
meet-
s to re-
ing,

A.
H

Pano
Com
Repr
may
othe
right
Chapter 7

Component Classification
in the Software Information
Base

Panos Constantopoulos and Martin Dörr

Abstract A key component in a reuse-oriented software development
environment is an appropriate software repository. We present a repository
system which supports the entire software development lifecycle, providing for
the integrated and consistent representation, organization, storage, and
management of reusable artefacts. The system can support multiple
development and representation models and is dynamically adaptable to
new ones. The chapter focuses on the facilities offered by the system for
component classification, an important technique for retrieving reusable
software. It is demonstrated that the inherently delicate and complex process
of classification is streamlined and considerably facilitated by integrating it into
a wider documentation environment and, especially, by connecting it with
software static analysis. The benefits in terms of precision, consistency and ease
of use can be significant for large scale applications.*

7.1 Introduction

Software reuse is a promising way of increasing productivity, assuring quality and
ing deadlines in software development. There are several, non-exclusive approache
use, including organizational support, software libraries, object-oriented programm
AI-based methods for design reuse and process analysis.

* Work on the SIB was partly funded by the European Commission through ESPRIT project ITHAC
Partners in ITHACA were: Siemens-Nixdorf (Germany), University of Geneva (Switzerland), FORT
(Greece), Bull (France), TAO (Spain) and Datamont (Italy).
s Constantopoulos and Martin Dörr, “Component Classification in the Software Information Base,” Object-Oriented Software
position, O. Nierstrasz and D. Tsichritzis (Eds.), pp. 177-200, Prentice Hall, 1995.
oduced with the permission of the Publisher, Prentice Hall (a Pearson Education company). This work is protected by copyright and

 not be reproduced other than when downloaded and viewed on a single Central Processor Unit (CPU) for private use only. It is not
rwise to be reproduced or transmitted or made available on a network without prior written permission of Prentice Hall. All other
s reserved.

178 Component Classification in the Software Information Base

e code,
ting the
devel-
re de-

tware
ments
ation,
t proc-
ent of

ion, in-
se the
ds in
facts.

d tech-
d in an
 large
f class-
senta-
on and
upport

imple
herit-
 class

 arising
Prieto-
to six
ich a
r suited
[17].
[16];
nd-
 SIB

e ES-
The
pts in-
 to ac-
on the
ring
are de-
A common theme in all these approaches is that reuse concerns not only softwar
but also design, requirements specifications and development processes. Suppor
communication of all these aspects of software development between the original
oper and the reuser, and, furthermore, the cooperation within communities of softwa
velopers (“software communities” [14]), is a basic concern of reuse technology. Sof
repositories are key components in reuse-oriented software development environ
[9] supporting the organization and management of software and of related inform
as well as the selection and comprehension of relevant software and of developmen
esses. In an orthogonal manner, object-oriented languages facilitate the developm
reusable software components through encapsulation, data abstraction, instantiat
heritance, genericity and strong typing. For broad, comprehensive surveys of reu
reader is referred to [5] [18]. Krueger presents in [18] a taxonomy of reuse metho
terms of their ability to abstract, select, specialize (adapt) and integrate software arte

In this chapter we assume that applications are developed using object-oriente
nology, and that the software components of interest are mainly classes specifie
object-oriented programming language. As pointed out in [14], the management of
class collections introduces a number of problems concerning the representation o
es, in particular, the expression of structural and descriptive information, the repre
tion of relationships and dependencies among classes in a collection, the selecti
understanding of classes by appropriate querying and browsing facilities, and the s
of class evolution.

Small to medium size collections of software classes can be organized by fairly s
schemes in the style of Smalltalk-80 [15]. Classes are hierarchically organized by in
ance and are grouped by functionality into possibly overlapping categories. The
browser allows the selection and exploration of reusable classes.

Various approaches have been proposed for addressing the selection problems
in large collections. One such is the faceted classification scheme developed by
Diaz and Freeman [23]. In this scheme, components are classified according
descriptors (“facets”), the values of which are hierarchically organized and on wh
conceptual distance is defined. A variant of the faceted classification scheme, bette
for object-oriented software, was developed within the ESPRIT REBOOT project
Other approaches to organizing software collections include: library cataloguing
hypertext (DIF, [13]); object-oriented libraries (Eiffel [20], Objective-C); ER and exte
ed models (IBM Repository [19], Lassie of AT&T [11]); and hybrid approaches (e.g.
[8]).

The Software Information Base (SIB) is a repository system, developed within th
PRIT ITHACA project, that stores information about the entire software lifecycle.
SIB offers a uniform representation scheme for the various artefacts and conce
volved in the different stages of the software lifecycle; the scheme can be extended
commodate new ones. It also supports multiple forms of presentation, depending
tool using the particular artefact. Finally, it provides querying, browsing and filte
mechanisms for selecting and understanding artefacts, and interfaces to other softw
velopment tools.

The Software Information Base 179

2. We
 clas-
tion of
ith the

ctively
 them.

DT);

 C++

m
bjects
ssible

ptions

e-
stan-

g-
In this chapter we first give an overview of the SIB and of its concepts in section 7.
examine the querying and browsing capabilities of the SIB in section 7.3. The SIB’s
sification scheme is described in section 7.4; section 7.5 explains how the classifica
software artefacts is automated, whereas section 7.6 reports on our experiences w
SIB. We conclude with perspectives for future work.

7.2 The Software Information Base

7.2.1 General Concepts

The SIB is structured as an attributed directed graph, with nodes and links respe
representing descriptions of software artefacts (objects) and relations between
There are three kinds of descriptions, namely:

1. requirements descriptions (RD);

2. design descriptions (DD); and

3. implementation descriptions (ID).

These descriptions provide three corresponding views of a software object:

1. an application view, according to a requirements specification model (e.g. SA

2. a system view, according to a design specification model (e.g. DFD); and

3. an implementation view, according to an implementation model (e.g. set of
classes along with documentation).

Descriptions can be simple or composite, consisting of other descriptions. The terde-
scriptions reflects the fact that these entities only describe software objects. The o
themselves reside outside the SIB (e.g. in a Unix file storing a C++ program), acce
from the corresponding descriptions.

There are several kinds of relationship between descriptions or parts of descri
serving a variety of purposes:

• Flexibility in defining or modifying types of artefacts and relationships, or even d
scription models, accomplished through multiple instantiation and a series of in
tiation levels.

• Classification of artefacts and relationships in generalization/specialization hierar-
chies supporting multiple strict inheritance.

• expression of semantic and structural relationships between artefacts, including a
gregation, correspondence, genericity and similarity.

• expression of user-defined and informal links — including links for hypertext navi-
gation, annotations, and for defining version derivation graphs.

• grouping of software artefacts descriptions into larger functional units.

