
Moldable Exceptions
Andrei Chiş
feenk gmbh

Wabern, Switzerland
andrei.chis@feenk.com

Tudor Gîrba
feenk gmbh

Wabern, Switzerland
tudor.girba@feenk.com

Oscar Nierstrasz
feenk gmbh

Wabern, Switzerland
oscar.nierstrasz@feenk.com

Abstract
Debugging is hard. Interactive debuggers are mostly the
same. They show you a stack, a way to sample the state of
the stack, and, if the debugger is live, a way to step through
execution. The standard interactive debugger for a general-
purpose programming language provided by a mainstream
IDE mostly offers a low-level interface in terms of generic
language constructs to track down and fix bugs. A custom
debugger, such as those developed for specific application
domains, offers alternative interfaces more suitable to the
specific execution context of the program being debugged.
Custom debuggers offering contextual debugging views and
actions can greatly improve our ability to reason about the
current problem. Implementing such custom debuggers, how-
ever, is non-trivial, and poses a barrier to improving the
debugging experience. In this paper we introduce moldable
exceptions, a lightweight mechanism to adapt a debugger’s
interface based on contextual information provided by a
raised exception. We present, through a series of examples,
how moldable exceptions can enhance a live programming
environment.

CCS Concepts: • Software and its engineering→ Soft-
ware maintenance tools.

Keywords: Exceptions, debuggers, customization.

ACM Reference Format:
Andrei Chiş, Tudor Gîrba, and Oscar Nierstrasz. 2024. Moldable
Exceptions. In Proceedings of the 2024 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward! ’24), October 23–25, 2024, Pasadena,
CA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3689492.3690044

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward! ’24, October 23–25, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1215-9/24/10
https://doi.org/10.1145/3689492.3690044

1 Introduction
Debuggers are unloved beasts. They provide a generic and
low-level interface to explore and debug the run-time state
of a running program. Many debugging problems can be
better tackled by understanding the nature of the exception
that was raised and caused the debugger to be activated.
There have been numerous efforts to develop custom de-

buggers for various application domains and domain-specific
languages. These custom debuggers provide dedicated views
and actions that are tailored to a specific application context.
For example, an object-centric debugger [25] offers views and
interactions that focus on specific objects rather than the
run-time stack. Building a custom debugger is, however, a
non-trivial task, so this does not happen too often. An exten-
sible debugger (such as deet [13]) is designed so that it can
be easily extended with new graphical views and debugging
operations, but these extensions still represent a significant
development effort. Amoldable debugger [7] is a special kind
of extensible debugger that can activate alternative debug-
ger interfaces depending on the current execution context,
however the development of these alternative debuggers is
still non-trivial.
We propose a new, lightweight mechanism, called mold-

able exceptions, to dynamically adapt a moldable debugger
using contextual information provided by the exception itself.
In modern, object-oriented software, it is common practice
to define dedicated classes of exceptions to signal individual
run-time issues. Each exception therefore implicitly carries
knowledge about the kind of issue being raised. For exam-
ple in a parsing framework an exception can indicate that a
given input cannot be parsed. Moldable exceptions leverage
this knowledge by associating simple views and actions to
be activated by a moldable debugger when that exception is
raised.
Consider the following example. In Figure 1 we see an

assertion that compares two strings.1 In a normal setting, this

Figure 1. A failing string comparison assertion.
assertion will fail, yielding a standard debugger view, such as
the one we see in Figure 2. This is the standard debugger of
1All the examples are written in Pharo Smalltalk (https://pharo.org), running
in the open-source Glamorous Toolkit (GT) IDE (https://gtoolkit.com).

1

https://doi.org/10.1145/3689492.3690044
https://doi.org/10.1145/3689492.3690044
https://doi.org/10.1145/3689492.3690044
https://pharo.org
https://gtoolkit.com

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Andrei Chiş, Tudor Gîrba, and Oscar Nierstrasz

Figure 2. A generic debugger view.

theGT IDE, which resembles other generic debuggers in that
it shows an error message at the top, a compact view of the
reified run-time stack at the left, source code of each stack
frame in the middle, an inspector on the variables of the
current stack frame at the right, and a dashboard of buttons
at the top right for stepping through the running program. It
will typically take a developer some time to putter around in
the debugger interface to understand the specific error (the
strings do not match), and why the strings do not match.
Suppose that instead of seeing the generic debugger, we

are offered a view that highlights the actual differences, as in
Figure 3. Such a view not only homes directly in on the spe-

Figure 3. A string diff debugger view.
cific problem, but also highlights the individual differences
in a dedicated “diff” view. Furthermore, since the diff view
already exists as a component used in other applications, the
development effort is close to zero. While in this introduc-
tory example, the difference is easy to spot, in other cases
such as those presented in section 6, a diff view is essential
to quickly identifying differences.

Moldable exceptions work as follows: when an exception
is raised, the exception (an object) is caught and passed to the
debugger. Every exception not only provides the debugger
with the context it needs to generate the debugging UI, but
it can also offer alternative views and actions. In the case of
our implementation, this is achieved by the exception class
providing specially annotated debugger extension methods.

This simple mechanism allows moldable exceptions to do
three things:
(i) provide domain-specific debugging views and actions,
(ii) offer new debugger GUI interactions, and

(iii) enable automated fixes (code and data transformations)
for common programming errors.

