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Abstract: 
In rapidly evolving domains such as Computer Assisted Orthopaedic Surgery 
(CAOS) emphasis is often put first on innovation and new functionality, rather 
than in developing the common infrastructure needed to support integration and 
reuse of these innovations. In fact, developing such an infrastructure is often 
considered to be a high-risk venture given the volatility of such a domain. We 
present CompAS, a method that exploits the very evolution of innovations in the 
domain to carry out the necessary quantitative and qualitative commonality and 
variability analysis, especially in the case of scarce system documentation. We 
show how our technique applies to the CAOS domain by using conference 
proceedings as a key source of information about the evolution of features in 
CAOS systems over a period of several years. We detect and classify evolution 
patterns to determine functional commonality and variability. We also identify 
non-functional requirements to help capture domain variability. We have 
validated our approach by evaluating the degree to which representative test 
systems can be covered by the common and variable features produced by our 
analysis. 
 
 
1 Introduction 
Computer-Assisted Orthopaedic Surgery (CAOS) is a technological domain that arose 
in the early 1990s from the combination of several other mature sciences such as image 
processing, biomechanics, computer graphics, and robotics. Orthopaedic surgical 
procedures follow the common basic principle of “placing an object (guide wire, screw, 
tube or scope) at a specific site, via a trajectory which is planned from medical images 
and governed by three-dimensional anatomical constraints” [1].  In order to provide 
surgeons with a means to perform these procedures with higher accuracy, CAOS 
systems have been progressively introduced into the operating room. Using virtual 
representations of the surgical instruments and of the operated anatomy, CAOS systems 
replay in real time the surgeon's actions on a computer screen (Fig. 1). Although many 
technical approaches have been taken to develop these systems their conceptual designs 
remain similar: CAOS systems typically consist of a planning subsystem to help the 
surgeon define the optimal surgical strategy and a navigation subsystem to support him 
or her in achieving the planned strategy [2, 3]. 
Because of the commonality in surgical gestures the variety of CAOS systems 
developed to assist in diverse orthopaedic surgeries offer common features such as 
loading/acquisition of medical data, data visualization in 2D and/or 3D, and selection of 
the best fitting implant.  However, up to now each application is considered as an 
individual system strictly bound to a specific surgical procedure and pathology. Such a 
system engineering approach results in monolithic systems that do not have the 
flexibility required to allow one to take advantage of the functional similarities of these 
systems through software reuse.  
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Fig. 1 Computer-Assisted Orthopaedic Navigation 

The basic idea underlying software reuse is simple: rather than building software 
systems from scratch we assemble them from common reusable assets such as modules, 
objects and classes. Component-based programming is a recently-established paradigm 
for software reuse. According to Szyperski [4] “a software component is a unit of 
composition with contractually specified interfaces and explicit context dependencies 
only. A software component can be deployed independently and is subject to 
composition by third parties'”. In other words components are the building blocks from 
which an application can be composed in a “plug and play” manner.  Adopting such a 
software development approach implies a move from single systems engineering to 
families of systems.  A system family is a set of software applications sharing a large 
number of common properties [5].  Domain engineering refers to methods for defining, 
designing and implementing the necessary assets to support software reuse in system 
families.   The initial and crucial step of these software engineering methodologies is 
called domain analysis.  It aims at identifying commonalities, variabilities and 
dependencies in the selected family and at integrating them in a coherent model [6].  
In order to take advantage of the functional similarities present in the CAOS family of 
applications, we propose to apply component-based programming to the development 
of CAOS systems. Because it is the necessary prerequisite to enable efficient 
component-based software reuse we focused first on domain analysis. We have 
designed CompAS, a new approach to commonality and variability analysis to support 
component-based architectural modeling. The key novelty of our approach is to analyze 
the evolution of the domain to effectively determine which features should be included 
as common or variable. 
2. Challenges in Performing Domain Analysis in CAOS  
 A domain model is the set of artifacts resulting from the domain analysis. The 
appropriate domain model is the one that provides the most sensible system 
decomposition in terms of common and variation points. Its achievement requires a 
careful balance between current and future needs. This information can usually be 
extracted from interviews with domain experts, existing systems, and literature.  Yet the 
software development context considered here is a research environment where, 
contrarily to the usual industrial approach, the most common practice is to implement 
prototype applications more or less from scratch, in order to allow the clinical validation 
of the investigated concepts, which usually implies inconsistent system implementation 
documentation. Moreover, among the potential candidates for the investigated family of 
applications only a restricted number of them were implemented at our institute. This 
means that we had access to the code of only few of our application family’s members. 
However, CAOS has the particularity to be a domain for which research and industry 
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are still not only continuously innovating but as well publishing these innovations. We 
propose a method that takes advantage of this extended and publicly available literature 
to palliate our lack of systems documentation. 
The identification of commonalities and variabilities mainly relies on the capabilities of 
the domain analyst to abstract from and refine the collected data and knowledge. We 
propose to strengthen the process of commonalities and variabilities identification with 
a quantitative evaluation of functional evolutionary trends. Several methodologies have 
been proposed to evaluate software evolution, one of the main differences between 
them being the type of data they require as input. Some methods extract evolution 
trends from version control data such as that provided by the Concurrent Version 
System CVS [7, 8]. This information (e.g. modification reports), can be combined with 
problem reports extracted from a bug tracking system and with feature information 
derived from the executable itself to visualize feature evolution [9]. In our case where 
only scarce source code data are available, we were inspired by the telephony feature 
evolution study performed by Anton et al based on publicly available information about 
telephony [10] to consider literature as our data source. We suggest using evolution 
matrices, which track the evolution of features over time, to expose implicit patterns in 
natural lifecycle of features [11]. 
Software family engineering not only focuses on currently existing systems but it 
anticipates future needs and variations as well. The results of the domain analysis must 
then appropriately model variations so that it provides: 

• the software user with an explicit and concise representation of available 
variabilities. 