180 Component Classification in the Software Information Base

rther
Ds of
ns).

roces-
action
one or
n the
mpo-
y
ations

cation

elling
sing

e IBM
ts at-
se fea-
xploited

ts. We
upport

re-
d to be
der the

 and
An important concept in the SIB is the application frame (AF). Application frames rep-
resent complete systems or families of systems and comprise (hasPart) at least one imple-
mentation and optional design and requirements descriptions. AFs are fu
distinguished into specific and generic (SAFs and GAFs) while the RDs, DDs and I
an AF should be considered as groupings of such descriptions (i.e. other associatio

A SAF describes a complete system (be it a linear programming package, a text p
sor or an airline reservation system) and includes exactly one ID. A GAF is an abstr
of a collection of systems pertinent to a particular application and includes one RD,
more DDs and one or more IDs for each DD. Application frames play a key role i
reuse-oriented software development lifecycle envisaged in ITHACA. Generic co
nents and applications are produced by application engineers. These are represented b
GAFs and constitute a core of, presumably good quality, components and applic
which are configured and adapted to fit particular needs by application developers. Such
derived, specific systems are represented by SAFs. For more on the ITHACA appli
development methodology and the role of application frames see [10] [9].

The representation language employed in the SIB is Telos [21]: a conceptual mod
language in the family of entity–relationship models [7]. The main reason for choo
Telos over other E-R extensions, such as those used by the PCTE+ OMS or th
Repository Manager, MVS, is that it supports unlimited instantiation levels and trea
tributes as objects in their own right (which, therefore, can also have attributes). The
tures account for great expressiveness and easy schema extension, and are fully e
in the SIB.

7.2.2 Relationships Between Software Artefacts

Relationships are essential for the classification and retrieval of software artefac
therefore elaborate on each kind of link and indicate, when appropriate, how they s
the querying and browsing activities in the SIB.

Attribution

Attribution is represented by attribute links. This is a general, rather unconstrained rep
sentation of semantic relations, whereby the attributes of a description are define
instances of other descriptions. An attribute can have zero or more values. Consi
following example:

Description SoftwareObject with
attributes
 author : Person

version : VersionNumber

SoftwareObject has attributes author and version whose values are instances of Person and
VersionNumber respectively. Dynamic properties, such as ‘calls’ relations of methods
procedures, also fall into this category.

The Software Information Base 181

or

y pos-

an one
stances
has to
n hier-
okens.
us re-

 [33]

ener-
 more
ined,

o
spond-
nd can
descrip-
ether
e parts
ond to
Aggregation

Aggregation is represented by hasPart links. This relates an object to its components. F
example:

Description SoftwareObject with
...
 hasPart

 components: SoftwareObject

The components of an object have a distinct role in the function of the object and an
sible changes to them affect the aggregate object as well (e.g. new version).

Classification

Classification (converse instantiation) is represented by instanceOf links. Objects sharing
common properties can be grouped into classes. An object can belong to more th
class. Classes themselves are treated as generic objects, which, in turn, will be in
of other, more generic objects (so-called “meta-classes”). In fact, every SIB object
be declared as an instance of at least one class. Effectively, an infinite classificatio
archy is established starting with objects that have no instances of their own, called t
Instantiation of a class involves instantiating all the associated semantic relations. Th
lations are treated as objects themselves. For example:

Description BankIS instanceOf SoftwareObject with
author : Panos
version : 0.1

 components : CustomerAccounts, Credit, Investments

The attribute and hasPart links of BankIS are instances of the corresponding attribute and
components links of SoftwareObject.

Classification is perhaps the most important modelling mechanism in the SIB.
gives a detailed account of the construction of models and descriptions in the SIB.

Generalization

Generalization (converse specialization) is represented by isA links. This allows multiple,
strict inheritance of properties between classes leading to the creation of multiple g
alization hierarchies. A class inherits all the attributes of its superclasses (possibly
than one — multiple inheritance); however, inherited properties can only be constra
not overridden (strict inheritance).

Correspondence

Correspondence is represented by correspondsTo links. A software object can have zer
or more associated requirements, design and implementation descriptions. Corre
ence relations concern the identity of an object described by different descriptions a
have as parts other correspondence relations between parts of the corresponding
tions. Correspondence links actually indicate that the descriptions they link tog
describe the same object from different perspectives. The correspondences of th
need not be one-to-one. For instance, a requirements specification may corresp

182 Component Classification in the Software Information Base

ntation.
. Ap-

ide a
chol-
 con-
ation
s re-

d ob-

tware

ally
ned

 cri-
bers in
an be
s, the
eas-

ation
of the

tating
IB can

 meas-
ilarity

 inter-

n
nother.
oth be

sing the
ecial
ta-
w the
more than one design and a design may have more than one alternative impleme
Similarly, a single implementation could correspond to more than one design entity
plication Frames are an important type of controlled correspondence in the SIB.

Similarity

Similarity links represent similarity relationships among software objects and prov
foundation for approximate retrieval from the SIB. Similarity has been studied in psy
ogy [32] and AI, most relevantly to this work in case-based reasoning [4]. Within the
text of object-oriented systems, similarity has been viewed as a form of generaliz
[34]. Alternatively, it has been interpreted as degree of affinity with respect to variou
lations, providing the foundation for the dynamically changing presentation of relate
jects within a browser (see chapter 9). Its applications include the support of approximate
retrieval with respect to a software repository as well as the re-engineering of sof
systems [27].

We are primarily interested in similarity links that can be computed automatic
from information that is loaded into the SIB. For added flexibility, however, user-defi
similarity links are also supported. Similarity is computed with respect to similarity
teria and expressed in terms of corresponding similarity measures, which are num
the range [0,1]. An aggregate similarity measure with respect to a set of criteria c
obtained as a weighted aggregate function of single-criterion similarity measure
weights expressing the relative importance of the individual criteria in the set. This m
ure may be symmetric or directed. For example, similarity with respect to generaliz
may be defined as symmetric, whereas similarity with respect to type compatibility
parameters of two C routines may be defined as directed.

Similarity can be used to define task-specific partial orders on the SIB, thus facili
the search and evaluation of reusable software objects. Moreover, subsets of the S
be treated as equivalence classes with respect to a particular symmetric similarity
ure, provided all pairs of the class are more similar than a given threshold. Such sim
equivalence classes may span different application domains, thus supporting
domain reuse. For details on the similarity analysis of SIB descriptions see [29].

Genericity

Genericity is represented by specialCaseOf links. This relation is defined only betwee
application frames to denote that one application frame is less parameterized than a
For example, a bank accounting and a hotel accounting application frame could b
derived from a more general, parametric accounting application frame.

Informal and user-defined links

When users have foreseeable needs for other types of links they can define them u
attribute definition facility of Telos. For instance, versioning can be modelled by sp
correspondence links labelled derivedFrom. Furthermore, random needs for represen
tion and reference can be served by informal links, such as hypertext links which allo
attachment of multimedia annotations to SIB objects.

