
 1

CompAS: a New Approach to Commonality and
Variability Analysis with Applications in Computer

Assisted Orthopaedic Surgery

Gisèle Douta 1, Haydar Talib1, Oscar Nierstrasz2, Frank Langlotz1

1 MEM Research Center for Orthopaedic Surgery, University of Bern, Switzerland
2Software Composition Group, University of Bern, Switzerland

Keywords: computer-assisted surgery, software reuse, component-based programming,
domain analysis, commonality and variability, software evolution

Preprint. Please cite as:

Gisèle Douta, Haydar Talib, Oscar Nierstrasz and Frank Langlotz, “CompAS: A
new approach to commonality and variability analysis with applications in
computer assisted orthopaedic surgery,” Information and Software Technology,
vol. 51, 2008, pp. 448-459. DOI: 10.1016/j.infsof.2008.05.017

MEM Research Center for Orthopaedic Surgery Software Composition
Group
Institute for Surgical Technology & Biomechanics Institute of Computer
Science
University of Bern University of Bern
Stauffacherstrasse 78 Neubrückstrasse 10
CH-3014 Bern Switzerland CH-3012 Bern Switzerland
Tel: +41 31 631 5959 Tel: +41 31 631 4692
Fax: +41 31 631 5960 Fax: +41 31 631 3355

 2

Abstract:
In rapidly evolving domains such as Computer Assisted Orthopaedic Surgery
(CAOS) emphasis is often put first on innovation and new functionality, rather
than in developing the common infrastructure needed to support integration and
reuse of these innovations. In fact, developing such an infrastructure is often
considered to be a high-risk venture given the volatility of such a domain. We
present CompAS, a method that exploits the very evolution of innovations in the
domain to carry out the necessary quantitative and qualitative commonality and
variability analysis, especially in the case of scarce system documentation. We
show how our technique applies to the CAOS domain by using conference
proceedings as a key source of information about the evolution of features in
CAOS systems over a period of several years. We detect and classify evolution
patterns to determine functional commonality and variability. We also identify
non-functional requirements to help capture domain variability. We have
validated our approach by evaluating the degree to which representative test
systems can be covered by the common and variable features produced by our
analysis.

1 Introduction
Computer-Assisted Orthopaedic Surgery (CAOS) is a technological domain that arose
in the early 1990s from the combination of several other mature sciences such as image
processing, biomechanics, computer graphics, and robotics. Orthopaedic surgical
procedures follow the common basic principle of “placing an object (guide wire, screw,
tube or scope) at a specific site, via a trajectory which is planned from medical images
and governed by three-dimensional anatomical constraints” [1]. In order to provide
surgeons with a means to perform these procedures with higher accuracy, CAOS
systems have been progressively introduced into the operating room. Using virtual
representations of the surgical instruments and of the operated anatomy, CAOS systems
replay in real time the surgeon's actions on a computer screen (Fig. 1). Although many
technical approaches have been taken to develop these systems their conceptual designs
remain similar: CAOS systems typically consist of a planning subsystem to help the
surgeon define the optimal surgical strategy and a navigation subsystem to support him
or her in achieving the planned strategy [2, 3].
Because of the commonality in surgical gestures the variety of CAOS systems
developed to assist in diverse orthopaedic surgeries offer common features such as
loading/acquisition of medical data, data visualization in 2D and/or 3D, and selection of
the best fitting implant. However, up to now each application is considered as an
individual system strictly bound to a specific surgical procedure and pathology. Such a
system engineering approach results in monolithic systems that do not have the
flexibility required to allow one to take advantage of the functional similarities of these
systems through software reuse.