• the developer of reusable software with the knowledge why a certain variation 
point is included in the software. 

• the software architect with the basis to design an architecture flexible enough to 
support the family diversification and evolution.    

Apart from the desire of continuously proposing more appropriate and useful 
functionalities, CAOS research also aims at providing innovative methods and 
technology to implement these functionalities. In order to model CAOS variability at 
the functional and technological level we propose a taxonomy of change scenarios. By 
taxonomy we simply mean the dictionary definition of “a system for naming and 
organizing things ...  into groups, which share similar qualities” [12]. By change 
scenarios we refer to situations, where only a particular functional or technological 
aspect of an existing system is modified.   
3. Domain Analysis 
Domain analysis is the step of domain engineering during which the domain analyst 
selects a family of applications (or domain) to study, collects the domain knowledge, 
organizes it into a set or artifacts (domain models) describing the common and variable 
properties of the system family,  and defines the semantics of these properties and the 
dependencies between them. A large number of domain analysis methods exist and all 
of them agree that the appropriate source of information should mainly come from [6, 
13, 14]: 

• human sources: domain experts, system users, developers, etc. 
• existing systems: source code, design documentation, user manuals, etc. 
• literature: books, articles, standards, etc.    

Assimilating information coming from such diverse sources to create a coherent domain 
model is a difficult task. This is why the choice of the sources of data that will most 
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efficiently lead to the appropriate domain model is nevertheless left to the domain 
analyst’s discretion. The foundation of software reuse is the discovery and exploitation 
of commonality across related software systems; commonality and variability 
identification is the central component of a domain analysis, which is therefore a key to 
successful software reuse.  
Most of the time the proposed commonality and variability differentiation method 
consists of identifying aggregation/decomposition and generalization/specialization 
relationships among the identified reusable assets [15-21]. These relationships are also 
referred to as “is a”, “consist of”, “kind of” or “whole-part” relationships. This approach 
results in a set of hierarchical diagrams, the most popular one being the feature diagram 
(Fig. 2) proposed by the FODA method [15]. One other alternative is to use lexical 
analysis. ODM [16], for example, suggests that the domain analyst should identify 
terms that play the same semantic role in the domain, and that he or she should define 
semantic relationships among these terms so that features correspond to sentences or 
statements in this defined language. As for DARE [22], it offers a tool suite that 
includes support to automatically extract and cluster words according to their 
conceptual similarity using the provided textual domain data.   
Since the previously mentioned diagrams also implicitly model variability, not all 
methods have a specific means to capture variability. However, the domain analysis 
component of PuLSE [18] mentions the design of a decision hierarchy where each type 
of variation in the domain will match a decision type. For FODA [15] and RAPID [21], 
variability can be characterized using templates and parameterization to capture 
variation context. Finally, Gomaa [20] in his approach to domain analysis uses change 
scenario impact analysis, where one can trace the necessary variants to support a 
defined change scenario.   
Certain domain analysis methods propose an algebraic approach [23, 24, 25] where the 
main idea is to formalize domain knowledge in the form of a network of related 
algebraic specifications. However, these methods do not contain an explicit 
commonality and variability identification phase.  

 
Fig. 2 Feature Diagram for Computed Tomography Based Planning Applications 

4. The CompAS approach 
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In certain domains such as CAOS, data coming from existing systems are not consistent 
enough to be exploited for domain analysis. Moreover, as already noted for other 
domains [14], CAOS can also be seen as a business area. “Such a domain not only 
contains applications, it is constrained by external forces that motivate the domain”. We 
therefore designed an approach relying on an intensive literature review and regular 
domain expert interviews and exploiting the business area characteristic of a domain to 
capture variation. What we term CompAS (Commonality and Variability Analysis to 
Support Component Based Architectural Modeling) is an approach based on the two 
following hypotheses: 

• There is a correlation between the functional system evolution and functional 
commonality and variability properties. 

• In order to understand and capture variation, it is also necessary for the non-
functional requirements that constrain the domain to be identified.  

Consequently, the presented method is divided into two phases. First, we compute 
evolution matrices to identify functional evolutionary trends and exploit evolution 
patterns to differentiate common and variable features. Second, we identify the 
domain’s non-functional requirements and use them to support the capture of the 
domain variability. The two parts of the method are independent; the domain analyst is 
free to choose to apply either or both of them. The remaining of this section gives an 
overview of CompAS method that we illustrate later in section 5 with the CAOS case 
study. 
  4.1 The data source 
The data source for CompAS is an extensive set of descriptions that is representative of 
the various types of system implementations and/or evolutions for the considered 
application family during the evaluated period of time. The data source should contain 
functional system descriptions to support the first part of the approach and/or textual 
justification of specific system evolutions to support the second part. The system 
descriptions have to be detailed enough to allow one to perform correct, consistent and 
complete functional decomposition. In order to ensure these qualities CompAS suggests 
to the domain analyst to regularly consult domain experts. The role of experts here 
should be to ensure a pertinent feature selection and relevant non-functional constraint 
identification for the domain. They should as well provide the domain analyst with 
sufficient domain knowledge to allow him or her to deduce the presence or not of 
features in a system based on the most likely types of system descriptions. 
 4.2 Evolution matrix 
The concept of software evolution matrices has been introduced by Lanza in 2001. We 
briefly describe here the conceptual principle, and for further details the readers should 
refer to the related publications [11, 26].  An evolution matrix combines software 
visualization and software metrics in order to reduce the complexity of the 
comprehension of a large amount of data and to provide quantitative evaluation of 
software evolution. It is an organized disposition of rectangular shapes, where each 
rectangle is the visualization of up to five metrics: the rectangle’s position represents 
two metrics, the width and height can encode two others metrics, and finally the 
rectangle’s color can be used to render a fifth metric. For CompAS each element of the 
matrix depicts the computed metrics for a given year (on the abscissa) and a defined 
functionality (on the ordinate). The width reflects the cumulative percentage of systems 
including the evaluated feature while the height represents the distribution over years of 
systems containing this feature. We use a variation of gray to represent the percentage 
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of system descriptions that belong to the considered family of applications for a given 
year (Fig. 3). When the analyzed family can be divided in sub-families, which are 
subsets of instances that share more functional characteristics than with the remaining 
of the family, one matrix per sub-family should be designed. 