Information Retrieval and User Interface 183

ptions
icular

upplied
s that

s that
n con-
ternal

ations.
ialized
 but

teps.
 func-
pports
e SIB
 of the
eries

 and
ttached,
y. Non-
query
r sig-
imum

tten-
Association

Association is an encapsulation mechanism intended to allow the grouping of descri
that together play a functional role [6]. It associates a set of descriptions with a part
symbol table:

Association = (setOfDescriptions, symbolTable)

The contents of an association can only be accessed through the entry points s
in its symbol table. For example, we may define as an association the description
constitute a design specification for a hotel information system, or all the classe
define an implementation of that same system. The SIB itself is a global associatio
taining all objects included in any association. Its symbol table contains all the ex
names of every object. Name conflicts can be resolved by a precedence rule.

Associations can be derived from other associations through queries or set oper
Furthermore, associations can be considered as materialized views. Non-mater
views, or simply views, differ from associations in that they cannot be updated directly,
rather, through updates of the associations which they are derived from.

7.3 Information Retrieval and User Interface

7.3.1 Querying and Browsing

The selection of software descriptions from the SIB is accomplished through the selection
tool (ST) in terms of an iterative process consisting of retrieval and browsing s
Browsing is usually the final and sometimes the only step required for selection. The
tional difference between the retrieval and the browsing mode is that the former su
the retrieval of an arbitrary subset of the SIB and presumes some knowledge of th
contents, while the latter supports local exploratory searches within a given subset
SIB without any prior knowledge. Operationally, both selection modes evaluate qu
against the SIB.

The basic selection functions of the SIB are:

Retrieve: Queries × Associations → P (Descriptions × Weights)
 Browse: Identifiers × P (Links × Depths) × Associations → Views

The Retrieve function takes as input a (compound, in general non-Boolean) query
an association, and returns a subset of the associated descriptions with weights a
indicating the degree to which each description in the answer set matches the quer
Boolean queries are based on similarity. Queries are formulated in terms of the
primitives offered by the Programmatic Query Interface. A set of queries of particula
nificance can be preformulated and offered as menu options, thus providing max
ease-of-use and efficiency for frequent retrieval operations.

Browsing begins with a particular SIB description which is the current focus of a
tion (called the current object) and produces a view of a neighbourhood of the current ob-

184 Component Classification in the Software Information Base

rhood
ore-

asses
a local

nks of
n topo-

over

 types
 spec-
 at the
nite),
s dis-
 back-

age
ed
menu
eries

r Sci-

 with
ng in a
titles,

hema
ture
rmore,
ion of
ject within a given association. Since the SIB has a network structure, the neighbou
of the current object is defined in terms of incoming and outgoing links of interest. M
over, the size of the neighbourhood can also be controlled. Thus, the Browse function
takes as input the identifier (name) of the current object, a list of names of link cl
paired with depth control parameter values and an association, and determines
view centred around the current object.

When the depth control parameters are all equal to 1, a star view results, showing the
current object at the centre surrounded by objects directly connected to it through li
the selected types. This is the simplest and smallest neighbourhood of an object, i
logical terms, with a controllable population. Effectively, the Browse function provides a
moving window with controllable filters and size, which allows navigational search
subsets of the SIB network.

When the depth control parameters are assigned values greater than 1, Browse displays
all objects connected to the current object via paths consisting of links of the selected
(possibly mixed), where each type of link appears in a path up to a number of times
ified by the corresponding depth parameter. This results in a directed graph rooted
current object. Finally, when the depth parameters are assigned the value ALL (infi
the transitive closure of the current object with respect to one or more link types i
played. Such a browse operation can display, for example, the call graph (forward or
ward) of a given routine.

Queries to the SIB can be classified from a user’s point of view as explicit or implicit.
An explicit query involves an arbitrary predicate explicitly formulated in a query langu
or through an appropriate form interface. An implicit query, on the other hand, is generat
through navigational commands in the browsing mode, or through a button or
option, for frequently used, “canned” queries. Browsing commands and explicit qu
can also be issued through appropriate interfaces from external tools.

7.3.2 Implementation

An application-scale SIB system has been implemented at the Institute of Compute
ence, FORTH, and is available to other sites for experimentation* (see figure 7.1).

The user interface supports menu-guided and forms-based query formulation
graphical and textual presentation of the answer sets, as well as graphical browsi
hypertext-like manner. A hypertext annotation mechanism is also provided. Menu
menu layout and domain-specific queries are user-configurable.

A forms-based interactive data entry facility is available for entering data and sc
information in a uniform manner. This facility automatically adapts itself to the struc
of the various classes and subclasses byemploying the schema information. Furthe
it is customizable to application-specific tasks, such as classification of items, addit
descriptive elements, etc.

* For details, consult the WWW page for this book (see the preface).

Information Retrieval and User Interface 185

deo,
tically
, which

 data,
n rela-
eries
tures,
ess by
odes
SIB in
ders of
with

 3 min-
th real
Any item in the SIB may reference a multimedia object, comprising images, vi
sound or text, stored externally. The SIB recognizes such references and automa
generates calls to the appropriate presentation tools with the respective parameters
results in a synchronous display of the multimedia object.

The SIB is optimized for referential access and large amounts of highly structured
especially for network structures consisting of a large variety of classes, rather tha
tively few classes with large populations per class (typical in a DBMS). Recursive qu
on aggregational hierarchies, classification hierarchies, and retrieval of graph struc
such as flow-charts or state-transition diagrams, play a more important role than acc
value conditions. A transitive closure with cycle detection of a binary tree with 1024 n
can be retrieved in 2 seconds on a Sun SPARC Station. The performance of the
look-up and traversal exceeds that of modern relational systems by one and two or
magnitude respectively. This allows for real-time queries that would be prohibitive
traditional databases.

Data entry speed is acceptable: 10,000 references are loaded in batch mode in
utes, and 500,000 in 2.5 hours on a SPARC. Both examples were measured wi

Figure 7.1 SIB static analyzer and class management system.

186 Component Classification in the Software Information Base

ge ap-
 The

s), the
riptor
ity.
re-

d rules

uni- or
imal

ories
re called

 reuse

-
h fac-

ed
bjective
ng soft-

PRIT
d for

e sen-
 three
re also
ce be-
 of hu-
tion of
 com-
application data from static analysis of a medium (30.000 code lines) and a very lar
plication (2.5 million code lines). The theoretical capacity limit is 1 billion references.
design of the internal catalogue structures is fully scalable.

For more on the SIB, the interested reader is referred to [8] [9].

7.4 The Classification Scheme

7.4.1 Principles

Given a set of entities (objects, concepts) represented by descriptors (keyword
grouping of those entities into disjoint classes according to some criterion of desc
matching is called classification. Matching may express some kind of semantic similar
A classification scheme determines how to perform classification in a given setting, p
scribing the sets of descriptors and possible internal ordering, matching criteria, an
for class assignment.