We will illustrate these three points with several exam-
ples. In section 2 we introduce the moldable inspector, which
allows objects to define custom views and actions when they
are inspected. In section 3 we show how custom debugger
views and actions can easily be defined in a similar way by
adding simple annotated view and action methods to the
class of a moldable exception. In section 4 we show how
a richer debugger user interface can be provided in much
the same way by leveraging existing GUI frameworks. We
show an example of moldable exceptions enabling automated
fixes in section 5. In section 6 we describe a case study in
which we used moldable exceptions to improve a develop-
ment workflow. We discuss the implementation details in
section 7. We summarize our contributions and discuss some
possible future work in section 8, and we discuss related
work in section 9. We conclude in section 10.

2 The Moldable Inspector
Understanding moldable exceptions can be easier if we first
introduce another example of a similar approach. Moldable
exceptions build on the idea of a moldable tool [8], an IDE
tool that adapts its behavior to a specific run-time applica-
tion context. An example of such a tool is a moldable object
inspector [9]. When a moldable object inspector is opened
on an object it looks for any view or action methods defined
in the class of that object, and uses those methods to create
custom views.

Let us consider a typical example. Suppose we have an im-
plementation of a Ludo2 game. Players alternate in throwing
a die and moving a token until one player reaches their goal
square. In Figure 4 we see a classical Raw view supported
by a typical object inspector. It just shows the state of the

Figure 4. A classical “raw” view of a Ludo game.
2A simple game in which players move tokens around a board based on the
roll of a die. https://en.wikipedia.org/wiki/Ludo

2

https://en.wikipedia.org/wiki/Ludo

Moldable Exceptions Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

object as a list of instance variables and their values. In Fig-
ure 5, however, we see an alternative, graphical Board view
showing the current state of the game as a user would see it.

Figure 5. An interactive GUI view of a Ludo game.

In general, a variety of views may be more useful than
the classical “raw” view, and this is also true for the Ludo
game. In Figure 6 we see a Moves view that lists all the
moves of the game played thus far. By clicking on a move (at

Figure 6. A custom historical Moves view of a Ludo game,
and a custom graphical view of a selected move.
the left) you can then inspect (at the right) the correspond-
ing GtLudoMove object, with its custom views, in this case
showing the details of what happened in this move.

In Figure 7 we see the source code defining theMoves view.
This method uses just a few lines of code to create a brows-
able “columned list” of past moves with several columns for
the details of each move.
In addition to views, objects can also define actions that

encapsulate useful operations. For example, the game object
in Figure 5 defines an Autoplay one move action (with the
icon) that can be used to simulate a player’s turn.

View and action methods are recognized by the moldable
inspector through dedicated annotations, in exactly the same
way that a test runner tool in a classical IDE recognizes Java

Figure 7. The Moves view next to its source code.
test case methods because they are tagged with a @Test
annotation. In this case the annotation is <gtView> for views
(and <gtAction> for actions), seen in the second line of the
method defining the view.

3 Adding Custom Debugger Views
Moldable exceptions provide custom debugger views and
actions in essentially the same way as the moldable inspector.
Moldable exceptions are instances of an Exception class that
has been extended with a dedicated method for each custom
debugger view or action. These methods are annotated with
a <gtExceptionView> pragma for views and a <gtException-
Action> pragma for actions to extend the moldable debugger
(i.e., as opposed to <gtView> and <gtAction> which extend
the moldable inspector).

Let us consider that the Ludo game has been implemented
with the help of Design by Contract [18]. Rolling a die when a
player should move, or vice versa, constitutes a precondition
violation, which raises a LudoMoveAssertionFailure. Simi-
larly, if an attempt is made to move the wrong player’s token,
this will trigger a precondition failure. Normally, this would
fire up the classical debugger, as seen in Figure 8. Although

Figure 8. A classical debugger for a precondition failure.
the precondition violation is clearly reported, the debugger
interface is not ideal for tracking down the actual reason for
the violation.

What we would perhaps like to see instead is the current
state of the game, in addition to a history of the past moves.
We could possibly find these by navigating through the exist-
ing debugger views, but why not show them directly? After

3

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Andrei Chiş, Tudor Gîrba, and Oscar Nierstrasz

all, we know whenever this exception is raised, what it is
that we would like to see. Furthermore, if we already have
such views defined elsewhere (we do!), it is not a question
of defining new views, but of reusing them in the context of
the debugger. We just need to define two new view methods
in the class LudoMoveAssertionFailure.
Here is the definition of the first view, which simply for-

wards (delegates) the view to another existing one. Specif-
ically, the moldable debugger game view for a LudoMove-
AssertionFailure simply reuses the moldable inspector view
called gtPositionsFor: that is already defined in the game
object.

1 gtGameViewFor: aView
2 <gtExceptionView>
3 ↑ aView forward
4 title: 'Game';
5 priority: 10;
6 object: [move game];
7 view: #gtPositionsFor:

Let us step through the code: (i) gtGameViewFor: is the
name of the viewmethod, which takes as its argument aView,
the view to be defined. (ii) The method is annotated with
<gtExceptionView>, which tells the moldable debugger to en-
able the view whenever LudoMoveAssertionFailure is raised.
(iii) We return (↑) the result of sending forward to aView.
(iv) We give the view a title and (v) a priority (the order in
which views are shown—we set it to 10 rather than 1 to
leave room for more important views later). (vi) We specify
the object to forward to (the move’s game). (vii) We name the
already existing viewmethod to forward to (gtPositionsFor:).

