
The Moldable Inspector
(Preprint ∗)

Andrei Chiş Oscar Nierstrasz
Aliaksei Syrel

Software Composition Group,
University of Bern, Switzerland

scg.unibe.ch

Tudor Gı̂rba

tudorgirba.com

Abstract
Object inspectors are an essential category of tools that allow
developers to comprehend the run-time of object-oriented
systems. Traditional object inspectors favor a generic view
that focuses on the low-level details of the state of single ob-
jects. Based on 16 interviews with software developers and
a follow-up survey with 62 respondents we identified a need
for object inspectors that support different high-level ways
to visualize and explore objects, depending on both the ob-
ject and the current developer need. We propose the Mold-
able Inspector, a novel inspector model that enables devel-
opers to adapt the inspection workflow to suit their immedi-
ate needs by making the inspection context explicit, provid-
ing multiple interchangeable domain-specific views for each
object, and supporting a workflow that groups together mul-
tiple levels of connected objects. We show that the Moldable
Inspector can address multiple kinds of development needs
involving a wide range of objects.

Categories and Subject Descriptors D.2.6 [Software Engi-
neering]: Programming Environments—integrated environ-
ments, interactive environments

General Terms Tools, Languages, Design

Keywords Object inspector, Domain-specific tools, User
interfaces, Programming environments

∗ In Proceedings of the 2015 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward!
2015), October 25–30, 2015, Pittsburgh, PA, USA.
DOI: 10.1145/2814228.2814234

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Understanding the run-time behaviour of object-oriented ap-
plications entails the comprehension of run-time objects.
While debuggers reify the execution stack and allow devel-
opers to reason about the control flow of an application, ob-
ject inspectors are an essential category of tools that give
developers direct access to the actual objects.

To better understand what software developers expect
from an object inspector we performed an exploratory in-
vestigation consisting of a series of interviews with software
developers and a follow-up survey. We observed a need for
object inspectors that:

• support multiple custom views for an object, not limited
to text;

• allow developers to easily create new custom views for
objects;

• allow developers to explore objects based on more than
object state;

• maintain a working-set of inspected objects.

Nevertheless, most of today’s mainstream integrated de-
velopment environments (IDEs) incorporate only object in-
spectors that favor generic approaches to display and explore
the state of arbitrary objects. In most cases they represent ob-
jects using tree or table views that only contain a textual rep-
resentation for each object attribute. While universally appli-
cable, these approaches do not take into account the varying
needs of developers that could benefit from tailored views
and exploration possibilities. We refer to this as the current
inspection problem.

For example, encountering during debugging domain-
specific objects like, folders/files, parsers, HTML/XML,
database connections, compiled methods, users, accounts,
graphical components, etc., leads to a wide range of contex-
tual questions. (For example: What files are contained in this
folder? What does this graphical component look like? How
does this HTML object render in a browser?) Approaching
these contextual questions using generic object inspectors

1 2015/9/29

http://scg.unibe.ch
http://www.tudorgirba.com
http://dx.doi.org/10.1145/2814228.2814234

focusing on the state of individual objects leads to an in-
efficient inspection effort as the information of interest is
not directly available or even not accessible from within the
inspector.

Mainstream IDEs such as Eclipse, NetBeans, VisualStu-
dio, or IntelliJ allow developers to customize the textual rep-
resentation of objects, or the layout used to display the state
of an object (e.g., show a dictionary as a list of key-value
pairs). They further allow developers to run custom code
on objects during debugging to construct custom views. The
problem with this approach is that it is not reusable: develop-
ers have to manually execute the code every time they want
to see that view. Developers also have to manually associate
views with objects and keep track of the existing views.
jGRASP [11] improves the inspection process by allowing
objects to have visual representations that are not limited to
text, and by automatically constructing custom views for ob-
jects based on the internal structure of objects (e.g., showing
an object representing a tree using a tree view). Debugger
Canvas [12] extends the navigation mechanism of traditional
object inspectors by displaying each object in a bubble and
linking objects in an exploration session: hence, developers
can always reason about how they got to an object. Neverthe-
less, each of these IDEs addresses only parts of the problem
as they do not provide developers with a unified workflow
for exploring multiple objects using views tailored to their
own contextual needs.

To address the overall inspection problem we propose the
Moldable Inspector. The essence of the Moldable Inspector
is that it enables developers to answer high-level, domain-
specific questions by allowing them to adapt (i.e., mold) the
whole inspection process to suit their immediate needs. To
make this possible, instead of a single generic view for an
object, the Moldable Inspector provides multiple domain-
specific views for each object, makes the inspection con-
text explicit, and uses the inspection context to automatically
find, at run-time, views appropriate for the current devel-
oper needs. Furthermore, instead of focusing on individual
objects, it supports a workflow that does not hardcode the
navigation mechanism and groups together multiple levels
of connected objects.

To validate the proposed approach and show that it has
practical applicability we implemented the Moldable In-
spector concept in Pharo1 as part of the Glamorous Toolkit
project.2 Based on this concrete implementation, we created
more than 131 custom views for 84 objects belonging to
15 applications, requiring, on average, 9.2 lines of code per
view. We also integrated the prototype implementation into
the alpha version of the Pharo 4 IDE, replacing the previous
object inspector, and we iteratively improved the implemen-
tation as we obtained feedback from developers relying on
the alpha version of Pharo 4 IDE in their day-to-day activi-

1 http://pharo.org
2 http://gt.moosetechnology.org

ties; the Moldable Inspector is now part of the Pharo 4 main
release. Current feedback indicates that while the Moldable
Inspector can take some getting used to, as it has a different
navigation mechanism than traditional object inspectors, it
can significantly improve the inspection process.

In a previous workshop paper we sketched the Moldable
Inspector approach [7]. This paper extends that work with
the following new contributions:

• Presenting an exploratory study into how developers per-
ceive and use object inspectors resulting in four devel-
oper needs for object inspectors;

• Presenting an extended version of the Moldable Inspector
model that takes into account the findings of the previous
exploratory study;

• Showing how the concepts of the Moldable Inspector
map to a concrete implementation and discussing various
alternatives;

• Real-world examples illustrating the usage of the Mold-
able Inspector.

2. Exploratory Study
To better understand how object inspectors should support
developer workflows we performed an exploratory study. We
designed this exploratory study with the goal of eliciting re-
quirements for improving object inspectors. One can imag-
ine various other approaches for inspecting the state of a pro-
gram execution, for instance, by visualizing the entire heap
and using zoom to get to the object level [1], or by writing
queries against the state [15, 17]. These approaches comple-
ment, and do not replace, the object inspector.

We selected a sequential exploratory design [10] ap-
proach for conducting our study. This is a mixed research
methods strategy consisting of a qualitative investigation
followed by a quantitative validation.

2.1 Qualitative Investigation
The aim of the qualitative investigation was to gain an un-
derstanding into what software developers understand by an
object inspector and the features they expect from one.

2.1.1 Setup
We performed semi-structured interviews with software de-
velopers based on the template questions presented in Ta-
ble 1. Based on a set of test runs we agreed on short 10
minute interviews, as the first three questions required only
short answers. We also did not require any preparation from
the interviewees.

We performed the interviews during the ESUG 2014 con-
ference3. Sixteen software developers attending the confer-
ence agreed to participate, on a voluntary basis. We collected
2 hours of recording with an interview lasting 7.6±2.6(M±

3 http://www.esug.org/Conferences/2014

2 2015/9/29

http://pharo.org
http://gt.moosetechnology.org
http://www.esug.org/Conferences/2014

Table 1: Questions for structuring the interviews.

Experience How many years of experience with
object-oriented programming do you have
and what object-oriented languages and
IDEs did you use?

Definition What is an object inspector for you?

Features What features do you need in an ideal ob-
ject inspector?

Examples Can you give a few examples of objects
that you inspected recently or situations
where you used an object inspector?