Depending on the number of descriptors used, a classification scheme can be
multi-dimensional. An example of a unidimensional scheme is the Universal Dec
Classification (see [26]). In library science, multidimensional (faceted) classification, was
introduced by Ranghanathan [25], breaking down information into a number of categ
thus addressing corresponding aspects of the classified entities. These aspects a
facets.

Prieto-Diaz and Freeman developed a faceted classification scheme for software
[23] [24] in which they use six facets to describe software: function, object, medium/
agent, system type, functional area, and setting. They mainly describe component func
tionality, the last three facets pertaining to the internal and external environment. Eac
et has a term space, i.e. a fixed set of legal values (concepts), in the sense of a controlled
vocabulary, and an extensible set of user terms. Concepts are organized by a direct
acyclic specialization relation, and terms are assigned as leaves to concepts. Su
conceptual distances between concepts and terms are defined, to support retrievi
ware components by their degree of matching.

A variant of the scheme of Prieto-Diaz and Freeman was developed in the ES
REBOOT project [17] [28] [22] [31]. This scheme comprises four facets, better suite
describing object-oriented components: abstraction, operation, operates-on and depend-
ency. The first three are analogous to subject, verb and object in a natural languag
tence describing component functionality, while the fourth is the counterpart of the
environmental facets of the Prieto-Diaz and Freeman scheme. The term spaces a
structured by relations such as specialization and synonymy. A conceptual distan
tween terms is defined, which, like that of Prieto-Diaz and Freeman, is the outcome
man assessment. Neither Prieto-Diaz and Freeman nor REBOOT relate the deriva
classification terms to the knowledge of structural dependencies between software
ponents. In [28], however, such a connection is suggested as potentially useful.

The Classification Scheme 187

ets are
cifically,

s
plica-
uch as
-
g con-
 reflect

a class
ethod

of
m space

ters. In
y also
jects.)
 includ-
rset of

ts own
o other

ng sys-
elease
ms to
pend-
 soft-
 in the
. For
NI

NIX
, the
ble by
gure
In the SIB classification scheme the REBOOT facets are adopted, except that fac
assigned not necessarily to a class as a whole but, rather, to the relevant parts. Spe
the contents of the SIB classification facets are as follows:

Abstraction

Abstraction terms are nouns representing active object types. Typically these abstraction
indicate the role that the object plays in its interactions with other objects of an ap
tion. An object-oriented software class as a whole is assigned an abstraction, s
‘String’, ‘Set’, ‘WindowSystem’, ‘Index’ or ‘NameList’. Abstraction terms do not in
clude expressions that denote processing, such as ‘String concatenation’ or ‘Strin
version’. Since object types are assumed to be active, the Abstraction terms do not
processing in general either (e.g. ‘String manipulation’).

Operation

Operation terms are verbal types representing specific activities. The active part of
comprises its methods. Hence we associate Operation terms with each individual m
responsible for an activity, e.g. ‘Solve’, ‘Invert’, ‘Lock-Unlock’, ‘Open-Close’. Pairs
inverse properties, such as ‘Open-Close’, are regarded as one term, to keep the ter
small.

Operates-On

Besides operating on the class to which it belongs, a method operates on its parame
object-oriented design, non-trivial parameters belong to classes. (Methods ma
directly access input/output devices, which may or may not be represented as ob
Operates-On terms are nouns representing the object types acted on by methods,
ing Abstractions, basic data types and devices. Note that Operates-On is a supe
Abstraction and that the abstraction of a class must be a default ‘Operates-On’ for i
operations. Operates-On represents the role an object type plays with respect t
types.

Dependency

Dependency terms represent environmental conditions, such as hardware, operati
tem or language. It is good practice in software development groups to test and r
complete libraries for a certain environment. Accordingly we assign Dependency ter
class libraries as a whole. The classes of the library are then indirectly linked to a de
ency through the library itself. Each combination of programming language, system
ware and hardware forms a different environment. Dependency terms are provided
SIB which reflect single environmental conditions, as well as combinations of those
instance, a library tested, for example, on (SINIX ODT1.1, AT&T C++ 3.0B, S
WX200), and (SINIX 5.41, CooL 2.1, SNI WX200) does not necessarily run on (SI
5.41, AT&T C++ 3.0B, SNI WX200). Such triples are terms by themselves in the SIB
constituents of which represent their immediate higher terms. Thus retrieval is possi
the triple itself, as well as by simple terms, e.g. SINIX 5.41, Unix, C++, etc. (see fi
7.2).

188 Component Classification in the Software Information Base

acet, are
sses are
ent of

e of the

 a
tance,

ively
r two
ation

n the
 hidden

e can
 of the
ts ac-
ent of

 is de-

ion re-
as a
7.4.2 Classification Hierarchies in the SIB

Facets are represented as meta-classes in the SIB. The terms, i.e. the values of a f
instances of that facet, and are therefore simple classes. The instances of those cla
the software objects sharing the functional property the term denotes. The assignm
a term to a software object is accomplished by declaring the object to be an instanc
term.

Note that facet terms reflect the functional role of components as they cooperate in
process, as distinguished from structural relations or user application tasks. For ins
‘C++ class’, ‘Menu item’, ‘Selection of goods, clients, or accounts’ may be respect
the structural, functional and application roles of one software object. These othe
roles are also very pertinent for reuse. In the SIB we take advantage of such inform
both independently and jointly with functional classification, as we shall see below. O
other hand, some essential functional parts of a software object are and should be
from the user, hence they do not have any application task associated with them.

In addition to a functional classification scheme, like the one discussed here, on
independently develop a classification scheme with respect to structural aspects
programming language, or other criteria. Concurrent classification of software objec
cording to more than one scheme is supported by the SIB. Technically, the assignm
terms from several schemes is performed by multiple classification: a component
clared to be an instance of all the relevant terms.

The term space for each facet is partially ordered by a specialization/generalizat
lation (isA) which, in the SIB, obeys multiple strict inheritance. This organization h

Unix

Object-oriented
Language

Figure 7.2 The isA hierarchy of combinatory Dependency terms.