We similarly define a method for the history of past moves,
and now the debugger, instead of showing us the classical
debugger, will offer us the two views seen in Figure 9. The
Game view shows us the current game state graphically, and
the Moves view shows us a browsable list of past moves.
Note that we can always switch to the standard debugger by
selecting the GT button at the top.
The Moves debugger view is also defined by reusing the

existing object inspector Moves view:

1 gtMovesViewFor: aView
2 <gtExceptionView>
3 ↑ aView forward
4 title: 'Moves';
5 priority: 20;
6 object: [move game];
7 view: #gtMovesFor:

The assertion diff debugger viewwe saw earlier in Figure 3
is similarly defined as a method of AssertionFailure.

1 AssertionFailure>>gtComparableTypesTextualDiffFor: aView
2 <gtExceptionView>
3 | assertionContext |
4 self gtHasStack ifFalse: [↑ aView empty].

Figure 9. Custom debugger views for the Ludo game.

5 assertionContext := self
gtLocateAssertEqualsContextWithComparableTypes.

6 assertionContext ifNil: [↑ aView empty].
7 ↑ aView forward
8 title: 'Textual Diff';
9 priority: 0;
10 object: [assertionContext];
11 view: #gtComparableTypesTextualDiffFor:

The key difference is that not everyAssertionFailure is raised
as the result of a comparison. For this reason, in line 6, the
view will be suppressed (↑ aView empty) in case the asser-
tion did not fail in the context of an assert:equals: check.

4 Building Domain-Specific Debugger
Views

The examples we have seen so far have reused existing in-
spector views, but sometimes there is a need to develop a
new kind of debugger view. This also need not necessarily
imply a heavy implementation effort.

The GT Scripter is a tool used to “script” GUI interactions,
mainly for testing purposes. Let us consider the case of as-
sertion errors being raised while testing a user interface
interaction with the help of the Scripter. The scenario is the
following: (i) We create a notebook page called “Page One”.
(ii) We add a text snippet with a link to the Object class.
(iii) We assert the existence of the page. (iv) We click the
link. (v) We check that a new page is created with a code
browser for the Object class. In case something goes wrong,
we would like the debugger to provide us with high-level
views of the state of the Scripter.

4

Moldable Exceptions Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

We consequently introduce three dedicated debugger views.
The Scripter preview (Figure 10) shows the result of the
scripted interaction: (i) the notebook page has been created,
containing a link to the class Object, and (ii) the link to the
class has been clicked, opening a source code browser on
the class.

Figure 10. Scripter preview.
The Scripter steps view (Figure 11) shows us a graphical

tree view of the steps performed by the GUI Scripter, as well
as the assertions that have been checked. (In this case the tree
has only two levels, but in general there may be many levels.)
The green steps and assertions have succeeded, whereas the

Figure 11. Scripter steps view.
red ones have failed. By clicking on any step or assertion
node, we can see the corresponding code highlighted in the
scripter method at the right. Here we see that the step Check
that page was spawned has failed, and at the right we see the
corresponding failure highlighted in the code.
Finally, the Textual Diff view (Figure 12) is the same one

we have seen earlier, reused again. It just tells us that the
check should verify that there are now two pages in the pager,
not just one, as we can also see in the Scripter preview. It is the
check specification that is at fault, not the GUI Interaction
we are testing.

Figure 12. Scripter textual diff view.

However this time we show the Textual Diff view both
in the new debugger interface created for this exception
(Textual Diff tab in Figure 10), as well as an additional view
within the standard GT debugger (Textual Diff tab in Fig-
ure 12). Hence, a moldable exception can also provide views
and actions for the standard GT debugger.

Why do we need these views? The problem with the
standard debugger is that, due to the way the GUI Scripter
schedules the steps, the offending method (i.e., the page-
WithClassClicked method we see in Figure 11) is not on the
stack at the point where the exception is raised. Although it is
possible to get at the information we seek, doing so is clumsy
since we would have to navigate to the exception instance
itself, and explore its internal state, and the classical stack
view only confuses matters instead of helping us to debug
the problem. This can be the case with many application
domains, especially those that depend on event scheduling.
The run-time stack does not do a good job of telling us how
the events have been triggered, so another kind of view is
needed.
In general, custom debugger views exist to save you the

trouble of rummaging around the stack to find the informa-
tion you need, and they can offer dedicated custom actions
to fix the problem.

How hard is it to implement a domain-specific debug-
ger interface? Extending a standard debugger with such
views can be challenging. Typically such views would have
to be added in a subclass of the standard debugger. With
moldable exceptions, views only have to be added to the
exception class itself. The Scripter steps view is implemented
using a version ofMondrian [1, 19], a builder for graph-based
visualizations. In Figure 13 we can see the entire source code
of the view expanded in place, implemented in just four
methods.3 The debugging view at the top just adds a “Inspect
Scripter” button to the next method, an object inspector view
for a Scripter. This in turn just delegates to the Steps view
of a BlDevScripterStep object. Finally, this method embeds
a Mondrian visualization implemented in 12 lines of code in
the paintTreeWith: method.
Obviously this does not prove that all domain-specific

debugger interfaces will be so tiny, but it does demonstrate
3NB: The figure is intended just to emphasize the size of the source code,
not to be an invitation to try to read it.

5

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Andrei Chiş, Tudor Gîrba, and Oscar Nierstrasz

Figure 13. The Scripter steps source code.

that a useful custom debugger view can be implemented in
an almost trivial amount of code.