SD) minutes. Participants reported 17.8 ± 8.2(M ± SD)
years of experience with object-oriented programming. Par-
ticipants also reported using 3.1 ± 1.9(M ± SD) object-
oriented languages until now (i.e., Smalltalk — 100%, Java
— 69%, C++ — 31%, Objective C — 31%, and other lan-
guages). It is noteworthy that, given the venue, participants
were currently working with various Smalltalk dialects; nev-
ertheless, only three participants worked until now solely
with Smalltalk dialects. Given the exploratory nature of this
phase, we view this as an advantage: in Smalltalk IDEs the
object inspector is both a standalone tool and an integral part
of the debugger. In other IDEs, for example Eclipse, the ob-
ject inspector is just a view of the debugger, often not per-
ceived as a distinct tool.

2.1.2 Analysis
The first finding that became clear after a few interviews,
and recurred through the rest, was that while participants
provided simple definitions for an object inspector (e.g., “a
tool that allows me to inspect the object” — P5, “a way to
see inside an object” — P9), they came up with complex
features and usage scenarios when asked to give concrete
examples. This explains, to some degree, why mainstream
IDEs have object inspectors that focus only on the state of
single objects: they conform to the perceived definition of
what an object inspector is (e.g. “see all the fields” — P7).
All answers are available in Appendix A.

We further proceeded to analyse the interviews using
open coding [18]: we first transcribed the interviews, and
then for each sentence, or groups of sentences closely re-
lated to the same topic, attached a label that best described
the need or inspector feature mentioned by the developer. We
then use the identified concepts to infer a set of high-level
developer needs for object inspectors. During the analysis
process we aimed to identify a set of developer needs that
covered as many of the individual features and examples as
possible. We extracted four developer needs detailed in the
remainder of this section.

DN1 — I need different ways to view an object depending
on my task. All participants expressed, in various forms,
the need of having dedicated views for certain types of
objects, like collections, dictionaries, tree maps, streams,
caches, and graphical elements (e.g., “If I inspect a color I
see RGB values, which is completely unhelpful” — P14). Six
participants further gave examples that required task specific
views:

“One thing I really like and I depend on is context sen-
sitive presentations, such as choosing base for numbers. In
the VM [...] hexadecimal makes sense, it’s what’s embedded
in the instructions [...], decimal is to hard to parse.” — P15

“There is a method that is troublesome, so I inspect it,
and the method is just a bunch of bytes. First of all I need
a view on the bytecode level [...]. Then I would like to have
another view that shows me the source code, then a view that
shows me control flow structures [...].” — P5

DN2 - I need to easily extend the inspector with new views
for objects. Given the large diversity of objects from to-
day’s applications a predefined set of views cannot capture
all relevant aspect of all objects. Six participants reported
that they actually extended the inspector with custom views
for various types of objects, in order to better understand
those objects:

“In the beginning I build a special inspector for collec-
tion which had a table view. I find it quite useful.” — P2

“My thing is graphics, PDFs and especially charts and
all my graphical artefacts have special inspector views so
that I can see them directly” — P14

“I made so many changes in the inspector to make my
life easier so I do not know what a normal object inspector
looks like.” — P13

DN3 - I need to explore objects connected both explicitly
through direct references and implicitly through code logic.
Navigating objects solely by following objects attributes can
be a laborious process, especially when there is there is no
connection between two relevant objects. Six participants
gave examples that required navigating to objects not stored
in an instance variable of an object already accessible from
the inspector:

“It is very often that I expected a kind of way of just
following the pointers: which objects point to myself and
reverse [...]. This object is well-formed but there is a crash:
who uses it?” — P12

“I’ve written an interface to a storage system in the cloud
and it would have been easy to inspect my remote files from
the inspector” — P11

DN4 - I need to keep track of the objects that I inspected
while working on a given task. Answering run-time ques-
tions requires developers to search for relevant objects.
Repetitively searching for the same object can cost signifi-

3 2015/9/29

cant time. Furthermore, losing the history of how one got to
an object forces developers to repeatedly retrace their steps.
Four participants expressed this concerned:

“What costs time is that I usually look at the same objects
repeatedly [...] and that I’m always interested in one or two
properties of those objects.” — P3

“I would like better navigation going to objects and back
and remembering where I came from [...]. I might want to
mark points [objects] where I say ’this is an interesting point
I might want to go back there.” — P4

While these four developer needs were the result of ana-
lyzing the interviews, they are not necessarily novel, if taken
individually, as current object inspectors implement them
to some degree. Nevertheless, current object inspectors fo-
cus on some of these developer needs while neglecting oth-
ers. For example, on the one hand, DebuggerCanvas focuses
on enabling an easy exploration of multiple objects, while
putting the ability to view objects through tailored presen-
tations in the background. On the other hand, the HTML
inspector from Firebug allows each HTML element to be
viewed through multiple views (e.g., style, layout, DOM),
while focusing less on preserving the navigation history. We
view the combination of these four developer needs as a
novel requirement for object inspectors.

2.2 Quantitative Investigation
2.2.1 Setup
To confirm on a larger scale the validity of the previously
identified developer needs for object inspectors we con-
ducted a second quantitative investigation consisting of an
online survey4. We asked respondents to rate each require-
ment from full disagreement to full agreement on a 5-point
Likert scale. For each requirement we added an example il-
lustrating that requirement and an optional text field where
respondents could give personal examples involving that re-
quirement or indicate if they did not understand the require-
ment. We asked five pre-survey questions about respondents’
background.

We advertised the survey on mailing lists of interest for
software developers (pharo.org and moosetechnology.

org) and through social media (i.e., voluntary sampling
method). We collected 70 answers over a period of one
month from respondents who reported various jobs related
to software engineering (Table 2 column 3). We discarded
all answers from students (7 answers) or from respondents
reporting under 1 year of experience with object-oriented
programming (1 response), as we wanted to get feedback
from respondents with at least some experience in object-
oriented programming. We further discarded one answer
for DN4 where the respondent indicated that she did not
understand the requirement. This left 62 answers for DN1
— DN3 and 61 answers for DN4 from respondents whose

4 http://scg.unibe.ch/research/moldableinspector/survey

practical knowledge with object-oriented programming is
shown in Table 2. These respondents also reported using
4.5 ± 2.2(M ± SD) object-oriented languages until now
(i.e., Smalltalk — 89%, Java — 79%, C++ — 45%, Python
— 39%, Javascript — 27%, C# — 27%, Ruby — 21%, PHP
— 18%). We only take these responses into account in the
analysis.

Table 2: Background data about the survey respondents.

Professional
experience

Respondents Respondents’
current job

4 - 10 years 8 (12.9%) Software engineer
6 (9.7%) Software researcher
2 (3.2%) Other

> 10 years 9 (14.5%) Project manager
20 (32.3%) Software engineer
15 (24.2%) Software researcher

2 (3.2%) Other

2.2.2 Analysis
Table 3 summarizes the results of the survey. Overall there
was a strong tendency towards the Strongly agree and Agree
answers; no respondent chose Strongly disagree. While re-
spondents considered multiple views to be an essential need
(100% of respondents agreed or strongly agreed with DN1)
they considered that easily adding views to an object inspec-
tor (DN2) is of less importance (72% agreed or strongly
agreed, 23% were neutral, while 5% disagree). 23 respon-
dents further use the optional text field of DN1 to give con-
crete examples of objects for which they need specific views:
list/tree structures, matrices, dictionaries, UI elements, file
objects, SQL results, etc. The same tendency can be seen
for the remaining two developer needs: 90% of respondents
agreed or strongly agreed that they need to keep track of the
inspected objects (DN4), while only 77% agreed or strongly
agreed that they need to discover new objects during inspec-
tion based on something other than an object’s state (DN3).
Examples of objects for which respondents needed to ex-
plore dependencies based on more than object state included
callbacks on graphical widgets and pointers.

2.3 Threats to Validity
2.3.1 Internal Validity
The semi-structured interviews were partially moderated by
the interviewer. Furthermore, the interviewer knew six in-
terviewees from previous meetings or discussions on mail-
ing lists. While the interviewer did his best not to lead or
influence the interviewees we cannot exclude the existence
of biased answers (e.g., a slight change in the tone of voice
of the interviewer can influence the answer of the intervie-
wee). To minimize the effects of this threat we only included

4 2015/9/29

pharo.org
moosetechnology.org
moosetechnology.org
http://scg.unibe.ch/research/moldableinspector/survey

Table 3: The results of the quantitative investigation.

