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Abstract

Surprising as it may seem, many of the early adopters
of the object-oriented paradigm already face a number
of problems typically encountered in large-scale legacy
systems. Consequently, reverse engineering techniques
are relevant in an object-oriented context as well. This
paper investigates a hybrid approach, combining the
immediate appeal of visualisations with the scalability of
metrics. We validate such a hybrid approach by showing
how CodeCrawler —the experimental platform we built—
allowed us to understand the program structure of, and
identify potential design anomalies in a public domain
software system.

Keywords:Reverse Engineering, Program Visualisation,
Software Metrics, Object-Oriented Programming, Code-
Crawler

1. Introduction

“While the benefits of object-oriented technology
are widely recognised, the indiscriminate use of
object-oriented mechanisms and weaknesses in
analysis and design methods are rapidly leading
to a new generation of inflexible legacy systems.”
[3].

The ability to reverse engineer object-oriented legacy
systems has become a vital matter in today’s software in-
dustry. Early adopters of the object-oriented program-
ming paradigm are now facing the problem of transform-
ing their object-oriented legacy systems into full-fledged
frameworks, hence they need to understand the inner work-
ings of their legacy systems and identify potential design

anomalies. However, since legacy systems tend to be big —
hundreds of thousands lines of poorly documented code are
not an exception— there is a definite need for approaches
aiding in program understanding and problem detection.

Among the various approaches that exist today, two seem
very interesting for large scale reverse engineering. One is
program visualisation, often applied because good visual
displays allow the human brain to study multiple aspects of
complex problems in parallel (This is often phrased as ”One
picture conveys a thousand words”). Another ismetrics,
because metrics are often applied to help assess the quality
of a software system and because they are known to scale
up well.

This paper investigates a hybrid approach to understand
existing program structures and identify potential design
anomalies. The approach is based on the combination of
quite trivial graph layoutsandeasy to compute code met-
rics. The aim for simplicity is driven by our long term goal,
which is to identify reverse engineering techniques that can
be easily incorporated in scriptable reengineering tool sets
like Rigi [24, 31] or RainCode [34]. Having identified such
simple techniques, one reverse engineer should be able to
incorporate them in a reverse engineering tool within a very
short amount of time — say, a couple of days. Afterwards,
the whole reverse engineering team should be able to gain
back that time by applying the tool in their daily working
practices.

The paper starts with an overview of the hybrid reverse
engineering approach (Section 2). Afterwards, we report
on a case study (i.e., the SMALLTALK Refactoring Browser
[29]), which illustrates the feasibility of the approach for
program understanding and problem detection (Section 3).
Next, we briefly present CodeCrawler, which is the plat-
form we have developed to experiment with various combi-
nations of metrics and program visualisations (Section 4).
Then we discuss the advantages and limitations of our ap-
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proach, including a sketch of the future work (Section 5).
Finally, we provide an overview of the related work (Sec-
tion 6), and end with the conclusion (Section 7).

2. Combining simple metrics and trivial
graphs

Principle. We enrich a simple graph with metric informa-
tion of the object-oriented entities it represents. Given a
two-dimensional graph we can render up to five metrics on
a single node simultaneously.

1. Node Size.The width and height of a node can render
two measurements. We follow the convention that the
wider and the higher the node, the bigger the measure-
ments its size is reflecting.

2. Node Position.The X and Y coordinates of the posi-
tion of the node can reflect two metric measurements.
This requires the presence of an absolute origin within
a fixed coordinate system, therefore not all layouts can
exploit this dimension.

3. Node Colour. The colour interval between white and
black can display yet another measurement. Here the
convention is that the higher the value the darker the
node is. Thus light gray represents a smaller metric
measurement than dark gray.

Figure 1. Inheritance Tree; node width = NIV,
node height = NOM and colour = NCV.

Figure 1 shows an example of an inheritance tree en-
riched with metrics information. The nodes represent the
classes, the edges represent the inheritance relationships.
The size of the nodes reflects the number of instance vari-
ables (width) and the number of methods (height) of the
class, while the colour tone represent the number of class
variables. The position of a node does not reveal a metric as
it is used to show the location in the inheritance tree.

Metrics. We constrain ourselves to apply metrics that are
relatively simple to collect from source code as source code

is usually the most reliable source of information. The par-
ticular metrics included in our experiment are listed in Ta-
ble 1.