SNIMachine

SINIX

C++

CooL

SNI_WX200

SINIX_5.41

SINIX_ODT1.1

C++3.0B

CooL2.1

SNI_WX200:SINIX_5.41/Cool2.1

SNI_WX200:SINIX_ODT1.1/C++3.0B

The Classification Scheme 189

 com-
of in-
dent
which
rpret

m their
 their
h
adius’
e re-

larity
 be dy-

e liter-
ed with
 be re-

yn-
,
lected
 those

os-

nce,
roup
erty:

tc.
 other
erties,

op-
), e.g.
tion

erms.
by leaf
 the re-

riority

atu-
ided.
etric

 a met-
insic
number of advantages. It minimizes the data entry involved in describing a software
ponent, since each term inherits all its predecessors. In addition, the probability
consistent classification is limited. Multiple isA relations express multiple indepen
properties. By contrast, simple isA relations generate pure hierarchical structures
are not flexible enough for expressing general, multifaceted relationships. If we inte
the term space as a set of classes semantically ordered by isA relations derived fro
implicit properties, assuming strict inheritance of those properties, the terms lose
linguistic nature and become concepts. Homonyms, i.e. instances of the same word wit
different meanings, must then be assigned different terms. For example, spectral ‘r
and circle ‘radius’, law and ‘order’ and warehouse ‘order’ do not share properties. Th
call of such a concept-based system is superior to a linguistic one (see [30]).

No distinction in nature is made between leaf terms and higher terms. The granu
of analysis depends very much on the breadth of the domains classified, and should
namically adaptable to the contents of the repository. As is generally accepted in th
ature, term spaces are kept small in order to help the user become quickly acquaint
the applicable terms for a given problem. Retrieved components can subsequently
viewed efficiently by browsing.

In order to combine discipline with linguistic flexibility in developing term spaces, s
onyms are introduced. Two different words are synonyms if they have the same meaning
such as ‘alter’ and ‘change’ in the Unix system call manual. Preferred words are se
as terms for inclusion in the isA-structured term space. Synonyms are attached to
through the attribute category synonym specifically defined in the SIB. Thus access is p
sible by all synonymous words and term, while vocabulary control is maintained.

Multiple inheritance expresses multiplicity of nature of a term itself. For insta
‘Copy’ has the properties of both ‘Put’ and ‘Get’. We adopt the principle that for any g
of terms sharing some implicit property, there should be a higher term with this prop
‘Get’, ‘Put’, ‘I/O’ share a property ‘transfer’, whereas ‘Put’, ‘Update’ share ‘Modify’, e
Arbitrary decisions on term placement in a hierarchy can thus be avoided. On the
hand, as any conceptual distance or similarity is based on some sharing of prop
those notions become closely related to the higher terms structure.

Multiplicity of nature at the item level (components), not resulting from intrinsic pr
erties of the terms, is expressed through multiple instantiation (assignment of terms
a method doing ‘Lock’ and ‘Update’. It turns out that the benefits from the specializa
(isA) structure of term spaces are fully obtained if items are only assigned to leaf t
Nevertheless, the system is robust to a dynamic refinement of the term space, where
terms may become higher terms. Items assigned to higher terms can be treated by
trieval query as possible candidates for all leaf terms under it, with a decreasing p
according to the number of levels between them.

The isA organization facilitates exploring, understanding and retrieving terms. N
rally, alphabetical browsing and retrieval by lexical pattern matching are also prov
Finally, a “conceptual distance” (conversely, similarity) can be defined as a suitable m
over the term space partially ordered by the isA relation [29]. The advantage of such
ric is that its computation requires no user input, as it effectively relies on the intr

190 Component Classification in the Software Information Base

 be ex-

ears,
ues; on
eRep-

epre-
 using
ecial-

ine-
 class.
o adapt
cture of
e ex-

 terms
pport
e the
 for de-
properties of the common higher terms. To which degree this notion of measure can
ploited to improve or normalize the hierarchy itself is a topic of further research.

7.4.3 Example

Let us consider the abstractions of a class ‘Time’, which handles arithmetic with y
hours, minutes, etc. On the one hand, it has to do with the representation of time val
the other hand, it does not relate to actual time. We therefore choose the term ‘Tim
resentation’. This term has two higher terms: ‘TemporalObject’, and ‘CompoundR
sentation’. By ‘CompoundRepresentation’ we denote systems of measurement
different units for different orders of magnitude, such as miles, yards, etc. Another sp
ization of ‘TemporalObject’ is ‘MachineTime’.

A ‘TimeRepresentation’ class may be directly used, or in conjunction with a ‘Mach
Time’ class to measure elapsed time. This conforms to the initial intention of such a
Note that we could easily change unit names and conversion factors between units t
such a class to handle miles, yards, etc. In this case we reuse the algorithm or stru
a specific solution. This property is intrinsic to a time representation module, and w
press it by the higher term ‘CompoundRepresentation’.

This example demonstrates how multiple inheritance can serve to bring related
together, and how a careful analysis of implicit properties of terms may help to su
reuse in ways the developer did not originally have in mind (see figure 7.3). Sinc
development of generic modules is regarded to be desirable for reuse, any support
tecting candidates to be generalized or parameterized is valuable.

CompoundRepresentation

TemporalObject

HWcomponent

Figure 7.3 The isA hierarchy environment of Abstraction ‘TimeRepresentation’.

TimeRepresentation

MachineTime

Printer

Keyboard

DistanceRepresentation

Streamlining the Classification Process 191

ware
ults of
a cor-
 class,
s, calls,
e mod-
 SIB

eful for

d
nly
difica-
hods,

ds. Pro-
a friend
ed for
s indi-
ds and
s. The
ss itself
, be they
senting

 sense,
a prop-
n in a

enden-

e ob-
those
 ele-
7.5 Streamlining the Classification Process

7.5.1 Static Class Analysis

The SIB stores various kinds of structural and descriptive information about soft
components. In particular, at the implementation description level, it stores the res
static analysis performed by program parsers. Given a programming language,
responding implementation description model defines a set of entities, such as
method, parameter, source file, and relations between these entities, such as define
user-of. The static analysis data of a given component are entered as instances of th
el concepts. (This information is useful enough in its own right that a version of the
has been developed purely as static analyzer.) Static analysis information is also us
streamlining the classification process.

We distinguish classification into direct, which is assigned explicitly to an entity, an
derived, which is defined by means of queries. Minimizing direct classification not o
saves human effort, but also improves consistency when software or term space mo
tions take place. Static analysis allows for an automatic mapping of information (met
parameters, etc.) to classification facets and terms.

Abstractions are associated to classes, and Operations are associated to metho
cedures and operators are treated like methods, if they are connected to a class vi
declarations. Otherwise, an additional class, such as ‘Procedure_group’ is introduc
their classification. The operations of a class are derived by queries through the link
cating the methods belonging to that class. The explicit correspondence of metho
Operations facilitates maintenance and consistency of code and classification term
Operates-On terms of a class are also derived, and include the abstraction of the cla
(since its methods can access its instances) and the parameter types of its methods
abstractions (i.e. other classes) or basic data types. (The assignment of terms repre
devices, system calls, etc., to methods is done manually at present.) In a linguistic
Operates-On is the direct object of the Operation verb. Operates-On is at first hand
erty of the method, or even more precisely of the instantiation of a specific operatio
method, and only in a wider sense a property of the class as a whole.

Dependency terms are assigned to libraries and applications. Therefore, the dep
cies of a class are derived by relating library files with the classes they contain.