DN1

DN2

DN3

DN4

in our analysis developer needs that were explicitly men-
tioned by four different interviewees. In the survey partic-
ipants could choose to remain anonymous by not provid-
ing an email address (31% of respondents chose to remain
anonymous). Nevertheless, respondents had to provide back-
ground information about their current job and their experi-
ence with object-oriented programming.

2.3.2 External Validity
The software developers interviewed during the first phase
were currently working with Smalltalk IDEs, however, just
three interviewees had only worked with Smalltalk. Overall,
they had a great deal of experience with object-oriented pro-
gramming (17.8±8.2(M±SD) years) and were exposed to
several OO languages (3.1±1.9(M±SD)). 89% of the sur-
vey respondents marked Smalltalk as one of the languages
with which they worked until now, however, these respon-
dents also reported working with 4.6 ± 2.2(M ± SD) dif-
ferent OO languages; all had more than 4 years of program-
ming experience. Given the vast experience with OO pro-
gramming of both interviewees and survey respondents, as
well as the fact that just three interviewees had only been ex-
posed to Smalltalk, we consider that our findings can apply
to other object-oriented programming languages and IDEs
rather than only to Smalltalk. Nevertheless, we cannot ex-
clude a bias towards Smalltalk.

2.4 Summary
While developers define an object inspector in simple terms
they actually expect a lot from an object inspector. Based on
16 interviews with software developers we have identified
four developer needs regarding object inspectors. Through
an online survey we saw a level of agreement with these de-
veloper needs ranging from 72% to 100%. This exploratory
study indicates a need for object inspectors that better sup-
port developers in reasoning about and exploring specific as-
pects of their own domain objects.

3. The Moldable Inspector in a Nutshell
To address the aforementioned developer needs we propose
the Moldable Inspector, a model (Figure 1) for constructing
object inspectors that can be adapted during the inspection

Object

View

Exploration
Session

subject

*

 linked
Objects

inspected
Objects

Tag

Inspection
Context

Activation
Predicate

Figure 1: The structure of the Moldable Inspector model:
an object can have multiple views grouped using tags, and
filtered using activation predicates; inspected objects are
grouped in an exploration session; the inspection context
consists of multiple tags and an exploration session; the in-
spection context is used to filter views.

process to suit the immediate needs of developers. This is
achieved in two steps:

(i) developers create custom extensions for viewing and
exploring their domain objects;

(ii) at run time the Moldable Inspector selects extensions
appropriate for the current objects and developer needs.

3.1 Running Example
Consider that during debugging a developer has to interact
with an object representing a widget (graphical component).
A generic state view only showing object attributes — size,
bounds, visual properties, etc.— helps the developer reason
about the internal representation of that object. However,
depending on her current needs she could ask more specific
questions like:

What does this widget look like?

What keyboard shortcuts are associated with this widget?

How to properly initialize and use this widget?

What objects hold a reference to this widget?

What other widgets are contained inside this widget?

Furthermore, depending on the context, a developer could
need to explore other objects useful in reasoning about that
widget, not necessarily referred through an attribute of that
widget (e.g., renderer, canvas).

3.2 Enabling Customization
The Moldable Inspector model enables custom extensions
through two operators:

multiple views: allow each object to have multiple
custom views;

5 2015/9/29

(a) (b)

Figure 2: Two views for a widget: (a) state; (b) visual repre-
sentation.

flexible navigation: discover new objects by either
direct or indirect object references.

3.2.1 Multiple Views
Most inspectors represent an object generically by display-
ing its state as a tree or a table, but even in these cases there
exists at least one custom string representation that is left
to the developer to specify (e.g., toString() in Java). How-
ever, given that objects model domain concepts they can also
have domain-specific representations. DN1 further enforces
the need for multiple views. To address this the Moldable
Inspector allows each object to have multiple custom views.
For example, a widget object can have views that directly
show: its state (Figure 2a), the code of its class, its visual
representation (Figure 2b), its keyboard shortcuts, the other
graphical objects that it contains, or what objects hold a ref-
erence to it.

3.2.2 Flexible Navigation
Developers need support for navigating through object mod-
els not only by following object attributes but also by con-
sidering other types of dependencies (DN3). The Moldable
Inspector allows each view to specify a set of related objects,
together with the mechanism for navigating to those objects.
For example, a view showing the graphical representation of
a widget can allow developers to navigate to any sub-widget
by clicking it. Furthermore, a view can allow developers to
navigate to new objects by constructing/locating those ob-
jects using snippets of code executed in the context of the
displayed object (e.g., In Figure 3 a developer navigates from
a widget to the context menu of that widget, by using a code
snippet to create the menu).

3.3 Inspection Context
One problem is still not addressed: How does a developer
select the right views for her current needs? To solve it the
Moldable Inspector explicitly models the current inspection
context and uses it to determine what views to show. This is
achieved using three operators:

(a) (b)

Figure 3: Navigating from a widget (a) to its menu (b). The
menu is not stored in an instance variable of the widget. It
can only be constructed by invoking a method of the widget.

tag: group together views applicable for a development
task;

exploration session: group all objects inspected during an
inspection session;

activation predicate: determine if a view is valid or not
based on the exploration session.

An inspection context consists of multiple tags and an
exploration session. Activation predicates filter views based
on the context.

3.3.1 Tags
Depending on the current developer needs not all available
views are of interest; this is the main requirement captured
by DN1. To help developers discover useful views (and fil-
ter unneeded ones) the Moldable Inspector proposes the use
of tags to identify and group together views applicable for
certain types of development tasks. For example, when a de-
veloper is interested in the visual representation of a widget
she can select to see only those views tagged as showing
visual representations, and not those views that show more
technical details about the widget (e.g., keyboard shortcuts,
pointers, code). When looking for example on how to use
a widget she can select the examples tag to only see views
showing explicit usage examples. Given that different types
of development tasks can have overlapping needs the Mold-
able Inspector allows each view to have multiple tags.

3.3.2 Exploration Session
Inspection sessions can be extensive and can involve many
steps. In these situations, developers need to keep track of
and go back to previously inspected objects that are relevant
for their current development task (DN4). To support this
use case the Moldable Inspector stores all inspected objects
in an exploration session, together with the order in which
they were inspected and the type of views selected for each
object. This enables developers to determine how they got to
the current object, and to go back to any of the previously in-
spected objects and try alternative exploration paths. If dur-
ing an exploration a developer inspects by mistake objects

6 2015/9/29

...Tab 2Tab 1 ...

Presentation
on object d

...Tab 2

Presentation
on object c

Tab 1

...

Tab 2...Tab 2

Presentation
on object b

Tab 1

Presentation
on object e

...

Tab 1

Hidden Column Visible columns Hidden Column

Sliding page control

Figure 4: The Object Pager user interface in a nutshell: each object is displayed in a single column as a tabbed widgets that
groups together a set of views; new objects are displayed to the right; an augmented scrollbar improves navigation. Objects
are displayed in columns of equal size and it is not possible to reach a situation where a column is partially displayed, as the
sliding bar always repositions to show full columns.

not related to the current task, they are kept in the session
unless the developer removes them.

3.3.3 Activation Predicates
Tags offer a solution to filter views based on the develop-
ment task. Nevertheless, the state of the current object, as
well as all the previously inspected objects can have an im-
pact on what views are appropriate for the current object.
Consider an object representing a file from disk. The same
type of object is usually used to refer to files representing
text, pictures, HTML documents, executables, etc. A view
showing a visual representation of a file only applies to files
that have a visual representation (e.g., jpeg, png, gif); this
view is not applicable to executables. To enable this use case
the Moldable Inspector attaches to each view an activation
predicate, that is, a boolean condition applied on the cur-
rent inspection context before showing that view. Hence, an
activation predicate can filter views based on the currently
inspected object as well as based on the entire exploration
session. This approach is similar to a solution proposed pre-
viously for activating custom debuggers at run time [8].