Name Description
Class Metrics

HNL Hierarchy nesting level, number of classes in superclass
chain of class

NAM Number of abstract methods
NCV Number of class variables
NIA Number of inherited attributes (defined in all superclasses)
NIV Number of instance variables
NMA Number of methods added, i.e. defined in subclass and not

in superclass.
NME Number of methods extended, i.e. redefined in subclass

by invoking the same method on a superclass.
NMI Number of methods inherited, i.e. defined in superclass

and inherited unmodified.
NMO Number of methods overridden, i.e. redefined compared

to superclass.
NOC Number of immediate children of a class.
NOM Count all methods in class.
WLOC Sum of all lines of code in all method bodies of class
WMSG Sum of number of message sends in all method bodies of

class.
WNAA Number of times all defined attributes are accessed
WNI Number of invocations of all methods
WNMAA Number of all accesses on attributes
WNOC Number of all descendants
WNOS Sum of number of statements in all method bodies of class.

Method Metrics
LOC Lines of code in method body.
MHNL Hierarchy nesting level of class in which method is imple-

mented
MSG Number of message sends in method body.
NI Number of invocations of other methods
NMAA Number of accesses on attributes
NOP Number of parameters
NOS Number of statements in method body.

Attribute Metrics
AHNL Hierarchy nesting level of class in which attribute is de-

fined
NAA Number of times accessed

Table 1. Selected Metrics.

Actual visualisation. The actual visualisation depends on
three factors:

1. The graph type. Its purpose is to emphasise those as-
pects of a system that are relevant for reverse engineer-
ing. For instance, a tree graph is good for displaying
hierarchical information; a circle graph is well suited
for showing communication between components; and
a confrontation graph is best for visualising dependen-
cies between modules (see Table 2).

2. The layout variationStarting from the type of the
graph, layout variations further customise the actual
visualisation. The layout takes into account the choice
of the displayed entities and their relationships plus
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issues like whether the complete graph should fit
onto the screen, whether space should be minimised,
whether nodes nodes should be sorted.

3. The metric selection. Once the layout variation is cho-
sen, metrics selected from Table 1 are incorporated
into the graph.

Graph types. We selected a small set of graph types for
their simplicity and easy layout algorithm. Table 2 lists their
properties and below is a brief description of each of them.
For a more detailed description of the graphs and a discus-
sion of their advantages and limitations, we refer to [21].

Tree. Positions all entities according to some hierarchical
relationship. Most often used to display class hierarchies.
Layout variations are possible by aligning nodes relative to
the position of their parent (left, center or right). [exam-
ple Figure 3]

Correlation.Positions entities in an orthogonal grid (origin
in the upper left corner) according to two measurements.
Entities with the same measurement will overlap. Useful for
comparing two metrics in large populations. [example Fig-
ure 7]

Histogram.Positions nodes along a vertical axis depending
on one measurement. Nodes with the same measurement
are then positioned in rows, one beside the other. Useful
for analysing the distribution within a population. Layout
variations result mainly from rendering additional metrics
on the width of a node. [example Figure 6]

Checkers. (The result resembles a checkers board, hence
the name of the graph.) Sorts nodes according to a given
metric and then places them into several rows, starting a
new row when the row length exceeds the square root of
the total number of nodes. Useful for getting a first impres-
sion of rather small population, especially for the relative
proportions between measurements. [example Figure 2)]

Stapled. Sorts nodes according to a given metric, renders
a second metric as the height of a node and then positions
nodes one besides the other in a long row. Is used to detect
exceptional cases for metrics that usually correlate, because
the stapling effect will normally result in a steady inclining
staircase, yet exceptions will break the steady inclination.
[see [21]]

Confrontation.Visualises two different kinds of entities and
the relationships between them. Used mainly for analysing
access patterns between attributes and methods. The two
kinds of entities are positioned in two separate rows and
then edges are drawn to represent the relationships. Lay-
out variations are achieved by sorting or splitting the rows.
[example Figure 9]

Circle. Distributes entities uniformly over a circle; then
draws relationships as lines. Useful for displaying invoca-
tion relationships between methods. Layout variations are
possible by rendering a metric on the radius for each entity
and sorting the entities, which results into aspiral. Another
variation is clustering entities according to the radius metric
to achieveconcentric circles. [see [21]]