 
Fig. 3 Evolution matrix principle 
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Evolution matrices are defined along with a terminology to characterize evolution. For 
the terminology to be usable in commonality and variability analysis we have adapted it 
to functional evolution as presented in Table 1.    
Evolution pattern Common and variable properties 

Presence-based pattern : defined by the evolution of 
the rectangle height 

 

Dayfly: Feature that has a very short lifetime (one or 
two consecutive years). 

A variation that did not yet make a breakthrough or that has 
been abandoned.  
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Evolution pattern Common and variable properties 

Persistent across sub-families: Feature that is present 
during the entire evaluation period and in all sub-
families.  

Common core of the domain  

Persistent in a given sub-family: Feature that is 
present during the entire evaluation period of a given 
sub-family. 
 

Common feature of the sub-family 

Shape-based pattern: defined by the evolution of the 
rectangle width 

 

Red Giant: A feature that keeps on being very wide 
over time.  

A common feature  

White Dwarf: A feature that used to be of a certain 
width but slowly decreases.   

A common feature, which decreases in popularity to 
become variable. 

Supernova: a feature that suddenly explodes in width, 
and eventually becomes a Red Giant.  

A variation, which grows in popularity and eventually 
becomes a common feature. 

Idle: A feature that remains relatively small over time. A variation rarely used or specific to a certain type of 
application in the sub-family. 

Pulsar: A feature that grows and shrinks repeatedly 
during its lifetime. 

A variation with “unstable” popularity 

Table 1:  Correlation between Evolution Patterns and Commonality and 
Variability 

 
4.3 Capturing domain variation by identifying “evolution factors”  

In order to model variation CompAS proposes using a taxonomy whose definition is 
based on the data part that contains descriptions and justifications of system evolutions. 
During this phase, the domain analyst needs to identify what we call “evolution 
factors”, namely the non-functional requirements that constrain the domain and 
therefore drive innovation. The taxonomy resulting from CompAS has two levels of 
categorization. The first level of categorization is the list of features that the gathered 
data propose to modify and improve. To define the second level of categorization the 
domain analyst needs to use his or her personal domain knowledge and the one he or 
she can obtain from domain experts, to identify the non-functional requirements that 
regularly motivate the implementation of new functional variations. For each first level 
category he or she should then estimate which of the identified evolution factors are the 
more influential. CompAS suggests here to evaluate the percentage of the data whose 
contribution influences the domain evolution with regard to a given evolution factor. 
Finally the domain analyst should divide each first level category into subcategories that 
correspond to the type of functional or technological changes that result from a wish to 
fulfill the  identified most influential evolution factors. 

4.4 The CompAS process 
Applying CompAS consists then in the following activities. 

A. Functional evolution based commonality and variability identification: 
1. Gather a set of system functional descriptions 
2. Extract from the data a set of features, i.e. a set of  user-visible system 

functionalities 
3. Compute and build the family (or sub-families) evolution matrix(es)  
4. Identify the evolution pattern followed by each feature and deduce from 

it their commonality and variability property 



 9 

B. Business-oriented variation capture: 
1. Gather a set of functional evolution descriptions 
2. List the features concerned by the gathered descriptions 
3. For each feature define the most influential evolution factors and the 

resulting functional and technological variation 
4. Use the results of 2 and 3 to build the taxonomy 

 
5. Applying CompAS to CAOS 
 5.1 Data source 
The annual meeting of the International Society for Computer Assisted Orthopaedic 
Surgery is the main conference in our domain of interest. This meeting is a practice- and 
clinically-oriented conference where technologists and surgeons gather to exchange 
information of an investigative and clinical nature. This conference started in 2001 as 
the result of the fusion of two former events: The CAOS symposia held in Switzerland 
from 1995 to 2000 and CAOS/USA, the North American program held annually from 
1997 to 2001.  We thoroughly reviewed proceedings of this conference in order to 
extract useful information for our domain analysis. However, because the CAOS 
Symposia only published short abstracts that did not contain enough details to support 
our analysis, we excluded these proceedings. Consequently, we had available to us a 
total of 1076 abstracts covering the years 1998-2005 (CAOS/USA proceedings for 1997 
was missing in our collection).  
 5.2 Commonality and variability identification 