5 Enabling Automated Fixes
Many cases of common programming errors can be auto-
matically repaired. Consider the case providing to an API
an object of the wrong type, or of the right type but the
wrong state. While the first kind of mistake could arguably
be caught by a static type system, detecting objects being in
a wrong state is rather a run-time issue, typically caught by a
precondition. Some common cases can be fixed by rewriting
the client code. In Figure 14 we see the source code for a cus-
tom inspector view that incorrectly returns aView instead of
aView empty in the preamble. This custom debugger view

Figure 14. Catching an “empty view” error.
decorates the source code with an explanation pointing out
the likely errors, and links (in yellow) to the offending source
code.
Since such preambles are a common idiom in defining

GT inspector views, and the error is also not uncommon,
it becomes easy to fix with the help of a transformation.

Figure 15 shows the result of performing the Fix & retry
action: a refactoring widget is generated that proposes a
code transformation. Clicking on the Apply refactoring and
proceed button will transform the source code, leave the
debugger, and evaluate the rewritten code. Given how GT
inspector views are executed, in this particular case, after
applying the transformation that fixes the code of the view,
it is enough to restart the top call frame. In other cases it
might be needed to walk over the call stack to find the right
place from where to restart execution.
A custom debugger action, such as Fix & retry or Retry

is defined in the same way as a custom debugger view: it
is a method with a particular annotation, in this case being
<gtExceptionAction> rather than <gtExceptionView> , but
the mechanism is essentially the same. We see the code of
this action in the listing below. Since this is a debugging
action we need to be able to control the run-time execution.
To make this possible, methods creating debugging views
and actions can take as a second parameter a context object
that gives them access to the current run-time execution.

1 gtDebugActionFixItFor: anAction inContext: aContext
2 <gtExceptionAction>
3 (self shouldApplyInContext: aContext)
4 ifFalse: [↑ anAction noAction].
5 ↑ anAction dropdown
6 label: 'Fix & retry';
7 icon: BrGlamorousVectorIcons play ;
8 priority: 50;
9 id: #'gtDebugAction--fixit';
10 preferredExtent: 650@350;
11 content: [self refactoringElementWithAction: [
12 aContext debuggingSession restartTopContext.
13 aContext debugger resumeAndCloseDebugger]]

The default behavior of such fixits is to open a debugger
with the possibility of applying a proposed code transforma-
tion. If, on the other hand, such code transformations should
be applied automatically, this can be configured. In our proof-
of-concept implementation of moldable exceptions, this is
done by evaluation the following code, which sets a flag in a
globally accessible Singleton.

1 GtMoldableExceptionTransformationsSettings
defaultInstance allowAutomaticTransformations.

The mechanism for managing unhandled exceptions can
then optionally consult this flag to decide whether to spawn
a debugger or apply the fix (section 7 gives more details).
As before, the custom debugger views and actions are

mostly built from existing components, so the implementa-
tion effort is low.

6 A Case Study of Moldable Exceptions
As a case study, we applied moldable exceptions within a
company that develops applications for managing insurance

6

Moldable Exceptions Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Figure 15. Transforming an empty view error.

policies, to improve the development process by integrating
custom comparison views into the debugger.

One part of the application consists in generating various
documents related to insurance contracts. The creation of
documents is verified using tests that check that a recre-
ated document matches an expected version that has been
previously saved. Whenever a comparison fails, a developer
needs to assess the differences between the two documents,
and then, in case those differences are justified, update the
saved version with the recreated one, or in case they are not
expected, track down and fix the root cause of the difference.

In the established workflow, a developer uses a dedicated
tool to compare the recreated and the expected versions,
and in case the difference is acceptable, update the expected
document with the new one. In case the difference indicates
a bug, the developer has to run the test again using the
debugger to explore the live execution. With this workflow,
developers have to choose the tool before they run the test,
which means that they typically need to run a test twice.
This can be a problem as some tests take minutes to run.

With moldable exceptions we integrated custom debugger
views that show the differences between the recreated and
the expected versions, and provide custom actions to update
the expected document with the new one and resume execut-
ing the test, directly in the debugger. To achieve this we rely
on the fact that tests raise ComparisonFailure exceptions
when two documents do not match.

Figure 16 shows the debugger opened as a result of a
failed comparison of two PDF documents. In this case the
exception provides multiple diff views: one at the image level
that visually highlights the parts that differ between the two
documents (Figure 16), a second one at the level of the text
contained by the PDF documents (Figure 17), and another
at the level of the raw document format (Figure 18). Apart
from the diff views, the exception also provides an Accept

action that replaces the saved expected document with the
new one, and continues the execution of the test.
The Image Diff view and the Accept action both reuse

existing logic, and in a few lines of code integrate it into the
debugger. This integration unifies the flow of comparing two
documents and exploring why the failure happens using a
debugger. Developers can now simply run tests, and when a
comparison fails choose how to proceed.

7 Implementation Details
The key to implementing moldable exceptions is the mech-
anism used to inform a moldable debugger of the relevant
views and actions it provides. In our implementation every
exception can provide one or more debugger specifications.
Exceptions define these specifications through methods an-
notated with <gtDebuggerSpecification>. Below we see the
method in the Exception class, at the top of the exception
class hierarchy, that defines a custom debugger for every
exception.

1 Exception>>gtExceptionDebuggerSpecification
2 <gtDebuggerSpecification>
3 ↑ GtMoldableExceptionSpecificDebuggerSpecification
4 forException: self

A debugger specification contains all the information
needed by a debugger to locate actions and views. Figure 19
shows the default properties defined by such a specification.
By default, as mentioned in section 3, the moldable GT

debugger looks for methods annotated with a <gtExcep-
tionView> pragma. An exception can change the pragma
if needed, or provide a list of other pragmas. The default
specification also provides several other properties, includ-
ing:

• Debugging Targets: objects reachable from the excep-
tion where to look for actions and views.