Graph Type Metrics Entities Sort Scope
Tree 3 C Global
Correlation 5 CMA Global- Local
Histogram 3 CMA + Global- Local
Checkers 3 CMA + Global- Local
Stapled 3 CMA + Global- Local
Confrontation 3 + 3 MA + Local
Circle 3 CMA Global- Local
Metrics specifies how many metrics can be rendered by the
graph (3+ 3 stands for two separate groups of entities where
each can render 3 metrics).Entitiesrefers to the kind of entities
the graph can be applied upon: C for class, M for method and
A for Attributes. Sort indicates whether sorting the nodes en-
hances the graph.Scopespecifies if the graph can be applied to
a complete (sub)system or only to a local entity like a class or a
method.

Table 2. Selected Graph Layouts.

Now that we have defined the metrics (Table 1) and the
graphs (Table 2), the next section illustrates how we com-
bine the two of them to obtain an initial overview of a soft-
ware system and focus on potential design anomalies.

3. Case study

In this section, we apply a series of graph layouts en-
riched with metric information to reverse engineer an exist-
ing software system (Section 3.1). Afterwards, we evaluate
how well the combination of metrics and visualisation tech-
niques helps us to understand the system and identify poten-
tial problems (Section 3.2). Finally, to counter the potential
critique that one case study is little evidence for supporting
the claim, we say a few words on some other experiments
with industrial systems.

The particular software system used in our experiment is
the Refactoring Browser [29] which is well-known through-
out the SMALLTALK community. To give an idea about
the size of the system: the Refactoring Browser consists of
166 classes (not counting the meta-classes), 2365 methods,
365 instance variables, 2198 instance variable accesses and
9780 method invocations.

Reporting about a case study is quite difficult without
sacrificing the explorative nature of the approach. Indeed,
the idea is that different graphs provide different yet com-
plementary perspectives. Consequently, a concrete reverse
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engineering strategy should apply the graphs in some spe-
cific order, although the exact order should vary depending
on the kind of system at hand and the kind of questions
driving the reverse engineering project. Therefore, readers
should read the case study report as one possible use case,
keeping in mind that reverse engineers must customise their
approach to a particular reverse engineering project.

3.1. Reverse engineering the Refactoring Browser

The report on the reverse engineering case study depicts
various kinds of graphs, some of them providing overviews
of the classes and methods in the system, others focusing on
possible problems in the design.

1. Class size overview: checkers graph.One of the first
impressions of the system that reverse engineers desire is
a feeling for the raw physical measures of a system. For
that purpose, we generate a so calledcheckers graphwith
lines of code as node size, the number of instance variables
as colour tone and we sort the nodes using lines of code as
criterium (see Figure 2).

Figure 2. Class Size Overview via Checkers
Graph; node size = LOC, and colour = NIV.

Interpretation. The checkers graph is useful for showing
relative proportions between the system elements. In this
particular case it shows the proportions among the classes
of the software system in terms of lines of code. Through
sorting it is easy to identify the largest and smallest classes.
In this graph the biggest node represents the class Browser-
Navigator with 1495 lines of code marked asB. The sec-
ond biggest class with 441 lines of code is called BRScan-
ner marked asL . We are also able to see that many classes
in the system (marked asZ) are very small, and that there
are some empty classes positioned on the upper left corner.
(This last detail is only visible on the screen and not in the
paper version, because metric measurements equal to zero
render the nodes with a blue border).

2. Inheritance overview: trees. To assess the size and
complexity of the system, we build aninheritance tree. We

use as node size the number of instance variables (width)
and the number of methods (height), while the colour tone
represents the lines of code of the class (see Figure 3).

Figure 3. Inheritance Overview via Tree; node
width = NIV, node height = NOM and colour =
WLOC.

Interpretation. We observe a few main hierarchies with a
high proportion of very small classes. Then, using the num-
ber of methods per class as a criterium we identify some
candidate classes for further investigation: (1) the smallest
class (O) is completely empty and (2) 13 classes are quite
large (between 40 and 175 methods) (B).

These 13 classes can be classified according to their po-
sition in the inheritance tree: being a leaf (D, I ), being on
top of a hierarchy (F,G,K ), being in the middle of the hier-
archy (A , B) or being alone (E,J,L ). Large sibling classes
like (H, I ) and (N, M ) are good candidates for refactoring
analysis because some of the code may be moved up in their
common superclass.