While this feature can make the interface less cluttered,
it may also surprise the programmer if she cannot easily
tell why the Moldable Inspector decided (not) to enable a
particular view. Hence, while necessary for certain objects,
this feature should not be abused.

3.4 Addressing the Initial Developer Needs
DN1: Every object can have multiple views; based on their

task developers can filter views using the inspection con-
text. Displaying multiple views is discussed in Section 4.

DN2: The presented model enables developers to add any
kind of view to an object. The actual mechanism for con-
structing and adding views to objects directly influences
the ease of these activities. We discuss these issues in
Section 6 and Section 7.

DN3: Each view can offer an appropriate mechanism for
navigating to the next object (e.g., select an object at-
tribute, execute code, write a query).

DN4: Previously inspected objects are grouped into an ex-
ploration session. Section 4 discusses UI decisions con-
cerning navigating and displaying an exploration session.

4. Compact, Efficient Object Exploration
A concrete inspector requires a concrete user interface. The
decisions taken to realize that interface, such as how to show
multiple views and how to navigate through objects, can
have a significant influence on the utility of the inspector.
In this section, we present the Object Pager, a user interface
for object inspectors that implement the Moldable Inspec-
tor model. The Object Pager proposes a compact means to
explore a space of run-time objects that aims to minimize
real-screen estate and reduce spatial maintenance effort.

4.1 Displaying Multiple Views for an Object
Baldonado et al. introduced eight rules for the design of sys-
tems having multiple views [25]. The fifth rule, Space/Time
Resource optimization, comments that “it is easy to forget
to account for the display and computation time required to
present multiple views side by side; likewise, it is easy to ac-
count for the time saved by side-by-side views if the user’s
goal is to compare views” [25].

Considering how much information is displayed in cur-
rent debuggers and IDEs, screen real estate is a scarce re-
source. Furthermore, given that each view of an object high-
lights a specific aspect, we do not consider that directly com-
paring two views of the same object is an essential activity;
what should rather be optimised is the process of finding the
right view. Taking into account these arguments, the Object
Pager shows only one view for each object at a time and
groups all available views of an object using tabs (Figure 4).

7 2015/9/29

4.2 Representing an Exploration Session
Approaches displaying complete exploration sessions (e.g.,
by using tree/graph-based structures or matrices) can take
considerably screen real estate and require developers to ex-
plicitly remove paths that are no longer of interest. Consider
DebuggerCanvas [12], a debugger promoting a user inter-
face based on the CodeBubble paradigm [5]. While Debug-
gerCanvas can display complete exploration sessions it oc-
cupies the whole display of the IDE.

To minimize the usage of screen real estate and reduce
interaction overhead, the Object Pager displays only one
exploration path at a time and automatically arranges the
inspected objects using Miller columns,5 a technique for
navigating hierarchical structures on a horizontal boundless
tape, where multiple levels of the hierarchy can be seen
at once and each new level is opened in a new column to
the right. Figure 4 shows how several objects are displayed
using this approach: the order in which these objects were
inspected is given by their positioning from left to right.

4.3 Navigating Through an Exploration Path
From a dedicated view of an object in one tab of a Miller
column, one can navigate to a view of another object in the
next column by selecting a given object, or constructing an
object in the view. Whenever a developer selects an object
in a dedicated view from a Miller column all the columns
to the right of that column are removed, and a new column
displaying the selected object is spanned to the right. This
ensures that only one exploration path is displayed at a time.

Given that exploration paths can entail a large number of
objects [19], navigation back an forth through an exploration
path becomes an explicit issue. Simple scrollbars, while en-
abling fast movement between columns, have several short-
comings [2] when navigating through Miller columns. For
example, it is difficult to tell that the scrollbar from Figure 5a
supports navigation through an exploration path containing
seven objects, where two objects are currently visible.

To address this problem Object Pager proposes an aug-
mented scrollbar [2, 9] (following the overview+detail ap-
proach [20]) that incorporates an icon for each object, high-
lights the icon of the currently selected object, and enables
the developer to change the number of visible objects by
expanding the sliding bar (Figure 5c); the sliding bar indi-
cates the visible objects. Figure 5b shows how this approach
is used to navigate through the same exploration path as in
Figure 5a; now a developer can immediately see that the path
has seven objects and that two objects are currently visible.

5. Custom Workflows
The main goal of the Moldable Inspector is to support cus-
tom workflows. To show that this is indeed the case, we
present concrete cases of how the model together with Ob-

5 http://en.wikipedia.org/wiki/Miller_columns

(a) (b) (c)

Figure 5: (a) Standard scrollbar with limited navigation sup-
port; (b) Improved scrollbar with overview support; (c) In-
creasing/decreasing the number of visible objects.

ject Pager user interface enables several such workflows, and
how this is accomplished by relying exclusively on the pre-
viously identified developer needs. In doing this we show
that the Moldable Inspector addresses DN1, DN3 and DN4.

5.1 Multiple Views for Every Object
The Moldable Inspector enables each object to have multiple
views (DN1). We give examples of views common to all
objects and look in details at views for two specific objects.

5.1.1 Generic Views
Every object has a Raw view (Figure 6 — first object) that
gives access to the state of the object (i.e., object attributes).
This view corresponds to what a traditional inspector focus-
ing only on object state offers. Besides state, an object also
knows its class. Thus, another generic view offers a source
code editor of the corresponding class (Meta view, Figure 9).

5.1.2 Multiple Views for Graphical Objects
As highlighted in Section 3, several aspects of a widget can
be of interest to a developer depending on the task, such as:

• the state when examining the implementation;
• the visual representation when fixing a rendering bug.

As a concrete example we use Morphic [16] the main li-
brary for creating user interfaces in Pharo, the target lan-
guage for our current implementation. In Morphic, graphical
objects are instances of the class Morph and are referred to
as morphs. A morph can further contain other morphs (re-
ferred to as submorphs) forming a tree structure. The state
of a morph can be accessed using the aforementioned Raw
view. To support the visual aspect we added to every morph
object two specific views showing their visual representation
(Morph view, Figure 6) and structure of submorphs (Sub-
morphs view, Figure 6).

A visual representation for a morph is particularly use-
ful when investigating rendering bugs. Consider the follow-
ing drawing glitch from an implementation of a breadcrumb:

(when there are multiple elements in the bread-
crumb, due to rounding errors in calculating the width of
each element, there can be a one pixel gap between some el-
ements 6). To investigate this bug a developer can inspect the
breadcrumb morph, use the Meta view to edit the code that
computes the width, and use the Morph view to check if the
gap is still there.

6 http://pharo.fogbugz.com/f/cases/15227

8 2015/9/29

http://en.wikipedia.org/wiki/Miller_columns
http://pharo.fogbugz.com/f/cases/15227

Figure 6: An exploration session involving multiple graphical components (i.e., morphs).

5.1.3 Multiple Views for Compiled Code
Methods are represented in Pharo as instances of the Com-
piledMethod class and they hold the corresponding bytecode
needed by the virtual machine. A common task when work-
ing with these objects (e.g., for developing tools like com-
pilers or debuggers) is to understand how source code maps
to bytecode and vice-versa. Bugs in this kind of code can be
particularly difficult to debug7without proper tool support, as
the mapping involves several steps: parsing the source code
into an abstract syntax tree (AST), translating the AST into
an intermediate representation (IR), performing various op-
timizations at the level of the IR and finally translating the
IR into the actual bytecode. Inspecting just the attributes of
a CompiledMethod object provides little help as they only
give details about the format in which bytecode is repre-
sented (header, literals, trailer).

Figure 7: Exploring how bytecode maps to code.