 3

Fig. 1 Computer-Assisted Orthopaedic Navigation

The basic idea underlying software reuse is simple: rather than building software
systems from scratch we assemble them from common reusable assets such as modules,
objects and classes. Component-based programming is a recently-established paradigm
for software reuse. According to Szyperski [4] “a software component is a unit of
composition with contractually specified interfaces and explicit context dependencies
only. A software component can be deployed independently and is subject to
composition by third parties'”. In other words components are the building blocks from
which an application can be composed in a “plug and play” manner. Adopting such a
software development approach implies a move from single systems engineering to
families of systems. A system family is a set of software applications sharing a large
number of common properties [5]. Domain engineering refers to methods for defining,
designing and implementing the necessary assets to support software reuse in system
families. The initial and crucial step of these software engineering methodologies is
called domain analysis. It aims at identifying commonalities, variabilities and
dependencies in the selected family and at integrating them in a coherent model [6].
In order to take advantage of the functional similarities present in the CAOS family of
applications, we propose to apply component-based programming to the development
of CAOS systems. Because it is the necessary prerequisite to enable efficient
component-based software reuse we focused first on domain analysis. We have
designed CompAS, a new approach to commonality and variability analysis to support
component-based architectural modeling. The key novelty of our approach is to analyze
the evolution of the domain to effectively determine which features should be included
as common or variable.
2. Challenges in Performing Domain Analysis in CAOS
 A domain model is the set of artifacts resulting from the domain analysis. The
appropriate domain model is the one that provides the most sensible system
decomposition in terms of common and variation points. Its achievement requires a
careful balance between current and future needs. This information can usually be
extracted from interviews with domain experts, existing systems, and literature. Yet the
software development context considered here is a research environment where,
contrarily to the usual industrial approach, the most common practice is to implement
prototype applications more or less from scratch, in order to allow the clinical validation
of the investigated concepts, which usually implies inconsistent system implementation
documentation. Moreover, among the potential candidates for the investigated family of
applications only a restricted number of them were implemented at our institute. This
means that we had access to the code of only few of our application family’s members.
However, CAOS has the particularity to be a domain for which research and industry

 4

are still not only continuously innovating but as well publishing these innovations. We
propose a method that takes advantage of this extended and publicly available literature
to palliate our lack of systems documentation.
The identification of commonalities and variabilities mainly relies on the capabilities of
the domain analyst to abstract from and refine the collected data and knowledge. We
propose to strengthen the process of commonalities and variabilities identification with
a quantitative evaluation of functional evolutionary trends. Several methodologies have
been proposed to evaluate software evolution, one of the main differences between
them being the type of data they require as input. Some methods extract evolution
trends from version control data such as that provided by the Concurrent Version
System CVS [7, 8]. This information (e.g. modification reports), can be combined with
problem reports extracted from a bug tracking system and with feature information
derived from the executable itself to visualize feature evolution [9]. In our case where
only scarce source code data are available, we were inspired by the telephony feature
evolution study performed by Anton et al based on publicly available information about
telephony [10] to consider literature as our data source. We suggest using evolution
matrices, which track the evolution of features over time, to expose implicit patterns in
natural lifecycle of features [11].
Software family engineering not only focuses on currently existing systems but it
anticipates future needs and variations as well. The results of the domain analysis must
then appropriately model variations so that it provides:

• the software user with an explicit and concise representation of available
variabilities.

• the developer of reusable software with the knowledge why a certain variation
point is included in the software.

• the software architect with the basis to design an architecture flexible enough to
support the family diversification and evolution.

Apart from the desire of continuously proposing more appropriate and useful
functionalities, CAOS research also aims at providing innovative methods and
technology to implement these functionalities. In order to model CAOS variability at
the functional and technological level we propose a taxonomy of change scenarios. By
taxonomy we simply mean the dictionary definition of “a system for naming and
organizing things ... into groups, which share similar qualities” [12]. By change
scenarios we refer to situations, where only a particular functional or technological
aspect of an existing system is modified.
3. Domain Analysis
Domain analysis is the step of domain engineering during which the domain analyst
selects a family of applications (or domain) to study, collects the domain knowledge,
organizes it into a set or artifacts (domain models) describing the common and variable
properties of the system family, and defines the semantics of these properties and the
dependencies between them. A large number of domain analysis methods exist and all
of them agree that the appropriate source of information should mainly come from [6,
13, 14]:

• human sources: domain experts, system users, developers, etc.
• existing systems: source code, design documentation, user manuals, etc.
• literature: books, articles, standards, etc.