An example of possible further investigation is the large
class called BrowserNavigator that implements 175 meth-
ods (markedB) whereas its superclass Navigator (A ) al-
ready implements 70 methods. Another interesting case is
the class called BRScanner (namedL ), which implements
49 methods and defines 14 instance variables.

3. Focus on subclass relationships: more trees.Follow-
ing the analysis of Figure 3, we want to use a graph as a
problem detection tool. More precisely, we want to under-
stand the relationship between some of the previously iden-
tified classes (A , F, G) and their subclasses. For that pur-
pose we display a portion of the inheritance tree with met-
rics NMA (number of methods added to the ones defined
in the superclass), NMO (number of methods overridden in
the subclass) and NME (number of methods extending su-
perclass methods ) to assess the corresponding ratios over-
ridden (see Figure 4).

Interpretation.The fact that the classesA , F andG are flat
nodes is normal: they define much functionality (width),
but can override only little (height) because they are at the
root of their respective hierarchies. For the subclasses two
different situations occur: either the subclasses are flat (B),
or they are tall (H, I and the subclasses ofF).

4



Figure 4. Focus on the Inheritance Tree; node
width = NMA, height = NMO, and colour =
NME.

This graph shows that the inheritance relationship can
somehow be qualified: the subclasses ofA add a lot of
methods and override very little, whereas the subclasses of
G tend to override more methods than they add. So we
can considerG as a class designed to be partly redefined
whereasA can be seen as a complete piece of functionality
to be reused without modification.

4. Method sharing between (sub)classes: even more
trees. A second example of a graph that may be used as
a problem detection tool is one that analyses whether some
classes in the system influence their subclasses in terms of
method sharing. To evaluate this influence, we display the
main inheritance hierarchies using the number of all descen-
dants as node height, the number of methods as size met-
rics for the nodes and the number of immediate children as
colour metric (see Figure 5).

Interpretation. The hierarchies rooted at classesa and b
seem to represent a good factorisation of methods, because
all the nodes are taller than they are wide (thus, lots of
classes will inherit the methods defined) and because nodes
become smaller when we come near to the leaves (thus,
deeper in the hierarchy, less methods are defined). In con-
trast, the classesc andd do not introduce a lot of functional-
ity that is shared with their subclasses, because these nodes
are very flat. We also observe that the hierarchies witha
ande as root classes are top-heavy, because the biggest part
of the functionality is implemented in them (this is reflected
by their height). Also, the classesc andd can be identi-
fied as intermediate abstract classes: their size shows very
little functionality, while their dark colour reflects that they
have many children. These classes introduce a new level of
abstraction, which can be also gathered by their names:c
is called MethodRefactoring, while its children are named
AddMethodRefactoring, ExtractMethodRefactoring, etc.

5. Overview method size: histogram.After having in-
spected the classes, it is time to turn to the finer grained
elements of a system, the methods. Just as with classes (see
Figure 2), reverse engineers first desire an impression of
the raw physical measures of a system, but this time must
deal with the large number of items resulting from the finer

Figure 5. Method Sharing in the Inheritance
Tree; node width = WNOC, node height = NOM
and colour = NOC.

grained analysis. Therefore, ahistogramis more appropri-
ate, as it gives a good overview of the distribution of the
elements with respect to a certain metric. To get a feeling
for the distribution of method sizes within a system, we use
a histogram showing the lines of code (see Figure 6).

Figure 6. Method Size Overview via His-
togram; node width = LOC, vertical position
= LOC and colour = LOC.

Interpretation. By inspecting the histogram, we learn that
less than 30 methods on the total of 2365 methods have
more than 29 lines of code (C). The biggest method has 65
lines of code (A ), which is a lot when the average method
size in SMALLTALK is around 6 lines. We can also locate a
few empty methods (B) which should be inspected in fur-
ther detail.

5



6. Overview method size: correlation. While a his-
togram is good to get a feeling for the distribution of sys-
tem elements according to one metric, it is not optimal for
analysing a system as it emphasises a single metric only. In
contrast, thecorrelation graphis one of the graphs that may
render up to five different metrics per node. Nevertheless,
we usually restrict ourselves to three metrics to achieve the
effect of all nodes having uniform size.