To improve the inspection of compiled code we created,
together with the developers of the Pharo compiler, four
specific views to CompiledMethod objects:

7 pharo.fogbugz.com/f/cases/14606,
pharo.fogbugz.com/f/cases/12887,
pharo.fogbugz.com/f/cases/13260,
pharo.fogbugz.com/f/cases/15174

• Source code: the original source code from which the
CompiledMethod object was generated;

• AST: the AST obtained by parsing the source code;
• IR: the intermediate representation (IR) obtained from

the AST;
• Bytecode: the bytecode stored by the method object

(Bytecode view, Figure 7).

5.2 Navigating Through Connected Objects
Since navigation between objects based only on object state
reduces the available space to accessible objects the Mold-
able Inpector allows each view to specify its own navigation
mechanism (DN2). We show that developers can navigate to
objects not stored in the current object, use code to guide
their navigation and track their exploration history (DN4).

5.2.1 Browsing Indirectly Connected Objects
Each morph object can have a list of key bindings that map
keyboard shortcuts to anonymous functions to be executed
when the associated shortcut is invoked and the morph has
the focus (e.g., pressing CMD+S in a text editor morph
triggers an action for saving the content from that editor).

Debugging bugs related to wrong key bindings requires
developers to first determine what key bindings are associ-
ated with a morph and what code gets executed when a key
binding is invoked. However, key bindings are not stored
within the morph, but within a global object managing all
key bindings for all morphs. Hence, it is often not trivial to
determine the key bindings of a morph object as they can-
not be accessed using the state view8. To address this we
added a dedicated view showing a list of keyboard short-
cuts associated with the morph (Keys view, Figure 8). By
selecting a shortcut in this view a developer navigates to the
KMKeymap object that maps the shortcut with the anony-
mous function executed when the shortcut is invoked; this

9 2015/9/29

pharo.fogbugz.com/f/cases/14606
pharo.fogbugz.com/f/cases/12887
pharo.fogbugz.com/f/cases/13260
pharo.fogbugz.com/f/cases/15174

object has a Source code view showing and highlighting the
source code of the anonymous function (Figure 8).

Figure 8: Using specific views to browser the code that gets
executed when a user presses CMD+S.

5.2.2 Navigating to New Objects
While a CompiledMethod object has views showing its byte-
codes and source code, addressing the bugs mentioned in
Section 5.1.3 further requires developers to repeatedly deter-
mine what source code corresponds to what bytecode. Due
to the complexity of the complication process this is not an
easy task. To directly support this task when a developer se-
lects a bytecode in the Bytecode view, a SymbolicBytecode
object representing that bytecode is created and opened in a
new view to the right; each object representing a Symbol-
icBytecode has a view showing the entire source code of the
method and highlighting the part of the source code that cor-
responds to that bytecode (Figure 7).

Figure 9: Accessing an object’s source code.

5.2.3 Using Code to Guide the Navigation Process
Constructing and previewing queries over relational databases
is typically done in dedicated database client tools that

8 pharo.fogbugz.com/f/cases/14845/, http://bit.ly/1JQ2l6X

Figure 11: Browsing the content of a folder.

are far away from the development environment. However,
when working with relational data, querying is a common
activity during software development.

Opening in Pharo a connection to a Postgres9 database
creates an object of type PGConnection. Viewing this object
in a traditional object inspector only shows details about
the state of the connection (e.g., location, port number, start
time). Yet, a typical use case is to interact with the content
of the underlying database. To address this a PGConnection
object has a dedicated view that allows developers to write
and execute SQL queries on that connection (SQL view, first
object — Figure 10). Developers can use the query result
to continue navigation. At any time a developer can reason
about how she got to the current object, as all previously
inspected objects are available in the inspector.

Not only SQL queries can be used to guide navigation,
but any other piece of code. For example, in Figure 10 after
a developer executes a SQL query, she uses a snippet of code
to create a visual representation of the query result. The snip-
pet of code returns an object of type GET2DiagramBuilder
which has a view showing a graphical representation of the
constructed visualization. This enables workflows that can
seamlessly incorporate custom visualizations.

5.3 Selecting Views Based on the Inspection Context
Not all views of an object are of interest all the time (DN1).
The Moldable Inspector filters views based on the inspection
context. We show how each component of the inspection
context is used to filter views.

5.3.1 Selecting Views Using Activation Predicates
Viewing the internal representation of an object modelling a
file or a folder from disk does not provide any insight into the
content of that file or folder. For example, in Pharo, objects
of type

FileReference represent files and folders. The state of
a FileReference object only gives information about the
location of the file/folder; the content is not accessible.

9 http://www.postgresql.org

10 2015/9/29

pharo.fogbugz.com/f/cases/14845/
http://bit.ly/1JQ2l6X
http://www.postgresql.org

Figure 10: Exploring the content of a database.

To address this issue we attached a Content view to each
FileReference object that is not a directory displaying the
content of that file in text form. We further attach to ob-
jects of type FileReference that represent folders a view that
shows the list of files and folders from that folder and allows
developers to navigate to any of them. This turns the object
inspector into a file browser (Figure 11).

While the Content view is applicable for all file types, it
is not appropriate for all file types (e.g., photos, mp3 or exe-
cutable files). To overcome this limitation we further added
several views, each applicable to a FileReference object only
if that object has a particular extension. For example, a file
object storing a picture (i.e., .png, .gif, .jpg) has a view that
shows the actual picture (Picture view, Figure 11), a file ob-
ject containing a Pharo script (i.e., .st) has a view that shows
the script using syntax highlighting, an archive object (i.e.,
.zip) has views that show the archived files/folders and the
compressed content in hexadecimal, etc. This is achieved by
relying on activation predicates that check the extension of
the file object, and turns the object inspector into a dedicated
file browser.

5.3.2 Selecting Views Using Tags
The Raw and Meta views, showing object state and the
source code of an object’s class, get in the way if a developer
is interested just in a domain-specific aspect of an object,
such as the files in a folder or the visual representation of a
morph. The same can be said if a developer is only interested
in the object state: showing several specific views can get in
the way. To make it possible to dynamically select only those
views that are currently of interest we group them using tags.

In this case, we group the Raw and Meta views using a
basic tag, and all specific views using a custom tag. The
Moldable Inspector only display views whose tag is in the
current inspection context. For example, the object inspector

from Figure 9 has only the basic tag in the current inspection
context; the one from Figure 7 only has the custom tag.

Tags can further transform the object inspector into a tool
addressing other kinds of development tasks. For example,
when investigating memory leaks10, tools that allow devel-
opers to track points-to relations between objects (i.e., what
objects point to a given objects) can provide valuable insight.
We added a view to all objects that shows all the objects
holding a reference to the displayed object. As this view is
only useful in certain cases we assigned to it a dedicated
tag (i.e., pointers). When only this tag is in the inspection
context the inspector becomes a tool for exploring points-to
relations. This can be seen in Figure 12 where a developer
investigates what objects point to a given morph.

5.3.3 Selecting Views Based on the Exploration Session
Examples provide an important help for developers when
looking for how to instantiate objects of a certain type.
Nevertheless, examples are not always easy to find.

To provide usage examples for a class we take advantage
of the fact that in Pharo classes are also objects and add
to every class a view that shows a list of examples of how
to instantiate that class. Examples are added as methods in
the class object. When a developer selects an example in the

10 http://bit.ly/1NLhmbu

Figure 12: Exploring points-to relations between objects;
only the tag pointers is in the current inspection context.

11 2015/9/29

http://bit.ly/1NLhmbu

Figure 13: Browsing the examples of class.

view, the associated method is executed and the constructed
object is displayed to the right. The developer can then
inspect the state and any specific aspect of the created object.
However, in this case, the code that created the example is
the most important part. To show it in the inspector, we add,
to every object, a view whose activation predicate checks
if the previously inspected object in the current exploration
path is a class displayed using a view showing examples.

Figure 14: Inspecting an example object in isolation.

For example, in Figure 13 a developer inspects the class
RTMapBuilder providing support for building visualizations
containing maps. She then switches to the E.g. view and
clicks on the icon of an example. This executes that example
and opens the resulting object in a new column to the right.
She can then select the E.g. source view showing the source
code that created that example. Inspecting the same object
in isolation will not show the E.g. code view as the object is
not inspected in the context of an example (Figure 14).