5.2.1 System functional descriptions 
In our collection of proceedings we selected all the abstracts containing a functional 
description of a system and decomposed each of them into a set of features. CAOS 
systems are usually described by listing the different assisting elements they provide. 
Such a characteristic implies easy feature decomposition where a feature is a set of 
functionalities provided to assist the user in performing one step of the computer-
assisted surgical procedure (trajectory definition, image segmentation, etc.). CAOS 
system users (i.e. surgeons) and CAOS systems developers within and outside our 
institute were consulted to evaluate the pertinence of our set of features. The collected 
system descriptions have been divided into four sub-families. Three of them are defined 
by the anatomical area operated by the assisted surgery (spine, hip-pelvis, and knee). 
The fourth one is defined by the type of surgery assisted (traumatology).  
We identified 137 system descriptions with a major percentage of them (40%) 
belonging to the knee family. Their distribution over our four identified families is 
presented in Fig. 4. 
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Fig. 4 System Description Distribution 

  5.2.2 Features and evolutions matrices 
For the spine, hip-pelvis, knee and traumatology sub-families we identified respectively 
a set of 13, 16, 21 and 14 features, the identified feature list for the hip-pelvis and knee 
family can be visualize on the ordinate of the matrices presented in Fig 5 and Fig 6 
while the complete feature set appears in table 2. We computed the necessary metrics 
and implemented, using Qt (Trolltech AS, Oslo, Norway) [27] a prototype support tool 
to visualize the resulting evolution matrices. This tool  takes as input the computed 
metrics, and displays the resulting matrices as shown in Fig 5. and Fig 6. for the hip-
pelvis and knee families  

 
Fig. 5 Evolution Matrix of the Hip-Pelvis Family 

The previously given metrics definitions imply that for a given column all the 
rectangles have the same color. As a consequence this allows a straightforward 
visualization of how prevalent each family has been for CAOS research over time. We 
can see that 1999/2005 and 2001/2004 were years when research was more involved in 
the development of hip-pelvis and knee applications respectively. Deducing the year in 
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which a new technology has been introduced is as well obvious since functionalities are 
gradually added at the bottom of the matrix. We can therefore state that the introduction 
of 2D fluoroscopy, which was a major contribution to CAOS development, took place 
between 2001 and 2002 for both families. We can as well notice that the knee family 
has been in constant evolution from 1998 to 2003: each year, new functionalities have 
been introduced. While the hip-pelvis family had a more moderate evolution, indeed 
only a very small number of features had been introduced and in a shorter period of 
time.   

 
Fig. 6 Evolution Matrix of the Knee Family 

 5.2.3 Evolution patterns 
Table 2 summarizes the evolution patterns identified for each feature; we used a dark 
gray to mark the features identified as common and a light gray for the variations. 
 Spine Hip/Pelvis Knee  Trauma 
Computed Tomography Red Giant Persistent +  Red Giant Red Giant Red Giant 
Tracking Persistent + Red Giant Persistent +  Red Giant Red Giant Persistent + Red Giant 
Free hand navigation Persistent + Red Giant Persistent + Red Giant Red Giant Persistent + Red Giant 
2D fluoroscopy Red Giant Idle Idle Super Nova 
Segmentation White dwarf Red Giant Red Giant Red Giant 
Implant/Prosthesis selection Idle Super Nova Red Giant Idle 
Registration Red Giant Red Giant White Dwarf White Dwarf 
Virtual X-ray Dayfly + Idle Idle Idle Dayfly +Idle 
Robotic navigation Dayfly + Idle Idle White Dwarf  
Trajectory definition Red Giant Idle  White dwarf 
Template based navigation  Dayfly + Idle Idle Dayfly +Idle 
Biomechanical analysis Dayfly + Idle Dayfly + Idle   
3D fluoroscopy Dayfly + Idle   Dayfly + Idle 
Osteotomy planning and simulation  White Dwarf Red Giant  
Anatomical constraints computation   Super Nova Red Giant  
Segmental alignment Dayfly + idle    
Range of motion simulation  White Dwarf   
ACL graft position definition   Idle  
Graft impingement simulation   Idle  
Magnetic Resonance Imaging  Dayfly + Idle Dayfly + Idle  
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X-ray   Idle  
Soft tissue balancing   Idle  
Plan printing   Dayfly + Idle  
Statistical shape estimation   Idle  
Constraints boundaries computation   Idle  
Musculo-skeletal analysis   Dayfly + Idle  
Ultrasound imaging    Idle 
Fracture fragment identification    Red Giant or Idle 
Virtual fracture reduction    Idle 