7

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Andrei Chiş, Tudor Gîrba, and Oscar Nierstrasz

Figure 16. A view showing visual differences between two PDF documents (differences are highlighted in magenta).

Figure 17. A view showing textual differences between the
text content of two PDF documents.

Figure 18. A view showing textual differences between doc-
ument at the level of the PDF format.

• Debugging Actions: pragmas for debugging actions.
• Title, Icon: for displaying a debugger selector.
• Priority: a number used to determine the order in
which alternative debuggers are offered.

• Activation Predicate: a condition to decide whether to
show the debugger or not based on the exception state;
by default the debugger is shown if any debugging
views are found.

• Available Automatically: if the debugger is active, in-
dicates whether it can be shown by default.

• Debugger Class: The class of the debugger that is cre-
ated from this specification.

By default the debugger created from a specification searches
for debugging views and actions in the class of the excep-
tion. However, through the Debugging Targets property an

Figure 19. Default properties for a debugging specification.

exception can change that, and provide any other list of ob-
jects. That makes it possible for other objects in the system
reachable from the exception objects to provide debugging
actions and views.
To summarize, when an exception is raised, the mold-

able debugger looks for debugger specifications in exception
methods annotated with <gtDebuggerSpecification> and
uses them to create custom debuggers. These custom de-
buggers are then shown when their activation predicate is
true. For example, Figure 20 shows the list of debugger spec-
ifications located when the assertion failure from Figure 3 is
raised. We see that in total eight specifications are found, but
just the one for the default debugger together with the one
provided by the exception are active, and result in a custom
debugger view being shown.

To enablemoldable exceptions to perform automated trans-
formations instead of opening the debugger, we provide a

8

Moldable Exceptions Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Figure 20. A list of debugger specifications found when an
exception is raised.

dedicated trait [10] that exceptions can use. This trait pro-
vides an implementation for the signal method shown below.
This method is executed whenever an exception is raised. By
default in case an exception is not handled in the system a
debugger is opened. This override checks if automatic trans-
formations are allowed for the current exception (line 4), and
if they are, asks the exception for its transformation (lines 5)
and executes it if there is anything to transform (lines 6-7).
Transformations can apply code changes, modify the state
of objects, or perform other operations, such as deleting no
longer needed files.

1 TGtMoldableExceptionSignalWithTransformation>>signal
2 <debuggerCompleteToSender>
3 | transformation |
4 self canApplyAutomaticTransformation ifFalse: [↑super

signal].
5 transformation := self

gtMoldableExceptionTransformation.
6 transformation shouldTransform ifFalse: [↑super signal].
7 transformation performTransformation

8 Discussion and Future Directions
Moldable exceptions are just objects augmented with an-
notated methods that create alternative views and actions
when they are used to spawn a moldable debugger. The only
changes needed to an application are: (i) if there is not al-
ready a dedicated exception class for the exception to be
molded, introduce one, and (ii) add dedicated exception view
methods to that class to mold the debugger.
The previous extension mechanism for the moldable de-

bugger required developers to extend the debugger by creat-
ing subclasses [7]. Although the old framework considerably
reduced the cost of building a custom debugger, they still
required a non-trivial implementation effort, consisting of
several hundreds of lines of code ([7], table 7). While both
the moldable inspector and the (old) moldable debugger were
available in GT up to now, currently GT comes with 3200
views and 280 actions with an average of 12 lines of code,
but only 8 custom debuggers (such as the one in Figure 21).

This indicates that the extension mechanism plays a sig-
nificant role in developers extending the IDE, and that the
cost of creating views and actions can be very low. Due to
this, through moldable exceptions we aim to apply the same
extension mechanism present in the moldable inspector for
creating custom debuggers. In the new approach, a mold-
able debugger simply needs to recognize whether a raised
exception has custom views defined (in our case by detected
annotatedmethods of its class), and then activate those views
in its user interface.

At the time of writing we have implemented some 26 cus-
tom debugger views, in an average of under 12 lines of code.
Over half of these are forwarding views that reuse (dele-
gate to) existing views previously defined as object inspector
views. Several more are simple text, list or tree views, and
only three create custom graphical widgets.

The simplest debugging views are just like inspector views,
and many of our examples just forward (delegate) to exist-
ing views, but more generally exceptions have access to the
reified run-time stack at the time that they are raised, so
debugger views can extract and present arbitrary run-time
information. The Scripter steps view we saw earlier in Fig-
ure 11 offers an example. The same approach could be used,
for example, to present or highlight just the “interesting”
stack frames, for example in an event-driven application,
just the methods that are responsible for processing events.

At this time, moldable exceptions only offer the possibility
to provide alternative views and actions, but not alternative
ways to step through the execution. Currently this is only
possible in our setting by providing a completely separate de-
bugger implementation. In Figure 21 we see such a dedicated
debugger for SmaCC [5], the Smalltalk compiler compiler
framework that has been spawned on an invalid fragment
of Java code. The SmaCC debugger offers the possibility to

Figure 21. A custom SmaCC debugger on an invalid Java
snippet.

step through the grammar rules of a parser and explore its
execution state.

9

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Andrei Chiş, Tudor Gîrba, and Oscar Nierstrasz

Our proof-of-concept implementation of moldable excep-
tions presented here heavily leverages the existing infras-
tructure for moldable inspector views in GT, but in prin-
ciple there is nothing to prevent its application to other
programming languages and IDEs. The basic idea is simple:
any moldable tool must be prepared, whenever it is created,
to examine the execution context of the objects it is initial-
ized with, and use that context to adapt its behavior. In the
case of a moldable debugger, this context is provided by the
exception raised. Custom debugger views and actions must
then be provided by the specific exception raised. One way
to provide such views and actions is through specially an-
notated methods, but other means could be used, such as
naming conventions, or a registry of debugger extensions.
The precise extension method will depend on the language
technology available.