In Figure 7, the position metrics chosen are LOC (lines
of code) for the x coordinate and NOS (number of state-
ments) for the y coordinate. The colour also reflects the
lines of code to emphasise this aspect. Note that in a corre-
lation graph, the metrics may overlay each other, which is
the case for the nodes in the upper left corner.

Figure 7. Method Size Overview via a Corre-
lation Graph; node position = (LOC,MSG) and
colour = LOC.

Interpretation.The first nodes to be considered are the ones
on the topmost horizontal line, because their method bodies
do not include any statements (C). Most of them are empty
methods, which often represent hook methods —i.e. places
where to plug in additional behaviour— thus are interesting
for reverse engineering. However, some of them may rep-
resent dead code. For instance, nodeB represents a method
that has 16 lines of code but no statements at all. Checking
the corresponding source code, we see that the whole body
of the method has been commented out.

The second interesting region of the correlation graph are
the leftmost vertical columns, especially the bottom part of

them (D). The nodes there tend to have much more state-
ments than lines of code, which seems strange. These usu-
ally correspond with unusual formatting of code, hence are
worth to explore further as the developers treated them in a
special way.

The most interesting nodes are on the ones on the outer
edges of the correlation graph, representing methods that
have high metric values. We identify for example a method
with 99 statements on 45 lines of code (A ) which seems a
good candidate for a split.

7. Class cohesion overview: checkers graph.One of the
generic principles in designing software systems is to max-
imise the cohesion within and minimise the coupling be-
tween the systems components. Consequently, we want to
use some graphs for checking the coupling and cohesion. In
particular, we take a closer look at the class cohesion in Fig-
ure 8 via acheckers graphwith node size NOM (number of
methods) and WNAA (number of accesses on attribute de-
fined in the class) and colour tone NIV (number of instance
variables).

Figure 8. Class Cohesion Overview via
Checkers Graph; node width = NOM, node
height = WNAA, and colour = NIV.

Interpretation. Quite noteworthy in this graph is that the
nodes differ heavily in shape and colour. The white nodes
do not have instance variables (A ), therefore can not have
any accesses on them, hence their flat shape. The nodes
D andE are special because of their narrow shape and light
colour; both have few methods and instance variables, while
at the same time their instance variables are accessed by a
large number of methods. The reason for this is that their
instance variables are directly accessed by their subclasses;
the use of accessor methods might be more advisable for
reasons of encapsulation. The class BrowserNavigator (B)
strikes once again for its large number of methods and its
small number of instance variables. Finally, the class which
looks most suspicious from a cohesive point of view is the
class BRScanner (C): it has the largest number of instance
variables (it is black), it does not have that many methods,

6



yet it has a lot of accesses to the instance variables (it is
shown as a long narrow rectangle).

8. Focus on class cohesion: confrontation graph.Given
the analysis of Figure 8, we now focus on the class BRScan-
ner (C). More precisely we want to understand the internal
coupling of the class by looking at the way the methods ac-
cess its instance variables. Therefore, we apply aconfronta-
tion graph: a graph where an edge between an instance vari-
able and a method represents an instance variable accessed
by the method. The resulting graph is shown in Figure 9.
The instance variables are the middle row of nodes and the
methods are the top and bottom row of nodes.

Figure 9. Focus on Class Cohesion of
BRScanner via a Confrontation Graph;
method node height and width = NOS and
colour = LOC; attribute node height and width
and colour = NAA.

Interpretation. The confrontation graph reveals that there
are no apparent clusters in the way methods access instance
variables. This is a sign that this class is quite cohesive,
thus that a split is going to be difficult if not impossible.
However, it also implies that subclassing will be quite dif-
ficult. Note that in other experiments, we have —by means
of the very same confrontation graph— discovered classes
that can easily be split. Unfortunately for our case study,
but good for the Refactoring Browser, we did not find such
a situation in the case study described here.

3.2. Case study evaluation.

Results. Using a hybrid approach combining metrics and
graph layouts on the Refactoring Browser provided us with
an initial understanding of the system without having to dive
into the details. We also have been able to reveal some de-
sign anomalies, such as classes and methods that may be
split, or suspicious class hierarchies. Due to the limited
space of this paper we could not show all of the system with
all of the graph layouts and metrics (Table 1 and Table 2),
nor could we include other useful graphs. Interested readers
may consult [21] for a more complete description.