Table 2. Identified Common and Variable Features 
Except for the “fracture fragment identification” feature of the trauma family, which we 
found has an evolution pattern between Idle and Red Giant we could match each feature 
evolution to one or two of the previously defined evolution patterns. However, no 
pulsar pattern was detected. We realized that if a feature is Persistent it is as well a Red 
Giant and that similarly Dayflies are as well Idle.  
 Without being Persistent in all families “Computed Tomography” is the only feature 
apart from “Tracking” and “Free hand navigation” that is a common feature in all 
families. We then deduced that these three functionalities constitute the common core of 
the CAOS domain. Sixteen features show only Idle evolution pattern in the families 
where they are present, and we considered such features as being either variations that 
did not yet make a breakthrough in the domain or that they have been proposed and 
abandoned.    
Seven of the eight features that are present in more than one family have different 
evolution patterns from one family to the other, including at least one Red Giant pattern. 
We use here the particular case where only two sub-families are concerned to explain 
the conclusions that can be derived. When Red Giant evolution is combined with a 
Super Nova evolution we can say that the feature was commonly used in a family and 
was adapted with success to the other. When Red Giant is combined with Idle, either 
the adaptation failed or did not yet succeed to prove its usability to the related 
community. Finally, when Red Giant is combined with White Dwarf the feature is 
commonly used in both families but with a progressively decreasing popularity in the 
family where the White Dwarf appeared. The last combination of evolution patterns 
observed is the one of White Dwarf and Idle, which is characteristic of a feature that 
used to be common in a family and was adapted with minor success to other families.            
Moreover, a reader familiar with CAOS technology could expect the evolution of 
tracking and free-hand navigation to be tightly coupled. Indeed, we can see that they 
have almost identical evolution patterns in the case of the two presented matrices. We 
observed the same phenomenon for the “ACL graft position definition” and “Graft 
impingement simulation” functionalities. Unexpectedly, we realized here that evolution 
matrices could as well reveal certain kinds of feature dependency.  
 5.3 Capturing variation 
  5.3.1 Functional evolution descriptions 
In a second run abstracts were collected that do not necessarily contain a system 
description but rather focus on proposing improvements to a given aspect of already 
existing systems. Abstracts usually contain motivation for the design and/or use of the 
described contribution as well as a discussion of its benefits and drawbacks. Because 
this information usually justifies a change or a novelty in the system we used it to 
identify the factors of software evolution in the CAOS domain, that is to say the non-
functional reasons why CAOS systems were and will be modified and evolved. This 
second selection of abstracts contained a total of 212 papers describing situations in 
which only a particular functional aspect of an existing system was modified.  
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 5.3.2  Evolution factors 
Reviewing the underlying motivations and claimed benefits of the selected abstracts, we 
identified the following nine factors as the main factors of CAOS evolution.  

I. Visualization:  CAOS aims at providing surgeons with continuously improving 
patient specific visualization before and during surgery. For this it provides 3D where 
initially only 2D visualization was present and provides access to an always 
increasing amount of anatomical information.  

II. Accuracy and safety: One of the main goals of CAOS technology is to improve the 
accuracy with which a surgical procedure can be performed compared to the 
conventional approach. There are many potential sources of inaccuracy in a CAOS 
system (image acquisition noise, model generation errors, tracking errors, etc.), and 
different scenarios are proposed to reduce each type of error.  Because undetected 
computational errors could in the worst case endanger human life, safety and accuracy 
are tightly coupled in CAOS; consequently, we considered them as being a common 
evolution factor. 

III. Planning and outcome optimization: Using computer technology, CAOS helps in 
defining the optimal planning in order to improve surgery outcome and to reduce long 
term failures and consequent revision surgeries. To do so CAOS proposes computing 
various anatomical parameters and performing simulations.    

IV. System handling: CAOS systems preserve the descriptive and procedural surgical 
knowledge, but imply a deep change in the operational and interaction aspects of 
surgeries. To attenuate the resulting steep learning curve and to ease CAOS system 
handling, research proposes, for example, automating certain tasks or providing more 
intuitive user interfaces. 

V. Invasiveness:  The invasiveness of a surgical procedure refers to the amount of 
damage generated to the soft tissue (i.e., skin and muscles) in order to access the 
surgical site. Because minimal invasiveness results in less pain, scarring, and recovery 
time for the patient, it is nowadays the tendency to adopt less invasive approaches to 
perform surgery whenever possible.  CAOS follows the same path and proposes 
various functionalities that support minimally invasive surgical procedures.   

VI. Radiation: The use of certain imaging modalities implies a consequent radiation 
exposure for the patient and medical staff. CAOS proposes scenarios where image-
based assistance is provided with less radiation.    

VII. Time: When using CAOS systems additional time is often spent in the operating 
room and is requested for computational needs (image capture, processing, etc.). The 
evolution trend is to reduce both burdens. 

VIII. Robustness: As in the algorithmic and computational domains it is preferable for 
CAOS to provide functionalities, which are insensitive to the possible variations that 
occur in clinical conditions. Depending on the considered CAOS functionality this 
can mean insensitivity to the image quality, to the surgical material used, to the 
system user, to patient motion or to the individual characteristics of a given pathology 
(e.g. arthrosis) on the targeted anatomy.           

IX. Cost:  Up to now prices of CAOS systems remain quite high. The aim is to reduce the 
costs and consequently contribute to improve their acceptance in the surgical field.  

5.3.3 Most influential factors estimation 
We partitioned our collection of abstracts into seven first level categories. Fig. 7 shows 
the results of the computation of the evolution factor influence, for each category we 
colored in red the most influential factors. During this estimation we found only eight 
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abstracts that contained no references to any of the identified evolution factors. 