7.5.2 Derived Classification

A number of derivation paths are used, in either direction, depending on whether th
jective is to find a class or the valid terms for a class. An example comprising all
paths is given in the next section. The following is the complete list of relevant path
ments:

• From synonyms to established terms through the ‘synonym of’ link.

192 Component Classification in the Software Information Base

verse

e of the

as_-

 more
y it is
, static
 from

pera-

 with
 exam-
uld be
te.
igher
n the

re han-
names
, which
ate sub-
ymous

nclud-
 Ab-
ntrast,
rder

rt of a
and/or
• From class terms to higher terms through the ‘isA’ link.
• From Abstraction terms of classes to methods as ‘Operates-On’ through the in

‘has parameter’ link.
• From method terms to classes through the inverse ‘has method’ link.
• From class terms to derived classes, in the sense of the PL, through the invers

‘has parent’ or ‘has supertype’ link.
• From Dependency terms to classes through the ‘Library.runs_on’ – ‘Library.h

file’ – ‘class.defined_in’ path.
Note that the direct assignment of terms is done not to software classes but to

finely-grained entities (e.g. methods) that are structurally related to them. In this wa
sufficient, in most practical cases, to assign one term to each entity. Furthermore
analysis information can support the automatic extraction of classification terms
formalized source code comments.

When creating term spaces it is important to maintain semantic links between O
tion terms and Abstraction terms, in particular:

1. which legal operations belong to an abstraction; and

2. which application domain an operation term is intended for.

The first kind of constraint should naturally be represented by linking abstractions
their legal operations. Creating higher operation terms would be unnecessary. For
ple, Operation’truncate is an operation applicable to both strings and files. This sho
indicated by links from Abstraction’file and Abstraction’string to Operation’trunca
Introducing, say, Operation’string_operations and Operation’file_operations as h
terms, to which Operation’truncate would be isA related, conveys no information o
nature of Operation’truncate.

The second kind of constraint introduces a problem related to homonyms. These a
dled by adding prefixes to the terms, so that the homonyms effectively obtain unique
in the SIB. Besides, they preserve the homonym character in the last part of the word
allows access by substring matching. However, great care should be taken not to cre
structures in the term space on the basis of homonyms (more precisely: the homon
parts of terms), which may prove semantically wrong. For example, a substructure i
ing Abstraction’order along with its specializations Abstraction’warehouse_order and
straction’serial_order is not based on common semantics as expected. By co
Abstraction’warehouse_order isA Abstraction’commerce and Abstraction’serial_o
isA Abstraction’memory_management are semantically correct.

7.6 Experiences

7.6.1 The Classification Process

Classification is an iterative process. The user understands the functionality of a pa
component by studying (through the browser) documentation, static analysis data,

Experiences 193

space.
 the
nown

d if the
group
ce, the

terms
en do-

ly
artic-

pts
ture.
g

ore
 term
me se-
 small
 is one
 term

onven-

s with
 they

 term

term

3] of
uage
 the
the code itself, supported in each step by the SIB, matching it with terms in the term
Term understanding is supported by the linguistic form of the term, its position in
hierarchy, text comments on its meaning, or use in the classification of similar code k
to the user. The user must decide if a given term matches with the component an
term is specific enough. If not, a new term must be introduced in agreement with a
of developers responsible for the term space maintenance. With use and experien
upper parts of the term space become increasingly stable and complete.

A user should be aware not only of the meaning of terms, but also of their quality (i.e.
for retrieval purposes), which leads to the need to know the principles under which
are created. The following general criteria are proposed for selecting terms in a giv
main of interest [12] [22]:

• Terms should be well-known words, usually technical terms or expressions, wide
accepted in the software engineering community, or at least by experts in the p
ular domain of interest (object-oriented development).

• Terms should have clear meanings, relative and easily associated to the conce
conveyed by their specializations or generalizations, in the classification struc
Moreover, they should be distinct and precise, in order to facilitate the direct linkin
of the component to the corresponding classification term.

• Terms should also be general enough, in the sense that a term may encompass m
than one specialized term in the classification structure. In other words, every
should be used to address more than one component, or a specific (under so
mantic criteria), set of components. Keeping a set of terms general — therefore
enough, and expressive at the same time, thus useful for the reuse process —
of the basic and most difficult tasks in classification. Conversely, keeping a large
space usually means confusion for suppliers and reusers of components, inc
ient browsing, poor search performance, etc.

• Redundancy should be avoided, in the sense that there should be no two term
very close meaning in the same classification hierarchy. If this happens, then
should be related only with synonym relationship, with the most representative
present in the classification hierarchy.

As these criteria are generally conflicting, the implementation of an effective
space requires striking a judicious balance among them: a non-trivial task.

7.6.2 An Example

We draw an example from the classification developed for the Colibri class library [
the CooL language environment. CooL [2] is an object-oriented programming lang
developed at Siemens-Nixdorf within the ESPRIT ITHACA project. We demonstrate
selection and the assignment of terms, and the resulting valid terms by derivation.

Consider the following partial listing of the classes ‘Date’ and ‘DateRepr’:

194 Component Classification in the Software Information Base
-- -*- Mode: Cool -*-
-- Date.t --
--
-- PURPOSE

| Date is an object type representing a calendar entry |
| consisting of year, month, and day. This object type |
| offers methods to construct, modify and actualize an |
| object and to get information about an object. Further |
| methods deal with arithmetic operations and |
| predicates |

-- TABLE OF CONTENTS
REFER Duration, Interval, time;
TYPE Date = OBJECT (IN Year : INT,

IN Month : INT,
 IN Day : INT)
-- --
-- 2. Actual Date
-- --
METHOD SetToActualDate;

 -- --
 -- Set this date to the actual date.
 -- --

-- --
-- 4. Selective access
-- --
METHOD GetYear : INT;
METHOD GetMonth : INT;
METHOD GetDay : INT;

 -- --
 -- Return the specific information of this date
 -- --

-- --
-- 5. Arithmetic operations
-- --
METHOD Add (IN Extent : Duration);
METHOD Subtract (IN Extent : Duration);
-- --
 -- Add or subtract an extent from this date.
-- --

END OBJECT;
-- --

-- -*- Mode: Cool -*-
-- DateRepr.t --
--
-- PURPOSE

| DateRepr is a sub type of object type Date representing |

Experiences 195

ach-

ach-
, as all

such
 appli-
r the

sume
oL2.1,
re-
 inte-
hich
| a calendar entry...together with a format string |
| containing the presentation description according to |
| the C library function strftime()... |

-- TABLE OF CONTENTS

REFER Date, String;

TYPE DateRepr = Date OBJECT
 (IN Year : INT,

 IN Month : INT,
 IN Day : INT,
 IN Format : STRING)

-- --
-- 3. Format representation
-- --
METHOD Present : STRING;

 -- --
 -- Return this date formatted with its representation
 -- --

END OBJECT;
-- --

Classification of ‘Date’:

1. Object type ‘Date’ under Abstraction ‘TimeRepresentation’.

2. Method ‘SetToActualDate’ under Operation ‘Set-Reset’ and Operates-On ‘M
ineTime’. This method uses internally the Unix system call ‘time()’.