9 Related Work
Early debuggers provided a command-line interface to in-
spect and step through the execution of a running program
or a post mortem “core dump.” With the advent of GUI-based
IDEs, debuggers were also updated to offer interactive views
to explore the execution state of a program and to step
through its execution [26].

Studies of developer debugging behavior have shown that
many developers have difficulty using debuggers and often
shy away from them. McCauley et al. report: “We note, how-
ever, that our experiences with debugging tools is that many
of them use execution traces as amethod of assisting students
to understand the execution of a program. Tubaishat [27]
characterized the use of execution traces as an example of
a shallow reasoning technique” [16]. And Beller et al. note
that “Debuggers are difficult to use. Another reason given
by interviewees, even though seasoned engineers, was that
‘the debugger is a complicated beast’ (I2) and that ‘debuggers
that are available now are certainly not friendly tools and
they don’t lend toward self-exploration’.” [2]
An early example of an extensible debugger is deet [13].

Extensions to deet were written Tcl/Tk or the Korn shell.
The focus of the extension mechanism in deet is on adding
new debugger features, rather than providing debugging
support for specific application contexts.
The Java Virtual Machine Tools Interface (JVMTI) [21]

is an API for tools to inspect the state and control the ex-
ecution of Java applications. Agents can be written in any
native language that supports C calling conventions. Cus-
tom views must be built from scratch and integrated in your
environment.

The VSCode Debugger Adapter Protocol (DAP) [20]makes
it possible to implement a generic debugger for a develop-
ment tool that can communicate with different debuggers
via Debug Adapters.

mbeddr [28] is a collection of languages and language ex-
tensions, mainly focusing on C, built with the JetBrains MPS
language workbench [6]. mbeddr includes an extensible de-
bugger framework [22] that focuses on providing support for
the individual language extensions, not application specific
customizations.

Bousse et al. have developed a generic omniscient (“back
in time”) debugger that can be adapted to different domain-
specific languages (DSLs) with moderate effort [3]. They
use DAP to provide new controls for DSLs in VSCode [12].
Their work focuses more on the stepping semantics than on
providing custom views.
There have been numerous efforts to develop special-

ized debuggers for DSLs using a variety of approaches. Wu
et al. report on grammar-driven generation of DSL debug-
gers [29]. Lindeman et al. leverage the Spoofax language
workbench [14] to declaratively define DSL debuggers [15].
D2X [4] provides an API for DSLs to define debugger ex-
tensions. All of these DSL debugger approaches focus on
providing general debugging for a given DSL, not for more
finely-grained application debugging issues.
Babylonian programming [23] is an approach in which

live examples are integrated into the code editor, and offers
various specialized views [24] of the run-time behavior of
the examples. The current implementation of Babylonian/S
does not offer a means to define application-specific views
for examples.

Sindarin is an extensible Pharo-based debugger that offers
a rich API for scripting debugger extensions [11]. The use
case for Sindarin is rather different from that of moldable
exceptions, allowing developers to enter debugger scripts
during a debugging session, rather than as a way to enable
specialized debugger behavior in response to specific kinds
of exceptions. It would be interesting to explore the use of
Sindarin to implement custom stepping behavior.
The Moldable Debugger [7] is an example of a moldable

tool [8] that adapts its behavior to a specific run-time applica-
tion context. The original moldable debugger, however, still
required some significant implementation effort to define
an alternative debugger interface, much like the other ap-
proaches we have cited from literature. Similarly, the original
moldable inspector [9] did not offer a very easy mechanism
to provide custom inspector views depending on the object
being inspected. The adoption of the extension mechanism
of using annotated methods to define inspector customiza-
tions led, over time, to the development of a large number of
custom inspector views in the current version of GT (over
3000 at last count).
Disciplined use of exceptions is a well-established prac-

tice in object-oriented software development [17]. The key
insight and original contribution of moldable exceptions is
to leverage exceptions as the hook to molding the behavior
of the debugger. Although it is common practice to add tex-
tual descriptions to exceptions, for example, by overriding

10

Moldable Exceptions Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

the toString() method in Java, associating debugging views
to exceptions is novel. No previous approach to extensible
debuggers, including the original moldable debugger, has
taken this approach.

10 Conclusion
Interactive debuggers are all basically the same. Command-
line debuggers offer commands to sample the current exe-
cution state and step through the running code. Graphical
debuggers that show us the run-time stack, and offer but-
tons instead of commands to step through the code, but they
are still all the same. The trouble with this is that every de-
bugging problem is different, but debuggers all show us the
same thing, and they offer the same kinds of actions to step
through the code.
Our key contribution is to show how a debugger can be

dynamically molded with custom views and actions that
depend on the specific exception raised. The mechanism is
lightweight, and many useful extensions can be defined with
minimal implementation effort.

Acknowledgments
Many thanks to Alexandre Bergel, Steven Costiou, and Timo
Kehrer for their reviews of a draft of this paper.