Assimilating information coming from such diverse sources to create a coherent domain
model is a difficult task. This is why the choice of the sources of data that will most

 5

efficiently lead to the appropriate domain model is nevertheless left to the domain
analyst’s discretion. The foundation of software reuse is the discovery and exploitation
of commonality across related software systems; commonality and variability
identification is the central component of a domain analysis, which is therefore a key to
successful software reuse.
Most of the time the proposed commonality and variability differentiation method
consists of identifying aggregation/decomposition and generalization/specialization
relationships among the identified reusable assets [15-21]. These relationships are also
referred to as “is a”, “consist of”, “kind of” or “whole-part” relationships. This approach
results in a set of hierarchical diagrams, the most popular one being the feature diagram
(Fig. 2) proposed by the FODA method [15]. One other alternative is to use lexical
analysis. ODM [16], for example, suggests that the domain analyst should identify
terms that play the same semantic role in the domain, and that he or she should define
semantic relationships among these terms so that features correspond to sentences or
statements in this defined language. As for DARE [22], it offers a tool suite that
includes support to automatically extract and cluster words according to their
conceptual similarity using the provided textual domain data.
Since the previously mentioned diagrams also implicitly model variability, not all
methods have a specific means to capture variability. However, the domain analysis
component of PuLSE [18] mentions the design of a decision hierarchy where each type
of variation in the domain will match a decision type. For FODA [15] and RAPID [21],
variability can be characterized using templates and parameterization to capture
variation context. Finally, Gomaa [20] in his approach to domain analysis uses change
scenario impact analysis, where one can trace the necessary variants to support a
defined change scenario.
Certain domain analysis methods propose an algebraic approach [23, 24, 25] where the
main idea is to formalize domain knowledge in the form of a network of related
algebraic specifications. However, these methods do not contain an explicit
commonality and variability identification phase.

Fig. 2 Feature Diagram for Computed Tomography Based Planning Applications

4. The CompAS approach

 6

In certain domains such as CAOS, data coming from existing systems are not consistent
enough to be exploited for domain analysis. Moreover, as already noted for other
domains [14], CAOS can also be seen as a business area. “Such a domain not only
contains applications, it is constrained by external forces that motivate the domain”. We
therefore designed an approach relying on an intensive literature review and regular
domain expert interviews and exploiting the business area characteristic of a domain to
capture variation. What we term CompAS (Commonality and Variability Analysis to
Support Component Based Architectural Modeling) is an approach based on the two
following hypotheses:

• There is a correlation between the functional system evolution and functional
commonality and variability properties.

• In order to understand and capture variation, it is also necessary for the non-
functional requirements that constrain the domain to be identified.

Consequently, the presented method is divided into two phases. First, we compute
evolution matrices to identify functional evolutionary trends and exploit evolution
patterns to differentiate common and variable features. Second, we identify the
domain’s non-functional requirements and use them to support the capture of the
domain variability. The two parts of the method are independent; the domain analyst is
free to choose to apply either or both of them. The remaining of this section gives an
overview of CompAS method that we illustrate later in section 5 with the CAOS case
study.
 4.1 The data source
The data source for CompAS is an extensive set of descriptions that is representative of
the various types of system implementations and/or evolutions for the considered
application family during the evaluated period of time. The data source should contain
functional system descriptions to support the first part of the approach and/or textual
justification of specific system evolutions to support the second part. The system
descriptions have to be detailed enough to allow one to perform correct, consistent and
complete functional decomposition. In order to ensure these qualities CompAS suggests
to the domain analyst to regularly consult domain experts. The role of experts here
should be to ensure a pertinent feature selection and relevant non-functional constraint
identification for the domain. They should as well provide the domain analyst with
sufficient domain knowledge to allow him or her to deduce the presence or not of
features in a system based on the most likely types of system descriptions.
 4.2 Evolution matrix
The concept of software evolution matrices has been introduced by Lanza in 2001. We
briefly describe here the conceptual principle, and for further details the readers should
refer to the related publications [11, 26]. An evolution matrix combines software
visualization and software metrics in order to reduce the complexity of the
comprehension of a large amount of data and to provide quantitative evaluation of
software evolution. It is an organized disposition of rectangular shapes, where each
rectangle is the visualization of up to five metrics: the rectangle’s position represents
two metrics, the width and height can encode two others metrics, and finally the
rectangle’s color can be used to render a fifth metric. For CompAS each element of the
matrix depicts the computed metrics for a given year (on the abscissa) and a defined
functionality (on the ordinate). The width reflects the cumulative percentage of systems
including the evaluated feature while the height represents the distribution over years of
systems containing this feature. We use a variation of gray to represent the percentage

 7

of system descriptions that belong to the considered family of applications for a given
year (Fig. 3). When the analyzed family can be divided in sub-families, which are
subsets of instances that share more functional characteristics than with the remaining
of the family, one matrix per sub-family should be designed.