 
Fig. 7 CAOS most influential evolution factors 

 
5.3.4 Change scenario taxonomy  

We describe here each of the seven taxonomy first level categories highlighting how 
each of the estimated most influential evolution factors contributes to the functional and 
technological variations introduced in the related CAOS functionality (the evolution 
factors are underlined and the resulting subcategories are in bold). The obtained 
taxonomy is presented in Fig. 8.  
Imaging: CAOS aims at enabling minimal radiation exposure of the patient and 
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medical staff, which implies a permanent investigation on how to use and combine 
diverse imaging modalities.  The accurate and precise use of a given imaging modality 
requires a well defined acquisition protocol and/or calibration procedure for the 
means of acquisition. Moreover, to improve the quality and accuracy of the information 
provided by the acquired images, they sometimes need to be additionally processed.    
3D modeling: While performing the diagnostics the surgeon has to rely on his or her 
understanding of the 3D space to interpret the 2D information he or she has access to. 
One of the claims of CAOS is to ease this challenging task by providing a three-
dimensional model of the patient’s anatomy that will enhance the surgeon’s 
visualization of the case. Several methods were proposed to obtain these models (e.g., 
segmentation or statistical shape modeling) each of them trying to be always more 
accurate. What usually vary from one method to another are the type of information it 
takes as input and the nature of the information provided by the output model. 
Biomechanics: The desire to always obtain better and optimized surgical outcomes led 
the CAOS community to integrate findings of biomechanics into CAOS. Over the years 
biomechanical methods such as kinematic analysis and finite element modeling (FEM) 
have been used to provide surgeons with the possibility to simulate the post-operative 
outcome of the currently planned surgery.  Biomechanics contributed as well to one of 
the major evolutions in CAOS: the idea to no longer rely solely on the patient’s skeletal 
structure but to introduce soft tissue consideration in the computer-assisted surgical 
process. This results, for example, in different ligament balancing functionalities in the 
knee application family.          
Anatomical constraints: An orthopaedic surgical procedure is governed by anatomical 
constraints (mechanical axis, anteversion, acetabular wall thickness, etc.). In order 
to allow more accurate surgical procedures CAOS systems propose to automatically 
compute these parameters whenever possible. A constant feedback on these constraint 
values improves the guidance offered to surgeons.      
Surgical strategy: CAOS planning sub-systems help the surgeon in defining the 
optimal surgical strategy. For this they provide support in trajectory definition, best 
implant selection or virtual bone alignment in the case of fracture treatment. For a 
long period these tasks were possible only through user interaction but recent research 
proposed automating these tasks in order to optimize them.  
Registration: In order to be able to guide the surgeon during surgery it is required that 
CAOS systems establish the mathematical relationship between the local coordinate 
system of the virtual patient anatomy (generated 3D model) and the one of the surgical 
object (targeted anatomy to be operated on). This process is called registration or 
matching.  One of the major motivations for the various proposed methods to perform 
this process, apart from their diverse algorithmic approaches, is to reduce the 
invasiveness required to obtain the data they use as input. The second major drawback 
of registration is that it is a difficult task to perform and understand for the surgeon. 
Consequently, some effort has been made in order to ease registration handling, e.g., 
requiring less user interaction or providing intuitive accuracy feedback. 
Navigation: To help the surgeon achieve his or her surgical plan various guidance 
methods have been proposed such as, for example, individual templates or augmented 
reality. Although CAOS always tries to be as close as possible to the traditional surgical 
approach, it sometimes requires modifying or adapting the usual surgical tools.  Certain 
navigation approaches need to use positional information about the surgical instruments 
and anatomical structures. For this there are different tracking methods. The goal is 
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obviously to allow the surgeons to achieve the best accuracy and at the same time to 
provide systems that only require interaction that easily fits into the clinical routine.     

 
Fig. 8 Taxonomy of change scenarios 

5.4 General CAOS evolution 
If we compare the percentages per year of abstracts that contain a system description 
and of those that can be identified as change scenarios (Fig. 9), we can see that the 
percentage of system descriptions constantly decreased over the years to reach less than 
5% in 2005, while the percentage of change scenarios rapidly grew between 1998 and 
2002 and stabilized around 20% afterwards.  
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Fig. 9 CAOS Research Evolution 

The evolution curves are characteristic of the general evolution of CAOS research. 
Indeed, rather than investigating the development of a completely new system that will 
be used for a new surgical procedure, many research groups had focused on improving 
only a particular aspect of existing CAOS systems. This tendency is as well confirmed 
by the fact that after 2003 the height of all obtained evolution matrices did not grow, 
that is to say that after this date the system descriptions no longer contained new 
features. 

6. Efficiency of evolution matrices to support commonality and variability 
analysis 

 6.1 Evaluation approach 
In order to evaluate how good a given domain analysis method is, the common practice 
is to evaluate the domain model resulting from the use of this method. To do so, one has 
to check if it possible to specify pre-existing or proposed systems using the domain 
analysis outputs. Systems used as inputs in the domain modeling process may be used 
for validation; but preferably the domain analyst will test using systems not used to 
develop the model. This last point led us to use an approach borrowed from 
mathematical modeling, namely holdout validation, to evaluate the effectiveness of 
evolution matrices in commonality and variability analysis. The principle is the 
following: observations are randomly selected from the initial data set to form the test 
data and the remaining data are retained to be used as input to the tested modeling 
method. Usually up to one third of the initial data is used as test data.  After applying 
the tested method to the training data set one must then estimate the error occurring 
with the test data [28]. 
In our particular situation we wanted to evaluate how well the use of evolution matrices 
could allow us to differentiate common and variable features. Unfortunately, to the best 
of our knowledge, there is not up to now a measure that could enable the quantitative 
estimation of our model. We consequently used a qualitative approach to estimate the 
quality of the obtained domain model. Our evaluation was based on the following 
assumptions:  

• Assumption 1: A system description fits well to the domain model if it is 
composed of a majority of common features plus some variation features. 

• Assumption 2: After a successful modeling, the number of systems composed 
only of common features should be minimal. 
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• Assumption 3: A good commonality and variability analysis should not lead to 
systems composed only of variable features. 

• Assumption 4: If a feature is missing from the resulting model, it should be 
included in a minimum of systems descriptions.  

• Assumption 5: Each common feature should be included in more than 40% of 
the tested system descriptions. Conversely, variation features should occur in no 
more tan 40% of the tested system descriptions. 