References
[1] Vanessa Peña Araya, Alexandre Bergel, Damien Cassou, Stéphane

Ducasse, and Jannik Laval. 2013. Scripting Visualizations with Mon-
drian. In Deep Into Pharo. Square Bracket Associates, 20. https:
//inria.hal.science/hal-00858725/document

[2] Moritz Beller, Niels Spruit, Diomidis Spinellis, andAndy Zaidman. 2018.
On the dichotomy of debugging behavior among programmers. In
Proceedings of the 40th International Conference on Software Engineering.
572–583. https://doi.org/10.1145/3180155.3180175

[3] Erwan Bousse, Dorian Leroy, Benoit Combemale, Manuel Wimmer,
and Benoit Baudry. 2018. Omniscient debugging for executable DSLs.
Journal of Systems and Software 137 (2018), 261–288. https://doi.org/
10.1016/j.jss.2017.11.025

[4] Ajay Brahmakshatriya and Saman Amarasinghe. 2023. D2X: An eXten-
sible conteXtual Debugger for Modern DSLs. In Proceedings of the 21st
ACM/IEEE International Symposium on Code Generation and Optimiza-
tion. 162–172. http://groups.csail.mit.edu/commit/papers/2023/ajay-
cgo23-d2x.pdf

[5] John Brant, Jason Lecerf, Thierry Goubier, Stéphane Ducasse, and
Andrew Black. 2017. Smacc: a compiler-compiler. http://books.pharo.
org/booklet-Smacc/pdf/2018-10-21-Smacc-Compiler.pdf

[6] Fabien Campagne. 2014. The MPS language workbench: volume I. Vol. 1.
Fabien Campagne.

[7] Andrei Chiş, Marcus Denker, Tudor Gîrba, and Oscar Nierstrasz. 2015.
Practical domain-specific debuggers using the Moldable Debugger
framework. Computer Languages, Systems & Structures 44, Part A
(2015), 89–113. https://doi.org/10.1016/j.cl.2015.08.005 Special issue
on the 6th and 7th International Conference on Software Language
Engineering (SLE 2013 and SLE 2014).

[8] Andrei Chiş, Tudor Gîrba, Juraj Kubelka, Oscar Nierstrasz, Stefan
Reichhart, and Aliaksei Syrel. 2017. Moldable Tools for Object-oriented
Development. In PAUSE: Present And Ulterior Software Engineering,
Bertrand Meyer Manuel Mazzara (Ed.). Springer, Cham, 77–101. https:
//doi.org/10.1007/978-3-319-67425-4_6

[9] Andrei Chiş, Tudor Gîrba, Oscar Nierstrasz, and Aliaksei Syrel. 2015.
The Moldable Inspector. In Proceedings of the 2015 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software (Pittsburgh, PA, USA) (Onward! 2015). ACM, New
York, NY, USA, 44–60. https://doi.org/10.1145/2814228.2814234

[10] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts,
andAndrew P. Black. 2006. Traits: AMechanism for fine-grained Reuse.
TOPLAS: ACM Transactions on Programming Languages and Systems
28, 2 (March 2006), 331–388. https://doi.org/10.1145/1119479.1119483

[11] Thomas Dupriez, Guillermo Polito, Steven Costiou, Vincent Aranega,
and Stéphane Ducasse. 2019. Sindarin: A versatile scripting API for the
Pharo debugger. In Proceedings of the 15th ACM SIGPLAN International
Symposium on Dynamic Languages. 67–79. https://doi.org/10.1145/
3359619.3359745

[12] Josselin Enet, Erwan Bousse, Massimo Tisi, and Gerson Sunyé. 2023.
Protocol-Based Interactive Debugging for Domain-Specific Languages.
The Journal of Object Technology 22, 2 (2023). https://doi.org/10.5381/
jot.2023.22.2.a6

[13] David R. Hanson and Jeffrey L. Korn. 1997. A Simple and Extensible
Graphical Debugger. In IN WINTER 1997 USENIX CONFERENCE. 173–
184. https://www.usenix.org/legacy/publications/library/proceedings/
ana97/full_papers/hanson/hanson.html

[14] Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax Language
Workbench. Rules for Declarative Specification of Languages and
IDEs. In OOPSLA’10: Proceedings of the 25th International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
Martin Rinard (Ed.). Reno/Tahoe, NV, USA, 444–463. https://doi.org/
10.1145/1869459.1869497

[15] Ricky T. Lindeman, Lennart C.L. Kats, and Eelco Visser. 2011. Declara-
tively Defining Domain-specific Language Debuggers. SIGPLAN Not.
47, 3 (Oct. 2011), 127–136. https://doi.org/10.1145/2189751.2047885

[16] Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy,
Beth Simon, Lynda Thomas, and Carol Zander. 2008. Debugging:
a review of the literature from an educational perspective. Com-
puter Science Education 18, 2 (2008), 67–92. https://doi.org/10.1080/
08993400802114581

[17] Bertrand Meyer. 1988. Disciplined Exceptions. TR-EI-22/EX. Interactive
Software Engineering, Goleta, CA. https://se.inf.ethz.ch/old/people/
meyer/publications/methodology/exceptions.pdf

[18] Bertrand Meyer. 1992. Applying Design by Contract. IEEE Computer
(Special Issue on Inheritance & Classification) 25, 10 (Oct. 1992), 40–52.
https://doi.org/10.1109/2.161279

[19] Michael Meyer, Tudor Gîrba, and Mircea Lungu. 2006. Mondrian:
An Agile Visualization Framework. In ACM Symposium on Software
Visualization (SoftVis’06). ACM Press, New York, NY, USA, 135–144.
https://doi.org/10.1145/1148493.1148513

[20] Microsoft. 2021. Debug Adapter Protocol. https://microsoft.github.io/
debug-adapter-protocol