3. Method ‘Add’ and ‘Subtract’ under Operation ‘Add-Subtract’.

‘Date’ is not automatically updated to the current date or machine time. Hence ‘M
ineTime’ was not regarded as a good abstraction for it. The methods GetYear, etc.
others not listed above, are omitted for the simplicity of the example.
Classification of ‘DateRepr’:

4. (4) Method ‘Present’ under Operation ‘Convert’.

We usually classify within one term the inverse of an operation as well, since
operations belong semantically together. The method name ‘Present’ denotes the
cation task of the method, not its function within the component. We therefore prefe
term ‘Convert’.

More examples on reasoning about good terms are given in [12]. We further as
that, in a previous step, the Colibri library was assigned the Dependency terms (Co
SINIX_5.41, SNI_WX200), and ‘Duration’ was assigned the Abstraction ‘TimeRep
sentation’. The classification of built-in types of the programming language, such as
ger, string, etc., is initially provided in the SIB. Figure 7.4 shows all paths through w
leaf terms for the CooL Object Type ‘DateRepr’ are derived.

196 Component Classification in the Software Information Base

 leaf
e that
ally
rivation
es ob-

e term
pical-
ction-
 quickly
y. For
sors is

s an
ental

 three
nded
e for
men-
The complete list of terms and synonyms for ‘DateRepr’, resulting from the above
term assignment and the term space currently in the SIB, is given in table 7.1. Notic
these terms are all derived. Having in mind that good object-oriented applications usu
derive some tens of classes from one base class, adding few methods in each de
step, the advantage of the SIB system for classifying large class hierarchies becom
vious.

Once found, terms are easily attached to components or correctly integrated in th
space by using the SIB facilities. To classify a class with some twenty methods we ty
ly spend half an hour to one hour. These times, however, vary strongly with the fun
ality of the class. User interface classes or mathematical classes can be much more
classified than some internal components or components with complex functionalit
instance, characterizing the SIB query processor in contrast to other query proces
not straightforward. Evidently, the quality and maturity of existing terminology play
important role. These observations raise interesting issues for further work, experim
as well as on the field of terminology.

Our in-house experience with the SIB classification facilities is currently based on
cases: the class library Colibri for the CooL language environment, the C++ Exte
(APEX 1.0) library [1], and classes of the SIB implementation itself. The term spac
the first two examples has been fully developed. The classification of the SIB imple

Figure 7.4 Leaf terms valid for the CooLObjectType ‘DateRepr’.

SNI_WX200:SINIX_5.41/Cool2.1

Dependency

TimeRepresentation

Abstraction Add-Subtract

Operation

Colibri

DateRepr.t

Date

SetToActualDate

String

Convert

Operation
String

Operates-On

Add

has file

runs on

supertype

DateRepr
defined in

method

parameter

parameter

method

Set-Reset

Operation
method

Present

Duration

Static analysis data

Structural links

Classification Terms
Term assignment

Conclusion 197

. Ex-

ill be
t there

same
order-
ing of
d to im-
invest-
other
ge. As
mmuni-
.
tation is part of an on-going work to use the SIB for its complete self-documentation
perience reports are also expected from users outside our institute.

7.7 Conclusion

The SIB classification method defines in an objective way how terms and entities w
related. This facilitates the consistent usage of the system by a group of users in tha
is a high probability that two users classifying the same object will come up with the
usage of given terms, that two users will come up with the same higher–lower term
ing of given terms, and that users retrieving objects will have the same understand
the terms as those who have classified the objects. These properties are expecte
prove considerably the recall of the system. Nevertheless, there is an intellectual
ment in the creation of term spaces, well known from efforts to create thesauri in
domains as well. A good term space incorporates a lot of experience and knowled
such, it should be subject to specific developments and exchange between user co
ties. In our opinion, this issue has not yet received enough attention in the literature

Facet Derived leaf terms Higher terms Synonyms

Abstraction TimeRepresentation TemporalObject
CompoundRepresentation

Time
NonDecimalSystem

Operation Add-Subtract
Set-Reset
Convert

StateManipulation
Arithmetic
Mathematical
Format

Algebraic

Operates-On TimeRepresentation
MachineTime
String

TemporalObject
CompoundRepresentation
HWcomponent
List
Ordered_Collection
Collection
Bag

Time
NonDecimalSystem
CurrentTime
DateFormat
ComputerTime
Date
Calendar

Dependency SNI_WX200:SINIX_5.41
:CooL2.1

Unix
SINIX
SINIX_5.41
SNIMachine
SNI_WX200
CooL
ObjectOrientedLanguage
CooL2.1

Table 7.1 Terms and synonyms for the CooLObjectType ‘DateRepr’.

198 Component Classification in the Software Information Base

arious
d for

ed, in
s. Both

ilities,
sifica-
mes,
 it is

duction

 anal-
blem.
urther
ity of
 be pro-
uid-
 from
ent of
tion

G,

April

pril

tions,”
ming
ork,

: The
vel-
Classification of software objects is a time-consuming task. We argue that the v
derivation mechanisms offered in the SIB will reduce considerably the time neede
classification. They further improve the consistency of the code with the terms appli
particular the maintenance of the applied terms after updates of the software object
aspects are essential for the industrial usage of such a system.

The SIB is different from a series of other approaches in its data modelling capab
which allow it to integrate, without redundancies and in a single tool, the above clas
tion mechanism with other organization principles, such as libraries, application fra
associations and lifecycle information in general. As an open, configurable system
easily adapted to new methodologies and standards embedded into software pro
environments.

Integrating all aspects in a logically consistent way, as discussed above for static
ysis and functional classification, gives rise to a bootstrapping and verification pro
The larger the population of the system, the more useful it is, the more important f
organization principles and lifecycle information become, and the better the valid
their interconnections can be tested. To attract real users of the system, they must
vided from the very beginning with immediately useful functionalities and usage g
ance. The reduction of manual work by importing as much information as possible
existing sources plays an important role in this context. The incremental developm
further chains of functionality in the SIB, like the static analysis–functional classifica
presented here, is a main line of our future work.

References

[1] C++ Extended Library, APEX 1.0 Information brochure, Siemens Nixdorf Informationssysteme A
Berlin, April 1992.

[2] CooL V1.0, Language Reference Manual, Siemens Nixdorf Informationssysteme AG, Berlin,
1992.

[3] CooL V1.0, CoLibri, Reference Manual, Siemens Nixdorf Informationssysteme AG, Berlin, A
1992.