6.2 Evaluation results 
 6.2.1 General comments 
The evaluation was performed once for each sub-family using one third of each sub-
family as hold out samples. After applying CompAS we compared the results obtained 
with and without the complete data set. We noticed that, because of the missing 
descriptions, in two cases features that were identified as “Persistent + Red Giant” lost 
their Persistence characteristic but remained Red Giant. The opposite phenomenon was 
observed as well in one case, that is to say a feature that was initially identified as an 
Idle only became a “Dayfly + Idle”. Two others complementary effects linked to the 
hold out sampling were observed. In two cases features that were initially identified as 
Idle became White Dwarf and in another situation a feature that was a initially Red 
Giant became a Super Nova. However in these six cases (9.5% of the evaluated 
features), the observed modifications did not affect the conclusions that were derived 
concerning the commonality and variability characteristic of these features. Four 
features that were initially identified as “Dayfly + Idle” and one that was only Idle 
disappeared from the resulting models. In other words in these five cases (8%) the 
concerned features were part only of the retrieved systems descriptions. The non 
detection of such unique features is however not critical; when facing such a situation 
the domain analyst has to further investigate and find out if it is worthwhile to consider 
such functionality as a missing reusable variation or to keep it as a truly application 
specific functionality.  Only one feature that we initially identified as Idle became a Red 
Giant that is to say changed from a variable to a common feature.  Finally the only 
feature which we could not decide whether to classify as a Red Giant or Idle appeared 
to be a Idle in this evaluation phase. 
 6.2.2 Domain model evaluation 
In this section we present the qualitative evaluation of the obtained model based on the 
previously mentioned assumptions: 
Assumption 1: Across the four sub-families’ evaluation, we found only one system 
composed mainly of variation features for a small number of common ones.    
Assumption 2: For the four sub-families we evaluated, between 20% and 40% of the test 
set were systems composed only of common features. 
Assumption 3: For the four sub-families, no systems were found composed only of 
variable features. 
Assumption 4: Four of the five missing features were required for only one system 
description and in each case for a different one. The last one was missing for two 
system descriptions. 
Assumption 5: In two cases we found common features present in less than 40% of the 
test set and in two other cases we found variable feature that was present in more than 
40% of the test set.  We give below more details on each of the cases: 
 Case 1 concerns the feature for which we initially had doubt in classifying the 
followed evolution pattern and which we classified as Idle during our evaluation. This 
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feature appeared to be a variable feature present in 66.7% of the test set. Consequently 
no decision on whether this feature is common or variable can be taken using CompAS. 
 Case 2 concerns a feature that we identified with and without the complete set as 
a White Dwarf. This feature appeared during our evaluation as a variation contained in 
44.4% of the test set. Given the fact that we considered a White Dwarf to be a common 
feature which decreased in popularity to become variable, we can hypothesize that the 
random sampling retrieved system descriptions that mainly belong to the time period 
where this feature was considered as common. 
 Case 3 concerns the previously mentioned feature that was identified as a Red 
Giant with the complete data set but as a Super Nova during evaluation. It then 
appeared to be a common feature that belongs to 33.3% of the test set. Although the 
percentage is below the hypothesized 40% it still remains rather high (one third of the 
test set). However in this case the assumption has to be rejected. 
 Finally case 4 concerns a feature identified as a Red Giant with and without the 
complete set but which appeared as a common feature present in only 22.2% of the test 
set. To justify this situation one has to use domain knowledge. Indeed, the considered 
feature, namely computed tomography, is linked to the 2D fluoroscopy feature through 
an “OR” dependency. In other words, in the trauma sub-family, systems contain either 
computed tomography feature or the 2D fluoroscopy one. This is actually confirmed by 
the fact that 2D fluoroscopy feature was evaluated as a common feature that belongs to 
88.9% of the test set. In conclusion when two or more common features are dependent 
they can be contained in a rather small percentage of the considered systems, provided 
that their respective percentages are complementary (the sum is equal to 100%). Table 3 
summarizes the result of the evaluation of the first part of CompAS. 
 Spine Hip  Knee Trauma 

Size of the test set 5 12 18 9 

Size of the feature set 13 16 14 21 

Number of systems composed mainly of variation features 1 0 0 0 

Number of systems composed only of common features 2 4 4 2 

Number of systems composed only of variable features 0 0 0 0 

How many feature miss in the model 1 0 3 1 

What is the number of systems requiring these features  1 NA 2 1 

How many common features are included in less than 40% of the test system descriptions 0 0 1 1 

How many variable features are included in more than 40% of the test system descriptions 0 0 1 1 

Table 3: Results of CompAS Efficiency Evaluation 
Because our evaluation assumptions were rejected in a minor number of cases we 
concluded that evolution matrices are appropriate and efficient tools to support 
commonality and variability analysis.  