Fig. 3 Evolution matrix principle

If we call M the number of sub-families, I the length in years of the evaluation period,
β im

the number of systems that belong to the sub-family m in the year yi , and α
m

ij the

number of systems in the sub-family that contain the feature f j
in the year yi then:

The rectangle width W is proportional to
∑

∑

=

== i

k
km

i

k

m

kj

ijw
0

0

β

α
 which evaluates the proportion

of systems in the sub-family m that contain the feature j up to the year i.

 The rectangle height H is proportional to
∑
=

= I

k

m

kj

m

ij
ijh

0
α

α which evaluates among all the

systems having the feature j in the sub-family m, the proportion that belong to the year
i.

The rectangle colorC is relative to
∑
=

= M

k
ik

im
ijc

0
β

β
 which evaluates the proportion of

systems that belong the sub-family m in the year i, relative to the other sub-families
Evolution matrices are defined along with a terminology to characterize evolution. For
the terminology to be usable in commonality and variability analysis we have adapted it
to functional evolution as presented in Table 1.
Evolution pattern Common and variable properties

Presence-based pattern : defined by the evolution of
the rectangle height

Dayfly: Feature that has a very short lifetime (one or
two consecutive years).

A variation that did not yet make a breakthrough or that has
been abandoned.

 8

Evolution pattern Common and variable properties

Persistent across sub-families: Feature that is present
during the entire evaluation period and in all sub-
families.

Common core of the domain

Persistent in a given sub-family: Feature that is
present during the entire evaluation period of a given
sub-family.

Common feature of the sub-family

Shape-based pattern: defined by the evolution of the
rectangle width

Red Giant: A feature that keeps on being very wide
over time.

A common feature

White Dwarf: A feature that used to be of a certain
width but slowly decreases.

A common feature, which decreases in popularity to
become variable.

Supernova: a feature that suddenly explodes in width,
and eventually becomes a Red Giant.

A variation, which grows in popularity and eventually
becomes a common feature.

Idle: A feature that remains relatively small over time. A variation rarely used or specific to a certain type of
application in the sub-family.

Pulsar: A feature that grows and shrinks repeatedly
during its lifetime.

A variation with “unstable” popularity

Table 1: Correlation between Evolution Patterns and Commonality and
Variability

4.3 Capturing domain variation by identifying “evolution factors”

In order to model variation CompAS proposes using a taxonomy whose definition is
based on the data part that contains descriptions and justifications of system evolutions.
During this phase, the domain analyst needs to identify what we call “evolution
factors”, namely the non-functional requirements that constrain the domain and
therefore drive innovation. The taxonomy resulting from CompAS has two levels of
categorization. The first level of categorization is the list of features that the gathered
data propose to modify and improve. To define the second level of categorization the
domain analyst needs to use his or her personal domain knowledge and the one he or
she can obtain from domain experts, to identify the non-functional requirements that
regularly motivate the implementation of new functional variations. For each first level
category he or she should then estimate which of the identified evolution factors are the
more influential. CompAS suggests here to evaluate the percentage of the data whose
contribution influences the domain evolution with regard to a given evolution factor.
Finally the domain analyst should divide each first level category into subcategories that
correspond to the type of functional or technological changes that result from a wish to
fulfill the identified most influential evolution factors.

4.4 The CompAS process
Applying CompAS consists then in the following activities.

A. Functional evolution based commonality and variability identification:
1. Gather a set of system functional descriptions
2. Extract from the data a set of features, i.e. a set of user-visible system

functionalities
3. Compute and build the family (or sub-families) evolution matrix(es)
4. Identify the evolution pattern followed by each feature and deduce from

it their commonality and variability property

 9

B. Business-oriented variation capture:
1. Gather a set of functional evolution descriptions
2. List the features concerned by the gathered descriptions
3. For each feature define the most influential evolution factors and the

resulting functional and technological variation
4. Use the results of 2 and 3 to build the taxonomy

