages. Most of the class methods access system functions by using platform

dependent native calls. The rest of this section gives a short overview of the Java core

packages.

B.8.1 java.lang

The java.lang package consist of classes related to the Java core. Classes like Object , Class ,

ClassLoader and abstractions of the basic data types like String , Integer and Character

are placed in this core package.

B.8.2 java.net

Java was born into a networking world, thus one important package of classes is java.net .

java.net includes abstractions of the Berkeley sockets for TCP/IP [Com95] and some basic

abstractions for Web-URL's.

B.8.3 java.awt

This is the biggest package of the core library. It re
ects a whole abstraction to a win-

dowing toolkit. The awt (abstract windowing toolkit) framework provides a fully platform

independent set of classes to build applications using a graphical user interface.

B.8.4 java.io

The java.io package implements a set of basic stream classes to access the local �le system.

java.io includes classes like InputStream, OutputStream and also higher abstractions of

streams (e.g. FileInputStream).

APPENDIX B. A CLOSER LOOK AT JAVA 92

B.8.5 java.util

This is a collection of useful classes outside of the core package java.lang . java.util provides

abstractions like Hashtable, Vector , Enumeration and Date.

B.8.6 java.applet

The main class of this package is Applet . An applet is a mini application written in Java,

which is able to run as a subprocess in special Web browsers like Netscape 2.0 or HotJava.

For a more detailed discussion of applets and Java enabled browsers see section 3.4.

Appendix C

Diagram Notation

We use the \Uni�ed Modeling Language" [BR96] in order to draw all the class diagrams

within this thesis. This appendix summarizes the notational shortcuts we mainly used to

show our class diagrams. Because we mainly used class diagrams in the thesis, we can

restrict ourselves here to the notations of class diagrams. This appendix is not exhaustive

and we suppress a lot of details in order to focus on the features we used in the diagrams.

C.1 Introduction

The Uni�ed Modeling Language is a design method for specifying, visualizing, and doc-

umenting the artifacts of an object-oriented system under development. The Uni�ed

Modeling Language originated of two leading object-oriented methods (Booch method

and OMT).

C.2 Classes

Classes are drawn as a solid line rectangle with three compartments. The top compartment

contains the name of the class, the middle compartment the attributes, and the bottom

compartment a list of operations (see �gure C.1).

The attribute and operation compartments can be suppressed to reduce complexity in an

overview. Omitting a compartment makes no statement about the absence of operations

and attributes. In contrast, an empty compartment explicitly declares that there are no

elements in that part.

C.3 Association

In class diagrams associations represent structural relationships between di�erent classes.

Most associations are binary, shown as solid lines between classes. Associations may have

93

APPENDIX C. DIAGRAM NOTATION 94

myAttribute : integer

myMethod(xyz : integer)

Example

Figure C.1: Class Diagram: Example of a class

names and may have direction arrows. An association could have di�erent names in each

direction. Each end of an association is called a role. A role may have a name, the name

shows how its class is viewed by the other class. Each role also indicates the multiplicity

of its class. The multiplicity shows how many instances of the class can be associated with

one instance of the other class (see �gure C.2).

Company

name

address

Person

name

firstName

address

Works-for

Figure C.2: Class Diagram: Association

Aggregation is a \whole-part" relationship, i.e. that the lifetime of the parts depend on

the lifetime of the whole. This relationship is indicated by placing a diamond on the role

attached to the whole class (see �gure C.3).

Company Division
Contains

Figure C.3: Class Diagram: Aggregation

C.4 Inheritance

The relationship between a superclass and its subclasses is called inheritance. Sometimes

this relationship is called specialization or generalization (depending on whether one is

viewing from the superclass to the subclass or vice versa). Inheritance is drawn as a

APPENDIX C. DIAGRAM NOTATION 95

solid line from the subclass to its superclass with an un�lled triangular arrowhead on the

superclass end (see �gure C.4).

Figure

Line

Figure C.4: Class Diagram: Inheritance

C.5 Interfaces

Usually we call a set of function signatures an interface. An interface is an articulation

of expected behavior and responsibilities of a class. The Uni�ed Modeling Language also

provides a notation for interfaces. Because we use Java as implementation language, we

use this notation quite often. There exist two notations:

C.5.1 Rei�ed Interface Notation

This notation displays the interface explicitly, drawn as a class but with the stereotype

\interface" above the interface name. The fact that a class implements an interface can be

shown with a dashed arrow from the class to the interface (see �gure C.5). The association

may be decorated with the stereotype \conforms".

Foo
"interface"

"conforms"

client
xyz

Figure C.5: Class Diagram: Rei�ed Interface Notation

C.5.2 Symbolic Interface Notation

This notation is used to express that a client class is accessing another class using an

interface. Figure C.6 shows a client class \Foo" which connects to class \Bar" using the

APPENDIX C. DIAGRAM NOTATION 96

interface \xyz".

Foo
Bar

xyz

Figure C.6: Class Diagram: Symbolic Interface Notation

Bibliography

[AJDS96] M.P. Atkinson, M.J. Jordan, L. Daynes, and S. Spence. Design Issues for

Persistent Java: a type-safe, object-oriented, orthogonally persistent system.