7. Discussion 
Although software development in research is not constrained by any system 
documentation process, we demonstrated in this article that relevant information could 
be extracted from conference proceedings in order to identify commonality and 
variability based on a quantitative evaluation of software functional evolution.  An 
interesting aspect of the presented results is that they combined users’ and developers’ 
perspectives. Indeed, the annual meeting of the International Society for Computer 
Assisted Orthopaedic Surgery presents research results submitted by surgeons as well as 
software developers. We actually observed that system functional descriptions could 
often be found in clinical study reports and reflect the users’ perspective at that time. In 
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other cases they were used to describe the current state of the art in articles presenting 
new developments, thus providing a software developer’s perspective. Change 
scenarios were more often found in technologists’ publications. We showed as well that 
based on an organized review of selected conference abstracts we could identify domain 
evolution factors. Based on the computation of the dominant evolution factors we could 
then gain insights into the domain evolution and thereby more easily identify variation 
points. 
The gathering and analysis of our set of data was pretty time consuming, however this is 
a known aspect of domain analysis [29, 30].  And we believe, as is usually advocated in 
the domain, that the obtained results are worth the time invested since they will save 
time in the future. 
Our interpretation of the relation between the obtained evolution matrices and the 
commonality, variability, and dependency of the features could not have been possible 
without our a priori knowledge of the domain. In other words such an approach 
requires good knowledge of the investigated domain and/or a close collaboration with 
domain experts. The proposed approach presents, moreover, a limitation related to the 
data collection. The system descriptions used to compute the evolution matrices do not 
follow any template or format and are therefore subjective. Some descriptions might 
therefore be incomplete, simply because the omitted functionalities were not relevant to 
the treated subject; they were implicit for the audience, or became standard and 
therefore were not mentioned anymore. Based on our knowledge of CAOS systems, we 
have actually sometimes extrapolated the presence of certain functionalities in order to 
keep the system descriptions coherent.  
Because of the previously mentioned general evolution of CAOS research, we had only 
a very small number of system descriptions for the years 2004 and 2005. This evolution 
tendency can bias the interpretation for the evolution matrix. If we consider, for 
example, the “3D fluoroscopy” feature which is interpreted as a feature with relatively 
low popularity (Idle pattern), the matrix does not allow one to detect that this 
functionality was indeed investigated intensively as a stand-alone feature. This growing 
popularity is indeed confirmed by the numerous change scenarios (17) related to “3D 
fluoroscopy” that we collected between the years 2001 and 2004.  
We have seen that feature dependencies, such as constraints describing which features 
require the presence of one or more features, imply identical evolution patterns for the 
respective features. Other feature dependencies exist but could neither be detected nor 
integrated with our approach. If we consider, for example, introducing a new imaging 
modality, we know that it may require a new 3D modeling approach to be defined. For 
these reasons we insist here on the fact that the presented work, in its current status, can 
only be used as a tool to support and strengthen one part of domain analysis (i.e. 
commonality and variability analysis). The lack of the critical dimension that constitutes 
dependency handling prevents this approach from being considered as a complete 
domain analysis method.  We therefore envision evolving our taxonomy into an 
ontology so that we can model these dependencies. Ontologies enable the definition of 
concepts (change scenario, surgical procedure, medical image, etc.), their attributes and 
the relationships among them [31].  An ontology of CAOS change scenarios would 
permit one to define a human and computer readable consensual description of CAOS 
system variability that could be shared and reused.  
The high number of identified Idle patterns demonstrates that CAOS is a highly 
evolving domain where numerous functionalities are still investigated and proposed. 
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We have seen as well that functionalities are frequently adapted from one sub-family to 
the other. Moreover, there is a tendency in the CAOS community to focus on 
developing new functionalities rather than taking a systems implementation approach to 
consolidate and integrate existing results. All these characteristics reinforce our initial 
intuition that a software reuse philosophy could be of interest for the domain. In a 
component-based environment one could test, integrate, and adapt a specific 
contribution without having to implement a completely new system but rather by 
combining the newly provided features with others to develop a more functional 
system.   
As demonstrated by some of our results, until now, CAOS research has largely addressed 
major issues such as safety and accuracy. Other issues like cost reduction have not yet 
been satisfactorily investigated. Initial studies in industrial settings suggest that 
component-based application engineering results in an improvement of programmer 
productivity, a reduction of time-to-market, and a decrease of maintenance costs. 
Consequently, we believe that an academic investigation of the use of component-based 
development for CAOS systems could open the door to less costly industrial production 
of CAOS systems. 

8. Future work 
The presented overview of commonality and variability in CAOS provides an abstract 
representation of the domain. The previously mentioned lacking information about feature 
dependencies as well as other information such as illegal feature combinations and default 
settings constitutes what is called the knowledge configuration of the domain. Combining 
our domain model with configuration knowledge would enable one to configure any 
concrete CAOS applications. This transition from a high level domain model to a 
concrete system description can nowadays be performed either manually or automatically. 
In the manual approach the developer, based on his or her understanding of the domain 
model, matches a system description expressed in common language to a computer 
readable description of the system.  In generative programming, which proposes methods 
to automate the process, the developer uses a domain specific language (DSL) to describe 
applications and the transition to concrete implementations is performed automatically 
[6].  
We will investigate if the use of an ontology as a means for domain modeling could allow 
us to encode the knowledge configuration. We could then provide a means to ease and 
automate not all the transition process but only the transition from the high level domain 
representation to a computer readable system description. Indeed concept of relationships, 
axioms, and rules that are part of ontological engineering could be used to define the 
knowledge configuration. Moreover, the consensual aspect of the definition of ontology 
terminology could lead to an application descriptor whose vocabulary would be 
accessible to all the actors of the domain. The dynamic aspect of ontology that is to say 
the fact that they are made to be extended and modified could ensure an always up-to-date 
representation of the domain. Finally, ontologies are not only human readable but as well 
computer readable, so we could then investigate  the development of an ontology based 
tool that will allow us to provide computer support in application description.  
We could imagine that ultimately the functional aspect of our domain model could be 
used to provide users with a computer-based catalog of the available features that could 
help in configuring applications but as well in informing about the possible functional 
improvements of a given application. While the technological aspect could be used as a 
source of information on how to improve the non-functional aspect of a system based on 
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the different existing technological approaches for a given feature.  
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