6. Implementation Aspects
We integrated the current implementation into Moose in
2013 and into the alpha version of Pharo 4 (the language

on top of which Moose is built) in October 2014, replacing
the previous object inspector. We consider the current im-
plementation to be stable given that it is currently used by
hundreds of people on a daily basis. In this section we ex-
plore various design decisions.

6.1 Constructing a Specific View for an Object
There are numerous approaches to create specific views for
objects ranging from fully automatic generation of views
based on the structure of objects [11] to manual creation us-
ing code snippets [23]. Also, several IDEs allow developers
to customize views using dedicated tools (e.g., Custom Data
Viewers in IntelliJ).

In the current implementation we aimed for an object
inspector that allows developers to use any graphical object
(i.e., morph) as a view. To this end we enable developers
to manually construct views using code snippets that return
such a graphical object. Given that developers reported the
need to be able to easily extend the inspector, we provide
an internal domain-specific language (i.e., an API) that can
be used to directly instantiate several types of basic views
such as list, tree, table, text and code. For example, lines 4-9
show how to instantiate a tree view showing the submorphs
of a morph (Submorphs view, Figure 6).

1 gtInspectorDisplaySubmorphsOn: aCanvas in: aContext
2 <gtInspectorPresentationOrder: 80>
3 <gtInspectorTag: #custom>
4 ↑ aCanvas tree
5 title: 'Submorphs';
6 rootsExpanded;
7 display: [:rootMorph | {rootMorph}];
8 format: [:morph | morph printString];
9 children: [:morph | morph submorphs];

10 when: [:morph | morph submorphs notEmpty]

The proposed API also makes it easy to integrate more
elaborate views created using a visualization library (Roas-
sal [4]) and a data browsers library (Glamour [13]).

6.2 Attaching Multiple Views to an Object
In most object-oriented languages objects can represent
themselves in a textual form with the help of a method in
the class of the object to generate that textual representa-
tion (e.g., toString in Java). Extending this idea, we make an
object responsible for representing itself in multiple ways
by defining within its class methods that construct spe-
cific views. This keeps view code together with that of the
objects. Given that the target language for our implemen-
tation supports extension methods this allows developers
to add views to any existing object while packaging them
separately. These methods are marked with a predefined
parametrizable annotation (gtInspectorPresentationOrder:
— line 2; the parameter is used to order views). The inspec-
tor follows the superclass chain when searching for anno-
tated methods.

12 2015/9/29

A side effect of this design is that a developer can use the
code editor view to modify the inspector from within the in-
spector during inspection time. For example, Figure 9 shows
an editor opened on a method defining the Submorphs view
of a Morph. Changing the code in the editor refreshes the
inspector and provides a live extension mechanism. In fact,
most extensions were created from within the inspector as
doing so provides fast feedback and enables quick iterations.

6.3 Supporting Tags
We opted to defined tags using parametrized annotations: a
view is added to a tag by marking the method creating that
view with the tag’s annotation (in the above snippet, line 3
specifies that the view is added to the tag labeled custom).
This enables a view to have multiple tags and maintains the
mapping between tags and views, within the view. Another
approach consists of maintain this mapping independent of
the view definition (e.g., in a configuration file), however,
that would require developers to find and update the tag
definition when adding/changing views.

6.4 The Moldable Inspector in Other Languages
The Moldable Inspector is a generic model that does not de-
pendent on any particular OO programming language and
IDE. While the current prototype was developed in Pharo,
following the discussion from this section, we view no tech-
nical difficulties that would impede an implementation in
other OO languages and IDEs (e.g., in Eclipse or IntelliJ for
Java, or VisualStudio for C#). The lack of extension meth-
ods would however require a different solution for grouping
views (e.g., putting the views for an object type in a dedi-
cated class).

7. Discussion
7.1 A Taxonomy of Views
To validate the API proposed for creating views (Section 6.1)
and show that it has practical applicability we built, together
with the developers of several frameworks, 131 views cover-
ing 84 distinct types of objects from more than 15 different
applications, frameworks and libraries, including most basic
data types from the language (e.g., Integer, Character, Float,
String, Collection, Time, Date, Calendar).

These views are currently grouped using 4 tags: basic,
custom, pointers and examples. On average a type of object
has 1.6 ± 1.1(M ± SD) new views. However, considering
that an object is displayed using the views from both its class
and all its superclasses an object has on average in all tags a
total of 6.1 ± 1.5(M ± SD) views (the basic, pointers and
examples tags add four views to every object). If we only
take into account the custom tag, an object has on average
2.1 ± 1.5(M ± SD) custom views. The object with the
highest number of custom views is FileReference (8 views).

To understand what types of views are needed for repre-
senting objects we classified all 131 views into 8 types of

Table 4: Types of views used to display objects in the current
implementation.

View type Example Number
of views

List Pointers view, Figure 12 29

Tree
Submorphs view, second
object — Figure 6 9

Table
Keys view, first object —
Figure 9 26

Text
SQL view, first object —
Figure 10 13

Source code
Source code view, sec-
ond object — Figure 9 12

Morph
Morph view, third object
— Figure 6 10

Roassal view View view, Figure 14 18

Glamour view
Raw view, first object —
Figure 6 14

views based on the API for creating views (i.e., list, tree,
table, text, source code, morph, glamour and roassal). The
first five categories reflect simple textual views. The Glam-
our and Roassal categories contain views created using these
libraries; the Morph category contains visual views directly
created using the Morphic framework. 67.9% of the views
are textual (Table 4), with the list and table views being used
the most. The tree view has the lowest usage. We consider
this to be the case because with Object Pager new objects
can be displayed to the right, rather than discovered by ex-
panding a tree. Visual views represent 21.3 % of all views.

7.2 The Cost of Creating a View
Creating a view requires an average of 9.2± 6.6(M ± SD)
lines of code. This measurement includes the signature of
the method containing the view code, code comments and
annotations; it excludes empty lines. We consider that these
numbers attest to the fact that building a custom view is
indeed inexpensive. Combined with the ability of creating
these views live directly from within the inspector, the Mold-
able Inspector provides a new workflow that makes custom
inspection accessible. The low cost for creating a view also
addressed the second developer need identified in Section 2.

In recent mailing list discussions several developers con-
firmed a low learning curve for creating custom views, as
long as they had examples of how to use the API11. Cur-
rently we offer a browser for exploring all extensions present
in the IDE, as well as tutorials on how to extend the inspec-
tor12.

11 http://bit.ly/1FRfDed, http://bit.ly/1R4DToY,
http://bit.ly/1f1a0Fi, http://bit.ly/1dxEmxA
12 Available at http://www.humane-assessment.com

13 2015/9/29

http://bit.ly/1FRfDed
http://bit.ly/1R4DToY
http://bit.ly/1f1a0Fi
http://bit.ly/1dxEmxA
http://www.humane-assessment.com

7.3 Implications
This paper shows that an object inspector can be more than
a simple tool for looking at the state of single objects. An
object inspector can instead be a central tool during debug-
ging that gives developers immediate access to contextual
information directly in the debugger/inspector. By reducing
the cost of creating views we enable developers to adapt the
inspector to their own domain-objects. Currently several li-
braries from the Pharo ecosystem took advantage of this pos-
sibility (e.g., OpalCompiler13, MongoTalk14).

7.4 Open Questions
In the current prototype we rely on manual creation of views
using a dedicated API. While the cost of creating views is
low in terms of lines of code, developers have to manually
update views as they make changes to code. This raises the
following research question: How to update a view as the ob-
ject it represents evolves? One approach for addressing this
research question is to automatically generate views. This
was shown to work well when generating views based only
on the internal representation of an object [11]. Neverthe-
less, not all the views that are in our current implementation
follow this approach; some display domain-specific aspects
that have nothing to do with the internal representation of
an object (e.g., Picture view, Figure 12). This raises another
research question: How to automatically generate views that
capture domain-specific aspects?