5. Applying CompAS to CAOS
 5.1 Data source
The annual meeting of the International Society for Computer Assisted Orthopaedic
Surgery is the main conference in our domain of interest. This meeting is a practice- and
clinically-oriented conference where technologists and surgeons gather to exchange
information of an investigative and clinical nature. This conference started in 2001 as
the result of the fusion of two former events: The CAOS symposia held in Switzerland
from 1995 to 2000 and CAOS/USA, the North American program held annually from
1997 to 2001. We thoroughly reviewed proceedings of this conference in order to
extract useful information for our domain analysis. However, because the CAOS
Symposia only published short abstracts that did not contain enough details to support
our analysis, we excluded these proceedings. Consequently, we had available to us a
total of 1076 abstracts covering the years 1998-2005 (CAOS/USA proceedings for 1997
was missing in our collection).
 5.2 Commonality and variability identification

5.2.1 System functional descriptions
In our collection of proceedings we selected all the abstracts containing a functional
description of a system and decomposed each of them into a set of features. CAOS
systems are usually described by listing the different assisting elements they provide.
Such a characteristic implies easy feature decomposition where a feature is a set of
functionalities provided to assist the user in performing one step of the computer-
assisted surgical procedure (trajectory definition, image segmentation, etc.). CAOS
system users (i.e. surgeons) and CAOS systems developers within and outside our
institute were consulted to evaluate the pertinence of our set of features. The collected
system descriptions have been divided into four sub-families. Three of them are defined
by the anatomical area operated by the assisted surgery (spine, hip-pelvis, and knee).
The fourth one is defined by the type of surgery assisted (traumatology).
We identified 137 system descriptions with a major percentage of them (40%)
belonging to the knee family. Their distribution over our four identified families is
presented in Fig. 4.

 10

Fig. 4 System Description Distribution

 5.2.2 Features and evolutions matrices
For the spine, hip-pelvis, knee and traumatology sub-families we identified respectively
a set of 13, 16, 21 and 14 features, the identified feature list for the hip-pelvis and knee
family can be visualize on the ordinate of the matrices presented in Fig 5 and Fig 6
while the complete feature set appears in table 2. We computed the necessary metrics
and implemented, using Qt (Trolltech AS, Oslo, Norway) [27] a prototype support tool
to visualize the resulting evolution matrices. This tool takes as input the computed
metrics, and displays the resulting matrices as shown in Fig 5. and Fig 6. for the hip-
pelvis and knee families

Fig. 5 Evolution Matrix of the Hip-Pelvis Family

The previously given metrics definitions imply that for a given column all the
rectangles have the same color. As a consequence this allows a straightforward
visualization of how prevalent each family has been for CAOS research over time. We
can see that 1999/2005 and 2001/2004 were years when research was more involved in
the development of hip-pelvis and knee applications respectively. Deducing the year in

 11

which a new technology has been introduced is as well obvious since functionalities are
gradually added at the bottom of the matrix. We can therefore state that the introduction
of 2D fluoroscopy, which was a major contribution to CAOS development, took place
between 2001 and 2002 for both families. We can as well notice that the knee family
has been in constant evolution from 1998 to 2003: each year, new functionalities have
been introduced. While the hip-pelvis family had a more moderate evolution, indeed
only a very small number of features had been introduced and in a shorter period of
time.

Fig. 6 Evolution Matrix of the Knee Family

 5.2.3 Evolution patterns
Table 2 summarizes the evolution patterns identified for each feature; we used a dark
gray to mark the features identified as common and a light gray for the variations.
 Spine Hip/Pelvis Knee Trauma
Computed Tomography Red Giant Persistent + Red Giant Red Giant Red Giant
Tracking Persistent + Red Giant Persistent + Red Giant Red Giant Persistent + Red Giant
Free hand navigation Persistent + Red Giant Persistent + Red Giant Red Giant Persistent + Red Giant
2D fluoroscopy Red Giant Idle Idle Super Nova
Segmentation White dwarf Red Giant Red Giant Red Giant
Implant/Prosthesis selection Idle Super Nova Red Giant Idle
Registration Red Giant Red Giant White Dwarf White Dwarf
Virtual X-ray Dayfly + Idle Idle Idle Dayfly +Idle
Robotic navigation Dayfly + Idle Idle White Dwarf
Trajectory definition Red Giant Idle White dwarf
Template based navigation Dayfly + Idle Idle Dayfly +Idle
Biomechanical analysis Dayfly + Idle Dayfly + Idle
3D fluoroscopy Dayfly + Idle Dayfly + Idle
Osteotomy planning and simulation White Dwarf Red Giant
Anatomical constraints computation Super Nova Red Giant
Segmental alignment Dayfly + idle
Range of motion simulation White Dwarf
ACL graft position definition Idle
Graft impingement simulation Idle
Magnetic Resonance Imaging Dayfly + Idle Dayfly + Idle