Technical report, University of Glasgow, February 1996.

[Bar95] J. Barnes. Programming in Ada 95. Addison-Wesley, 1995.

[BLM96] J. A. Bank, B. Liskov, and A. Myers. Parametrized types and java. (submitted

for OOPSLA'96), 1996.

[Bor92] N. S. Borenstein. Computational mail as network infrastructure for computer-

supported cooperative work. In CSCW 92 Proceedings, pages 67{73, 1992.

[BR93] N. Borenstein and M. T. Rose. Mime extensions for mail-enabled applica-

tions: application/safe-tcl and multipart/enabled-mail. electronically, Novem-

ber 1993. This document is part of the Safe Tcl distribution.

[BR96] G. Booch and J. Rumbaugh. Uni�ed Modeling Language, Version 0.9. Tech-

nical report, Rational Software Corporation, 1996.

[Car95] L. Cardelli. A language with distributed scope. Technical report, Digital

Equipment Corporation, Systems Research Center, 130 Lytton Ave, Palo Alto,

CA 94301, USA, 1995.

[Com95] D. Comer. Internetworking with TCP/IP, Vol I, Principles, Protocols and

Architecture. Prentice Hall, 1995.

[CS93] D. Comer and D. Stevens. Internetworking with TCP/IP Vol III, Client/Server

Programming and Application. Prentice Hall, 1993.

[DFW96] D. Dean, E. Felten, and D. Wallach. Java Security: From Hotjava to Netscape

and Beyond. Technical report, Departement of Computer Science, Princeton

University, 1996.

[Gen95] General Magic, Inc., 420 North Mary Avenue, Sunnyvale, CA 94086. Telescript

Language Reference, October 1995.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and R. Vlissides. Design Patterns. Addison

Wesley, 1995.

97

BIBLIOGRAPHY 98

[GM95] J. Gosling and H. McGilton. The Java Language Environment, A White Paper.

Technical report, Sun Microsytems Computer Corporation, 1995.

[Har95] C. Harrison. Smart Network and Intelligent Agents. 1995.

[HCK95] C. G. Harrison, D. M. Chess, and A. Kershenbaum. Mobile agents: Are they a

good idea ? Technical report, IBM Research Division, IBM Research Division,

T.J. Watson Research Center, Yorktown Heights, NY 10598, March 1995.

[Hoe93] U. Hoelzle. Integrating independently-developed components in object-oriented

languages. In O. Nierstrasz, editor, Proceedings ECOOP'93, LNCS 707, pages

36{56, July 1993.

[Hoh95] F. Hohl. Konzeption eines einfachen Agentensystems und Implementation eines

Prototyps. Master's thesis, University of Stuttgart, August 1995.

[Jol96] V. Jolobo�. Java Mobile Code: A White Paper. Technical report, OSF Re-

search Institute, 1996.

[KL96] Bharat K. and Cardelli L. Migratory Applications. Technical report, digital,

February 1996.

[Mic95] Microsoft Corporation. The Component Object Model Speci�cation, March

1995.

[MN96] T. Meijler and O. Nierstrasz. Beyond Objects: Components. 1996.

[MR96] J. Myers and M. Rose. Post O�ce Protocol - Version 3. RFC 1939, 1996.

[ND95] O. Nierstrasz and L. Dami. Component-oriented software technology. In

O. Nierstrasz and D. Tsichritzis, editors, Object-Oriented Software Compo-

sition, chapter 1, pages 3{28. Prentice Hall, 1995.

[NT95] O. Nierstrasz and D. Tsichritzis, editors. Object-Oriented Software Composi-

tion. Prentice Hall, 1995.

[Obj92] Object Management Group. The Common Object Request Broker: Architec-

tures and Speci�cation, 1.1 edition, 1992.

[Sun95a] Sun Microsystem Computer Corporation. The Java Language Speci�cation,

1995.

[Sun95b] Sun Microsystem Computer Corporation. The Java Virtual Machine Speci�-

cation, August 1995.

[Taf96] T. Taft. Programming the Internet in Ada 95. submitted to Ada Europe 96,

March 1996.

[van95] G. van Rossum. Python Tutorial. Dept. AA, CWI, P.O. Box 94079, 1090 GB

Amsterdam, The Netherlands, 1.2 edition, 1995.

[Vin93] S. Vinoski. Distributed Object Computing with CORBA. C++ Report, July

1993.

BIBLIOGRAPHY 99

[Weg87] P. Wegner. Dimensions of object-based language design. ACM SIGPLAN

Notices, 22(12):168{182, 1987.

[WJK96a] M. Weiss, A. Johnson, and J. Kiniry. Distributed Computing: Java, CORBA,

and DCE. Technical report, OSF Research Institute, 1996.

[WJK96b] M. Weiss, A. Johnson, and J. Kiniry. Security Features of Java and Hotjava.

Technical report, OSF, Research Institute, 1996.

[Yel96] F. Yellin. Low Level Security in Java. WWW, Sun Microsystems, 1996.