Below is a more detailed overview of the lessons learned
from the case study.

� Initial overview . Thecheckers graphprovided us with
a feeling for the proportions in terms of code size and
helped us to identify extreme cases.

� Qualify inheritance hierarchies. The inheritance
overviews helped us to identify and qualify the main
hierarchies: the graphical navigation and tool classes
like BrowserNavigator, the refactoring classes, the ab-
stract syntax tree representation, the parser and the
scanner. More than just displaying hierarchies, Code-
Crawler helped us to understand the quality of the hi-
erarchies: for example the refactoring hierarchy whose
root isK in Figure 3 is composed by a high number of
small classes whereas the abstract syntax tree hierar-
chy, whose root isG in Figure 3, is composed by some
more substantial classes.

� Insight in inheritance quality. The complementary
perspectives on the inheritance tree allowed us to have
a better understanding of inheritance relationships. We
found that some superclasses were defining function-
ality that should be specialised by their subclasses,
whereas others were defining functionality that was
reused without having to be specialised.

� Identification of exceptional classes. Even if the
Refactoring Browser is quite well-designed we did
identify some exceptional classes that would benefit
from refactoring.

� Overview of the methods. We identified possible
hook methods and got a first view of the overall
method quality. Only a few outliers possessed overly
high lines of code.

� Internal class coupling. Using confrontation graphs,
we were able to have a rough idea of the coupling
between a class and identify clusters of instance vari-
ables.
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3.3. Other Experiments.

Besides the case study described in this paper, we have
run other experiments on industrial systems implemented in
C++ and SMALLTALK . Due to non-disclosure agreements,
we cannot publish the results of these experiments. How-
ever, one experiment is particularly worthwhile to mention,
because it provides anecdotal evidence for how well a hy-
brid but simple approach may outperform more specialised
and complex approaches.

During the course of one week, a team of reverse engi-
neers went for an on-site visit. The assignment was to use
some reverse engineering tools to learn as much as possible
about a particular C++ system. On the last day, each of the
reverse engineers was asked to report their findings to the
original developers, to evaluate the usefulness of the tools.
Besides the hybrid approach described here, there was one
pure metrics tool and one pure visualisation tool. Compar-
ing our approach with the pure metrics and visualisation ap-
proaches, we made two observations. First, the simplicity
of our hybrid approach helped a lot to get early results —
the other two tools needed at least two days configuration
time to be able to parse the system, because their specialised
analysis required quite detailed knowledge about the source
code. In contrast, our simple approach does not need a full
C++ parser and we were able to display some graphs al-
ready during the first day. As a result, we were more pro-
ductive during this short time span, hence were able to raise
more questions and point to more problems than the other
two reverse engineers using more specialised tools. Sec-
ond, based on the feedback of the development team during
the fifth day, the results obtained were highly appreciated.
Moreover, the development team confirmed us that the little
we understood from the system was correct and that the po-
tential design anomalies we discovered were either known
problems, or issues that would be further investigated.

4. Validating the approach: CodeCrawler

We based our experiment on the hypothesis that an ap-
proach which combines the immediate appeal of program
visualisations with the scalability of metrics is applicable
for program understanding and problem detection. How-
ever, to validate such a hypothesis, we immediately faced
the problem of the vast number of possible combinations to
explore. Indeed, given a list of 28 metrics (see Table 1) and
knowing that one program visualisation is able to display
up to 5 measurements simultaneously, there are hundreds
of possible combinations per visualisation.

Rather than trying out all possibilities, we developed an
exploratory tool, named CodeCrawler, to gain experience
with combinations that provide good results. CodeCrawler
is an open platform providing a graphical representation of

source code combined with object oriented metrics. Fig-
ure 10 shows a screen dump of the tool in action.

Figure 10. The CodeCrawler platform at work:
(1) an inheritance tree with x node size = NIV,
y node size = NOM, colour = NCV and (2) in-
specting the data of a represented entity.

Practical considerations.Besides testing the combinations
of graphs with metrics values, we have been confronted
with practical considerations like the minimal size of a node
or the size of the screen. These considerations have influ-
enced the graph definitions, hence we report them here.