While we showed that the Moldable Inspector can sup-
port a wide range of different workflows, an empirical eval-
uation measuring the effectiveness of our approach is cur-
rently missing. We consider that one can evaluate the Mold-
able Inspector on two directions starting from the following
research questions: (i) Does the Moldable Inspector increase
the efficiency of developers when performing program com-
prehension tasks? and (ii) Can developers easily create cus-
tom views for exploring domain objects? In answering these
questions we are currently looking into instrumenting the
tool to get a better understanding of how developers use the
inspector in practice and performing controlled experiments
with software developers.

8. Related Work
There exists a wide body of research looking at how to
improve development tools by improving navigation and the
representation of various software artefacts. We further look
just at approaches that focus on objects and data structures.

Self [24] allows objects to have a custom representation.
However, in Self, the focus is on having a unique view for
each object so that developers can easily identify objects.
The Moldable Inspector promotes multiple tailored views.

13 http://www.smalltalkhub.com/#!/~Pharo/Opal
14 http://www.smalltalkhub.com/#!/~MongoTalkTeam/

mongotalk

Smalltalk X15 proposes an object inspector that allows
objects to have multiple views and groups them using tabs.
The previous object inspector from Pharo (i.e., EyeInspec-
tor) also supports multiple views for an object, grouped us-
ing a drop-down menu. These approaches do not support
workflows that group together multiple objects, nor do they
allow developers to filter views based on their current task.

Eclipse IDE16 incorporates an object inspector that uses a
tree view to show object state and that enables developers to
customize the representation of objects through Detail For-
matters and Logical Structures. Each class can have a Detail
Formatter consisting of a snippet of code that constructs a
custom string used to represent instances of that class any-
where in the debugger. Each class can further have a Logical
Structure that can return an alternative list of key-value pairs
to be displayed in the inspector instead of the current object
attribues (e.g., the Map$Entry class has a logical structure
that displays the key and value from the map instead of the
actual implementation). In Eclipse each class can have a sin-
gle Detail Formatter and Logical Structure. There is no pos-
sibility to have multiple Detail Formatters or Logical Struc-
tures and dynamically select one based on a given property
of an object. The Moldable Inspector allows each object to
have multiple views.

NetBeans17 offers the possibility to define multiple cus-
tom views for an object using Variable Formatters. Never-
theless, only one variable formatter can be active at a time;
developers have to manually select which one by changing
their order in the settings page. IntelliJ18 also supports mul-
tiple custom views for an object using Data Type Renderers.
IntelliJ further allows developers to switch between render-
ers using a context menu. Nevertheless, neither Eclipse, Net-
Beans nor IntelliJ allows views to be selected automatically
at run time based on properties of the inspected objects. The
Moldable Inspector enables this behaviour through activa-
tion predicates.

Eclipse, NetBeans and IntelliJ rely on textual representa-
tions constructed using either tree or table views. The Mold-
able Inspector supports graphical representations not limited
to trees or tables. While Eclipse and NetBeans allow only
one object to be inspected at time through a tree view, In-
telliJ makes it possible to open multiple objects in multiple
inspector windows. Nevertheless, it does not provide an ex-
plicit way to manage an exploration session nor control the
number of visible objects. Visualizers from Visual Studio19

remove the limitation of textual representations, allowing
objects to also have graphical views. However, like IntelliJ,
they do not provide an explicit way to manage an exploration
session.

15 http://www.exept.de/en/products/smalltalk-x.html
16 http://eclipse.org/ide
17 http://netbeans.org
18 http://jetbrains.com/idea
19 http://visualstudio.com

14 2015/9/29

http://www.smalltalkhub.com/#!/~Pharo/Opal
http://www.smalltalkhub.com/#!/~MongoTalkTeam/mongotalk
http://www.smalltalkhub.com/#!/~MongoTalkTeam/mongotalk
http://www.exept.de/en/products/smalltalk-x.html
http://eclipse.org/ide
http://netbeans.org
http://jetbrains.com/idea
http://visualstudio.com

A different category of object inspector consists of those
integrated in current web browsers for inspecting the struc-
ture of web pages, like HTML tab in Firebug20 or Elements
tab in Chrome DevTools21. These inspectors allow devel-
opers to navigate the structure of a page using a tree view.
When an HTML element is selected in the tree view a pane
is spawned to the right displaying the element using multi-
ple views grouped together using tabs; these includes views
for CSS properties, graphical layout, or the DOM object of
the selected element. Nevertheless, these inspectors limit the
number of objects from an exploration session to two and
do not provide an easy way to customize the inspector with
tailored views.

jGRASP is an integrated development environment pro-
viding object viewers that automatically generates graphi-
cal views for objects based on their structure [11]. jGRASP
displays an object using the view that best matches its struc-
ture. Unlike jGRASP the Moldable Inspector aims to support
views that show more than just the state of an object, and
thus cannot be associated with an object only based on its
structure. Furthermore, the Moldable Inspector allows views
to be grouped based on their intent (i.e., using tags) and pro-
poses a workflow that automatically arranges the inspected
objects.

DoodleDebug [23] allows objects to have two custom
representations (a summary view and a detailed view). Ve-
bugger [21] allows developers to define templates that can
create views for objects having a certain type. Nevertheless,
the template that will be used to represent an object is dis-
covered only based on the type of the object, without taking
into account the state of that object. Both these approaches
also focus only on representing individual objects.

Alsallakh et al. [3] present an extension to Eclipse IDE
that uses multiple types of views to display object represent-
ing arrays. The Moldable Inspector is applicable to any type
of object, not just to arrays.

Several approaches further propose the use of graphs to
visualize various relations between objects [1, 22]. These ap-
proaches scale well; they can even display the entire content
of the heap. While the Moldable Inspector supports naviga-
tion between objects we do not consider that an inspection
session can involve hundred of objects that need to be dis-
played all at once. Hence, we proposed a user interface that
displays objects using a list instead of a tree, and is applica-
ble for navigating a significantly smaller number of objects.

Debugger Canvas [12] brings the Code Bubbles [5] idea
to debugging. The approach shows related entities next to
one another and allows the developer to manipulate and store
them in sessions. However, this approach relies on single
representations for each entity regardless of the context, and
object inspection is offered through a classic tree like view.
The Code Bubbles interface also requires the developer to

20 http://getfirebug.com
21 http://developer.chrome.com/devtools

organize the bubbles. Our user interface relies on a Miller
columns design that requires small space and little spatial
maintenance effort.

Korn and Appel [14] propose a technique called traversal-
based visualization in which the debugger traverses a data-
structure and creates a visualization based on a set of pat-
terns given by a user, patterns indicating how to display
particular parts of the data structure. The Moldable Inspec-
tor uses activation predicates to automatically select views
based on object state; activation predicates do not directly
indicate how to display an object; they are only used to de-
cide if a view is applicable for a given object.

LIVE [6] creates visualizations for data structures auto-
matically from ASTs: a developer first enters a program; the
program is then parsed by LIVE into an AST; the AST is
then used to create an animated visualization showing the
evolution of the data structure. LIVE provides live editing of
the visualization in the sense that users can make changes to
the vizualization (e.g., add a node in a data structure repre-
senting a list) which are immediately reflected back to the
code that created that vizualization. The current implemen-
tation of the Moldable Inspector also incorporates this idea:
developers can create views directly from within the inspec-
tor; any time they save the view the inspector updates.

9. Conclusions
Through an empirical study we observed a need for object
inspectors that focus on more than the state of single objects.
We proposed the Moldable Inspector, a model for object
inspectors that can adapt to both the inspected objects and
the immediate developer needs. We further introduced the
Object Pager, a user interface for navigating through objects
having multiple views.

While simple, the Moldable Inspector enables a wide
range of different workflows. We showed that it can be
used to understand various scenarios such as manipulating
graphical objects, understanding compiled code, following
pointers, exploring databases, navigating the file system, or
browsing examples.

Some of these features are usually addressed within IDEs
using dedicated tools, without these tools being connected
to the actual run-time objects. Developers have to fragment
their debugging activities, look for these tools elsewhere and
then bring the desired information back to the inspector/de-
bugger. The Moldable Inspector removes this gap. By adapt-
ing the displayed views to the current development needs it
immediately provides the desired data right in the inspector.