[21] Oracle. 2024. JVM Tool Interface version 22.0. https://docs.oracle.
com/en/java/javase/22/docs/specs/jvmti.html

[22] Domenik Pavletic, Markus Voelter, SyedAoun Raza, Bernd Kolb, and
Timo Kehrer. 2015. Extensible Debugger Framework for Extensi-
ble Languages. In Reliable Software Technologies – Ada–Europe 2015,
Juan Antonio de la Puente and Tullio Vardanega (Eds.). Lecture Notes
in Computer Science, Vol. 9111. Springer International Publishing,
33–49. https://doi.org/10.1007/978-3-319-19584-1_3

[23] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert
Hirschfeld. 2019. Babylonian-style Programming — Design and
Implementation of an Integration of Live Examples Into General-
purpose Source Code. Art Sci. Eng. Program. 3, 3 (2019), 9. https:
//doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2019/3/9

[24] Patrick Rein, Christian Flach, Stefan Ramson, Eva Krebs, and Robert
Hirschfeld. 2024. Broadening the View of Live Programmers: Integrat-
ing a Cross-Cutting Perspective on Run-Time Behavior into a Live

11

https://inria.hal.science/hal-00858725/document
https://inria.hal.science/hal-00858725/document
https://doi.org/10.1145/3180155.3180175
https://doi.org/10.1016/j.jss.2017.11.025
https://doi.org/10.1016/j.jss.2017.11.025
http://groups.csail.mit.edu/commit/papers/2023/ajay-cgo23-d2x.pdf
http://groups.csail.mit.edu/commit/papers/2023/ajay-cgo23-d2x.pdf
http://books.pharo.org/booklet-Smacc/pdf/2018-10-21-Smacc-Compiler.pdf
http://books.pharo.org/booklet-Smacc/pdf/2018-10-21-Smacc-Compiler.pdf
https://doi.org/10.1016/j.cl.2015.08.005
https://doi.org/10.1007/978-3-319-67425-4_6
https://doi.org/10.1007/978-3-319-67425-4_6
https://doi.org/10.1145/2814228.2814234
https://doi.org/10.1145/1119479.1119483
https://doi.org/10.1145/3359619.3359745
https://doi.org/10.1145/3359619.3359745
https://doi.org/10.5381/jot.2023.22.2.a6
https://doi.org/10.5381/jot.2023.22.2.a6
https://www.usenix.org/legacy/publications/library/proceedings/ana97/full_papers/hanson/hanson.html
https://www.usenix.org/legacy/publications/library/proceedings/ana97/full_papers/hanson/hanson.html
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/2189751.2047885
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1080/08993400802114581
https://se.inf.ethz.ch/old/people/meyer/publications/methodology/exceptions.pdf
https://se.inf.ethz.ch/old/people/meyer/publications/methodology/exceptions.pdf
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/1148493.1148513
https://microsoft.github.io/debug-adapter-protocol
https://microsoft.github.io/debug-adapter-protocol
https://docs.oracle.com/en/java/javase/22/docs/specs/jvmti.html
https://docs.oracle.com/en/java/javase/22/docs/specs/jvmti.html
https://doi.org/10.1007/978-3-319-19584-1_3
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2019/3/9
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2019/3/9

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Andrei Chiş, Tudor Gîrba, and Oscar Nierstrasz

Programming Environment. Art Sci. Eng. Program. 8, 3 (2024), 38.
https://doi.org/10.22152/programming-journal.org/2024/8/13

[25] Jorge Ressia, Alexandre Bergel, and Oscar Nierstrasz. 2012. Object-
Centric Debugging. In Proceedings of the 34rd international conference
on Software engineering (Zurich, Switzerland) (ICSE ’12). https://doi.
org/10.1109/ICSE.2012.6227167

[26] Jonathan B Rosenberg. 1996. How debuggers work: algorithms, data
structures, and architecture. John Wiley & Sons, Inc.

[27] Abdallah Tubaishat. 2001. A Knowledge Base for Program Debugging.
In Proceedings of the ACS/IEEE International Conference on Computer
Systems and Applications. 321. https://doi.org/10.1109/AICCSA.2001.

934005
[28] Markus Voelter, Bernd Kolb, Tamás Szabó, Daniel Ratiu, and Arie van

Deursen. 2017. Lessons learned from developing mbeddr: a case study
in language engineering with MPS. Software & Systems Modeling (09
Jan. 2017). https://doi.org/10.1007/s10270-016-0575-4

[29] Hui Wu, Jeff Gray, and Marjan Mernik. 2008. Grammar-driven Gener-
ation of Domain-specific Language Debuggers. Softw. Pract. Exper. 38,
10 (Aug. 2008), 1073–1103. https://doi.org/10.1002/spe.v38:10

Received 2024-04-25; accepted 2024-08-08

12

https://doi.org/10.22152/programming-journal.org/2024/8/13
https://doi.org/10.1109/ICSE.2012.6227167
https://doi.org/10.1109/ICSE.2012.6227167
https://doi.org/10.1109/AICCSA.2001.934005
https://doi.org/10.1109/AICCSA.2001.934005
https://doi.org/10.1007/s10270-016-0575-4
https://doi.org/10.1002/spe.v38:10

	Abstract
	1 Introduction
	2 The Moldable Inspector
	3 Adding Custom Debugger Views
	4 Building Domain-Specific Debugger Views
	5 Enabling Automated Fixes
	6 A Case Study of Moldable Exceptions
	7 Implementation Details
	8 Discussion and Future Directions
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