For the node size, we chose to implement the mapping
such as to accurately reflect the measurement in the size
on the screen with a slight distortion in case the measure-
ment drops below a certain threshold. A minimal node size
is a purely practical issue that is necessary when we want
the graph to be interactive, since clicking with the mouse
pointer on nodes only one or two pixels wide is difficult.

For the node colour, we chose to avoid optical overload
by limiting the use of colours and using gray tone. Of
course, the usage of different colours is a good way to at-
tract the attention of the eye, but too many of them results
in overload. The solution with gray tones has the advan-
tage that numerical information can be transferred by gray
values: we map numerical values (e.g. the metric measure-
ments) into a colour interval ranging from white to black.
Although this is a good way to display a supplemental met-
ric, we experienced that the perception of a gray tone is less
precise than the perception of size. Thus, the gray tone is
only useful for the detection of extreme values.

Note that CodeCrawler supports different distributions
(e.g., linear, logarithmic) represent the size of the nodes plus
different modes like the shrinking of the graphs to fit the
graphs into the size of a screen. It is also able to mark nodes
whose metrics exceeds a certain threshold value.

Supporting reverse engineering.CodeCrawler provides a
number of features that greatly enhance reverse engineering
activities. First of all, a reverse engineer may configure and
save sets of graph parameters. Next, CodeCrawler shows all
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the information of the current displayed graph (top border)
and the information related to the entity currently selected
(bottom border). In Figure 10 the metrics are NIV, NOM
and NCV applied on class entities, the last investigated class
is BrowserNavigator that has 1 instance variable, 175 meth-
ods and 1 class variable.

Once the graph is displayed, several operations are pos-
sible. These include highlighting all the edges arriving at a
specific node, following a particular edge, applying a new
graph to a specific node. It is also possible to query the
graph to locate nodes via their name. Finally, each graph
entity is linked to the code entity that it represents, so the re-
verse engineer can browse the code related to the displayed
entity as well as inspect its metrics.

Implementation. CodeCrawler is developed within the Vi-
sualWorks SMALLTALK environment, relying on the Hot-
Draw framework [16] for its visualisation. It uses the fa-
cilities provided by the VisualWorks environment for the
SMALLTALK code parsing. For other languages like C++
and Java it relies on Sniff+ to generate code representation
encoded using the FAMIX Model [33] (see below).

Scale.During our experiments the maximum number of en-
tities we loaded in CodeCrawler was 198301 (3268 classes,
35538 methods, 5420 attributes, inheritance relationships
3266, 123066 method invocations and 27743 attribute ac-
cesses ). We emphasise that this limit is not linked to the ap-
proach but to the libraries used to implement CodeCrawler
plus the available memory while running the system.

5. Discussion and future work

Data model.CodeCrawler is based on a language indepen-
dent representation of object-oriented source code, named
FAMIX (FAMoos Information EXchange model, see [33]
and [7]). FAMIX is defined in the context of the FAMOOS
project, which investigates tools and techniques for trans-
forming object-oriented legacy systems into frameworks.
Seehttp://www.iam.unibe.ch/�famoos/ for more infor-
mation. FAMIX exploits meta-modelling techniques to
make the data model extensible.

A simplified view of the FAMIX data model comprises
the main object-oriented concepts —namely Class, Method,
Attribute and InheritanceDefinition— plus the necessary as-
sociations between them — namely Invocation and Access
(see Figure 11).

� Advantage: Due to the language independent nature
of FAMIX, CodeCrawler has already been applied to
software systems developed in C++ and SMALLTALK .

� Limitation: In practice, we must limit ourselves to
languages that can be parsed and translated into a

Figure 11. A simplified view of the FAMIX Data
Model.

FAMIX representation. At the time of writing, these
are SMALLTALK , Java and C++. Ada parsing is cur-
rently being implemented.

Metrics. The measurements of given source code entities
are attached to the FAMIX counterparts (see Figure 11).
Thus, a class entity knows about its number of methods and
number of attributes; a method entity knows about its num-
ber of statements, etc. Most of the metrics defined in Ta-
ble 1 can be derived from the data model itself, thus are lan-
guage independent. However, a few of them (i.e.; number
of statements in method body - M-NOS; number of methods
overridden & extended - NMO & NME) require a language
dependent interpretation.

� Advantage: Since most of the metrics applied in our
approach are language independent in nature, a lot of
the identified graphs can be used across different im-
plementation languages.