Our solution relies on developers constructing custom
views. To be practical, the cost associated with creating these
views should be small. Through our concrete implementa-
tion we showed that indeed this is achievable.

15 2015/9/29

http://getfirebug.com
http://developer.chrome.com/devtools

Acknowledgments
We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Assessment” (SNSF project Nr. 200020-144126/1,
Jan 1, 2013 - Dec. 30, 2015). We thank the anonymous
reviewers for their suggestions in improving this paper.
We also gratefully acknowledge the financial support of
the Swiss Group for ObjectOriented Systems and Environ-
ments (CHOOSE) and the European Smalltalk User Group
(ESUG).

References
[1] E. E. Aftandilian, S. Kelley, C. Gramazio, N. Ricci, S. L. Su,

and S. Z. Guyer. Heapviz: Interactive heap visualization for
program understanding and debugging. In Proc. SOFTVIS,
pages 53–62, 2010.

[2] J. Alexander, A. Cockburn, S. Fitchett, C. Gutwin, and
S. Greenberg. Revisiting read wear: Analysis, design, and
evaluation of a footprints scrollbar. In Proc. SIGCHI, CHI,
pages 1665–1674. ACM, 2009.

[3] B. Alsallakh, P. Bodesinsky, S. Miksch, and D. Nasseri. Visu-
alizing Arrays in the Eclipse Java IDE. In Proc. CSMR, pages
541–544, March 2012.

[4] V. P. Araya, A. Bergel, D. Cassou, S. Ducasse, and J. Laval.
Agile visualization with Roassal. In Deep Into Pharo, pages
209–239. Square Bracket Associates, Sept. 2013.

[5] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola, Jr. Code
Bubbles: a working set-based interface for code understanding
and maintenance. In Proc. CHI, pages 2503–2512, 2010.

[6] A. E. R. Campbell, G. L. Catto, and E. E. Hansen. Language-
independent interactive data visualization. SIGCSE Bull., 35
(1):215–219, Jan. 2003.

[7] A. Chiş, T. Gı̂rba, and O. Nierstrasz. The Moldable Inspector:
a framework for domain-specific object inspection. In Proc.
IWST, 2014.

[8] A. Chiş, T. Gı̂rba, and O. Nierstrasz. The Moldable Debug-
ger: A framework for developing domain-specific debuggers.
In Software Language Engineering, volume 8706 of Lecture
Notes in Computer Science, pages 102–121. Springer Interna-
tional Publishing, 2014.

[9] R. Chimera. Value bars: An information visualization and
navigation tool for multi-attribute listings. In Proc. CHI, pages
293–294, 1992.

[10] J. W. Creswell and Vicki. Designing and Conducting Mixed
Methods Research. Sage Publications, Inc, Aug. 2006.

[11] J. H. Cross, II, T. D. Hendrix, D. A. Umphress, L. A.
Barowski, J. Jain, and L. N. Montgomery. Robust generation

of dynamic data structure visualizations with multiple inter-
action approaches. Trans. Comput. Educ., 9(2):13:1–13:32,
June 2009.

[12] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P.
Reiss. Debugger Canvas: industrial experience with the code
bubbles paradigm. In Proc. ICSE, pages 1064–1073. IEEE
Press, 2012.

[13] T. Gı̂rba, A. Bergel, D. Cassou, S. Ducasse, and J. Laval.
Glamour. In Deep Into Pharo, pages 191–207. Square Bracket
Associates, Sept. 2013.

[14] J. Korn and A. Appel. Traversal-based visualization of data
structures. In Information Visualization, 1998. Proceedings.
IEEE Symposium on, pages 11–18, Oct 1998.

[15] R. Lencevicius, U. Hölzle, and A. K. Singh. Query-based
debugging of object-oriented programs. In Proc. OOPSLA,
pages 304–317, 1997.

[16] J. H. Maloney and R. B. Smith. Directness and liveness in the
Morphic user interface construction environment. In Proc.
UIST, pages 21–28. ACM, 1995.

[17] M. Martin, B. Livshits, and M. S. Lam. Finding application er-
rors and security flaws using PQL: a program query language.
In Proc. OOPSLA, pages 363–385. ACM, 2005.

[18] M. B. Miles and M. Huberman. Qualitative Data Analysis:
An Expanded Sourcebook(2nd Edition). Sage Publications,
Inc, 2nd edition, 1994.

[19] R. Minelli, A. Mocci, M. Lanza, and L. Baracchi. Visualizing
developer interactions. In Proc. VISSOFT, pages 147–156,
2014.

[20] C. Plaisant, D. Carr, and B. Shneiderman. Image-browser
taxonomy and guidelines for designers. Software, IEEE, 12
(2):21–32, Mar 1995.

[21] D. Rozenberg and I. Beschastnikh. Templated visualization
of object state with Vebugger. In Proc. VISSOFT, pages 107–
111, Sept 2014.

[22] A. Savidis and N. Koutsopoulos. Interactive object graphs
for debuggers with improved visualization, inspection and
configuration features. In Proc. ISVC, pages 259–268, 2011.

[23] N. Schwarz. DoodleDebug, objects should sketch themselves
for code understanding. In Proc. DYLA, 2011.

[24] R. B. Smith, J. Maloney, and D. Ungar. The Self-4.0 user
interface: Manifesting a system-wide vision of concreteness,
uniformity, and flexibility. In Proc. OOPSLA, pages 47–60,
1995.

[25] M. Q. Wang Baldonado, A. Woodruff, and A. Kuchinsky.
Guidelines for using multiple views in information visualiza-
tion. In Proc. AVI, pages 110–119. ACM, 2000.

16 2015/9/29

A. Appendix A

Participant Answer

P1 —
P2 A tool to look inside an object
P3 Something to get a good idea about what the state of the object is
P4 Something that allows me to take a look at an object
P5 A tool that allows me to inspect the object
P6 A tool that allows me to inspect objects
P7 See all the fields
P8 A tool that helps you to inspect data at runtime
P9 A way to see inside an object
P10 A tool to understand which are the components/status/relations of

an object
P11 The tool where I can inspect live objects and I can dive and inspect

the state
P12 A reflective tool that allows me to see all the structure of an object

and change it
P13 I can see the state in which an object is
P14 A tool showing the state of an object which is logged in memory
P15 —
P16 An easy way to see and manipulate what’s inside an object at its

most fundamental level

Table 5: Answers provided by the interview participants to the question: What is an object inspector for you? Two participants
did not provide an answer.

17 2015/9/29

	Introduction
	Exploratory Study
	Qualitative Investigation
	Setup
	Analysis

	Quantitative Investigation
	Setup
	Analysis

	Threats to Validity
	Internal Validity
	External Validity

	Summary

	The Moldable Inspector in a Nutshell
	Running Example
	Enabling Customization
	Multiple Views
	Flexible Navigation

	Inspection Context
	Tags
	Exploration Session
	Activation Predicates

	Addressing the Initial Developer Needs

	Compact, Efficient Object Exploration
	Displaying Multiple Views for an Object
	Representing an Exploration Session
	Navigating Through an Exploration Path

	Custom Workflows
	Multiple Views for Every Object
	Generic Views
	Multiple Views for Graphical Objects
	Multiple Views for Compiled Code

	Navigating Through Connected Objects
	Browsing Indirectly Connected Objects
	Navigating to New Objects
	Using Code to Guide the Navigation Process

	Selecting Views Based on the Inspection Context
	Selecting Views Using Activation Predicates
	Selecting Views Using Tags
	Selecting Views Based on the Exploration Session

	Implementation Aspects
	Constructing a Specific View for an Object
	Attaching Multiple Views to an Object
	Supporting Tags
	The Moldable Inspector in Other Languages

	Discussion
	A Taxonomy of Views
	The Cost of Creating a View
	Implications
	Open Questions

	Related Work
	Conclusions
	Appendix A