[4] Ralph Barletta, “An Introduction to Case-Based Reasoning,” AI Expert, vol. 6, no. 8, Aug. 1991, pp.
42–49.

[5] Ted J. Biggerstaff and Alan J. Perlis, Software Reusability, Volume I: Concepts and Models, Volume
2: Applications and Experience, Addison-Wesley, Reading, Mass., 1989.

[6] Michael Brodie and Dzenan Ridjanovic, “On the Design and Specification of Database Transac
in On Conceptual Modelling: Perspectives from Artificial Intelligence, Databases and Program
Languages, ed. Michael Brodie, John Mylopoulos and Joachim Schmidt, Springer-Verlag, New Y
1984, pp. 277–312.

[7] Peter P.-S. Chen, “The Entity-Relationship Model: Towards a Unified View of Data,” ACM Transac-
tions on Database Systems, vol. 1, no. 1, March 1976, pp. 9–36.

[8] Panos Constantopoulos, Martin Dörr and Yannis Vassiliou, “Repositories for Software Reuse
Software Information Base,” in Proceedings IFIP WG 8.1 Conference on Information System De
opment Process, Como, Sept. 1993, pp.285–307.

References 199

 Infor-

H-

IE: A

TH-
logy -

Man-

s Man-
–

nts for

–

nting

 1992.

oc-

cation

se: A

-

[9] Panos Constantopoulos, Matthias Jarke, John Mylopoulos and Yannis Vassiliou, “The Software
mation Base: A Server for Reuse,” The VLDB Journal (to appear).

[10] Valeria de Antonellis, et al., “Ithaca Object-Oriented Methodology Manual,” ITHACA Report IT
ACA.POLIMI-UDUNIV.E.8.6, Politecnico di Milano, 1992.

[11] Premkumar Devanbu, Ronald J. Brachman, Peter G. Selfridge and Bruce W. Ballard, “LaSS
Knowledge-Based Software Information System,” Communications of the ACM, vol. 34, no. 5, May
1991, pp. 34–49.

[12] Martin Dörr and Eleni Petra, “Classifying C++ Reusable Components,” ITHACA Report I
ACA.FORTH.94.SIB.#2, Institute of Computer Science, Foundation of Research and Techno
Hellas, Jan. 1994.

[13] Pankaj Garg and Walt Scacchi, “On Designing Intelligent Hypertext Systems for Information
agement in Software Engineering,” DIF, Proceedings Hypertext ’87, Nov. 1987, pp. 409–431.

[14] Simon Gibbs, Dennis Tsichritzis, Eduardo Casais, Oscar Nierstrasz and Xavier Pintado, “Clas
agement for Software Communities,” Communications of the ACM, vol. 33, no. 9, Sept. 1990, pp. 90
103.

[15] Adele Goldberg, Smalltalk-80: The Interactive Programming Environment, Addison-Wesley, Read-
ing, Mass., 1984.

[16] T. Hopking, C. Phillips, Numerical Methods in Practice: Using the NAG Library, Addison-Wesley,
Reading, Mass., 1988.

[17] E. A. Karlsson, S. Sorumgard and E. Tryggeseth, “Classification of Object-Oriented Compone
Reuse,” Proceedings TOOLS 7, Dortmund, 1992.

[18] Charles W. Krueger, “Software Reuse,” ACM Computing Surveys, vol.24, no.2, June 1992, pp. 131
183.

[19] Colin Low, “A Shared, Persistent Object Store,” Proceedings ECOOP’88, Oslo, Aug. 1988, pp. 390–
410.

[20] Bertrand Meyer, Eiffel: the Libraries, Prentice Hall, New York, 1990.

[21] John Mylopoulos, Alex Borgida, Matthias Jarke and Manolis Koubarakis, “Telos: Represe
Knowledge About Information Systems,” ACM Transactions on Information Systems, vol. 8, no. 4,
Oct. 1990, pp. 325–362.

[22] P. Paul, “Classification of Software Components for Reuse,” SIEMENS Technical Report, July

[23] Ruben Prieto-Diaz and Peter Freeman, “Classifying Software for Reusability,” IEEE Software, vol. 4,
no. 1, Jan.1987, pp.6–16.

[24] Ruben Prieto-Diaz, “Implementing Faceted Classification for Software Reuse,” Communications of
the ACM, vol. 34, no. 5, May 1991, pp. 88–97.

[25] Sarada R. Ranganathan, “Prolegomena to Library Classification,” Garden City Press, Letchworth,
Hertfordshire, 1957.

[26] Geoffrey Robinson, “UDC: A Brief Introduction,” Technical Report, International Federation of D
umentation, 1979.

[27] Robert W. Schwanke, “An Intelligent Tool for Re-Engineering Software Modularity,” Proceedings In-
ternational Software Engineering Conference, Austin, Tex., 1991, pp. 83–92.

[28] L.S. Sorumgard, G. Sindre and F. Stokke, “Experiences from Application of a Faceted Classifi
Scheme,” Proceedings 2nd International Workshop on Software Reusability 1993 (REUSE’93), Luc-
ca, March 1993.

[29] George Spanoudakis and Panos Constantopoulos, “Similarity for Analogical Software Reu
Computational Model,” Proceedings European Conference on Artificial Intelligence, Amsterdam,
Aug. 1994.

[30] E. Svenonius, “Design of Controlled Vocabularies,” Encyclopedia of Library and Information Sci
ence, Marcel Dekker, New York, 1989

200 Component Classification in the Software Information Base

oject,”

 Com-
rete,

t-Ori-
87.
[31] S. Thunem and G. Sindre, “Development With and for Reuse: Guidelines from the REBOOT Pr
Proceedings ERCIM Workshop on Methods and Tools for Software Reuse, Heraklion, Crete, Oct.
1992, pp. 2–16.

[32] Amos Tversky, “Features of Similarity,” Psychological Review, July 1977.

[33] Costis Vezerides, “The Organization of a Software Information Base for Software Reuse by a
munity of Programmers,” Master’s Thesis, Department of Computer Science, University of C
May 1992.

[34] Peter Wegner, “The Object-Oriented Classification Paradigm,” in Research Directions in Objec
ented Programming, ed. Bruce Schriver and Peter Wegner, MIT Press, Cambridge, Mass., 19

	Component Classification in the Software Information Base
	7.1 Introduction
	7.2 The Software Information Base
	7.2.1 General Concepts
	7.2.2 Relationships Between Software Artefacts

	7.3 Information Retrieval and User Interface
	7.3.1 Querying and Browsing
	7.3.2 Implementation

	7.4 The Classification Scheme
	7.4.1 Principles
	7.4.2 Classification Hierarchies in the SIB
	7.4.3 Example

	7.5 Streamlining the Classification Process
	7.5.1 Static Class Analysis
	7.5.2 Derived Classification

	7.6 Experiences
	7.6.1 The Classification Process
	7.6.2 An Example

	7.7 Conclusion