� Limitation: A considerable part of the reverse engi-
neering capabilities —especially analysing the quality
of the inheritance tree— is based on the language de-
pendent metrics. Thus, if one wants to reuse a hybrid
metrics-visualisation tool across implementation lan-
guages, some language dependent customisation will
be required.

5.1. Limitations

We have seen that while maintaining the initial con-
straints (simple graphs and simple metrics) we can use the
hybrid approach for program understanding and problem
detection. However, the hybrid approach has some inher-
ent limitations.

1. It is purely based on static information and often the
dynamic behaviour of a system is also crucial for un-
derstanding [26], [20], [15], [28].
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2. The simplicity of the approach is also one of its lim-
its. Especially, automatic clustering of entities before
generating the graph could be a great enhancement to
support reverse engineering activities [24].

3. Reverse engineering larger software systems requires
other information besides the simple FAMIX data
model in Figure 11. In particular, we must know about
the packages or subsystems composing the software
system, the files containing the code or the processes
involved [1]. Incorporating new entities into the data
model is definitively an issue in the future development
of the tool, yet this will cost in terms of extra complex-
ity.

5.2. Future work

The following issues will be addressed in the future:

� Exploiting Type Information. The first experiments
we made were done using software systems devel-
oped in SMALLTALK which is a dynamically typed
language. The later experiments with Java and C++
systems continued on this basis and did not exploit
the availability of type information. We plan do de-
velop graphs expressing the communication and cou-
pling between classes based on type information.

� Uniform Accessors and Accesses.The fact that a pro-
grammer can access directly an attribute or invoke an
accessor method has an impact on the interpretation of
some graphs. We would like to uniformly take into
account the accessors as accesses.

6. Related work

Program visualisation. Among the various approaches
to support reverse engineering that have been proposed in
the literature, graphical representations of software have
long been accepted as comprehension aids. Various tools
provide quite different program visualisations: Graphtrace
[17], Rigi [24], Hy+ [5, 4], SeeSoft [2], ISVIS [15], Jinsight
[26, 27], Duploc [8], Gaudi [28].

Powerful algorithms have been developed to support
such visual program representations: the Sugiyama algo-
rithm to optimise hierarchical layouts [32], hyperbolic ge-
ometry to navigate through large hierarchies [19], Shrimp
views to optimise layouts in general [31], libraries provid-
ing ranges of algorithms [30], ternary diagrams to track
dynamic interactions between system modules [12], mural
techniques to provide large overviews [2], [15].

All of these have in common that they seek to visualise
programs by applying quite sophisticated layout algorithms.

In some cases, these algorithms even have copyrights on
them! In contrast, we seek to simplify layout algorithms
and try to obtain added value by exploiting metrics.

Metrics. Metrics have long been studied as a way to assess
the quality of large software systems [9] and recently this
has been applied to object-oriented systems as well [14],
[18], [23], [22], [25]. However, a simple measurement is
not sufficient to assess such complex thing as software qual-
ity [13], not to mention the reliability of the results [6].

Some of the metric tools visualise information via typ-
ical algorithms for statistical data, such as histograms
and Kiviat diagrams. Datrix [14], TAC++ [10, 11], and
Crocodile [22] are tools that exhibit such visualisation fea-
tures. However, in all these approaches, the visualisation
is a mere side-effect of having a lot of numbers to analyse.
In our approach, the visualisation is an inherent part of the
approach, hence we do not visualise numbers but constructs
as they occur in source code.

7. Conclusion

We presented a hybrid approach for the reverse engineer-
ing of object-oriented source code. It combines the immedi-
ate appeal of program visualisations with the scalability of
metrics in order to aid in program understanding and prob-
lem detection.

By means of a case study, we have illustrated how our
approach helps to get an initial overview of a software sys-
tem and to focus on potential problems. We conclude that
the combination of metrics with program visualisation is a
promising approach, in particular because the possibility to
rule out sophisticated layout algorithms may be countered
by the combination with metrics.

In the near future, we will continue to expand
CodeCrawler—the tool we have built to support our
approach— to explore other layout algorithms and metrics.
Next, we will exploit the language independent nature of
the CodeCrawler platform to perform more case studies and
gain more experience. Finally, we want to use our experi-
ence to develop a real reverse engineering method, based
on sequences of program visualisations that have provided
good results.
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