 12

X-ray Idle
Soft tissue balancing Idle
Plan printing Dayfly + Idle
Statistical shape estimation Idle
Constraints boundaries computation Idle
Musculo-skeletal analysis Dayfly + Idle
Ultrasound imaging Idle
Fracture fragment identification Red Giant or Idle
Virtual fracture reduction Idle

Table 2. Identified Common and Variable Features
Except for the “fracture fragment identification” feature of the trauma family, which we
found has an evolution pattern between Idle and Red Giant we could match each feature
evolution to one or two of the previously defined evolution patterns. However, no
pulsar pattern was detected. We realized that if a feature is Persistent it is as well a Red
Giant and that similarly Dayflies are as well Idle.
 Without being Persistent in all families “Computed Tomography” is the only feature
apart from “Tracking” and “Free hand navigation” that is a common feature in all
families. We then deduced that these three functionalities constitute the common core of
the CAOS domain. Sixteen features show only Idle evolution pattern in the families
where they are present, and we considered such features as being either variations that
did not yet make a breakthrough in the domain or that they have been proposed and
abandoned.
Seven of the eight features that are present in more than one family have different
evolution patterns from one family to the other, including at least one Red Giant pattern.
We use here the particular case where only two sub-families are concerned to explain
the conclusions that can be derived. When Red Giant evolution is combined with a
Super Nova evolution we can say that the feature was commonly used in a family and
was adapted with success to the other. When Red Giant is combined with Idle, either
the adaptation failed or did not yet succeed to prove its usability to the related
community. Finally, when Red Giant is combined with White Dwarf the feature is
commonly used in both families but with a progressively decreasing popularity in the
family where the White Dwarf appeared. The last combination of evolution patterns
observed is the one of White Dwarf and Idle, which is characteristic of a feature that
used to be common in a family and was adapted with minor success to other families.
Moreover, a reader familiar with CAOS technology could expect the evolution of
tracking and free-hand navigation to be tightly coupled. Indeed, we can see that they
have almost identical evolution patterns in the case of the two presented matrices. We
observed the same phenomenon for the “ACL graft position definition” and “Graft
impingement simulation” functionalities. Unexpectedly, we realized here that evolution
matrices could as well reveal certain kinds of feature dependency.
 5.3 Capturing variation
 5.3.1 Functional evolution descriptions
In a second run abstracts were collected that do not necessarily contain a system
description but rather focus on proposing improvements to a given aspect of already
existing systems. Abstracts usually contain motivation for the design and/or use of the
described contribution as well as a discussion of its benefits and drawbacks. Because
this information usually justifies a change or a novelty in the system we used it to
identify the factors of software evolution in the CAOS domain, that is to say the non-
functional reasons why CAOS systems were and will be modified and evolved. This
second selection of abstracts contained a total of 212 papers describing situations in
which only a particular functional aspect of an existing system was modified.

 13

 5.3.2 Evolution factors
Reviewing the underlying motivations and claimed benefits of the selected abstracts, we
identified the following nine factors as the main factors of CAOS evolution.

I. Visualization: CAOS aims at providing surgeons with continuously improving
patient specific visualization before and during surgery. For this it provides 3D where
initially only 2D visualization was present and provides access to an always
increasing amount of anatomical information.

II. Accuracy and safety: One of the main goals of CAOS technology is to improve the
accuracy with which a surgical procedure can be performed compared to the
conventional approach. There are many potential sources of inaccuracy in a CAOS
system (image acquisition noise, model generation errors, tracking errors, etc.), and
different scenarios are proposed to reduce each type of error. Because undetected
computational errors could in the worst case endanger human life, safety and accuracy
are tightly coupled in CAOS; consequently, we considered them as being a common
evolution factor.

III. Planning and outcome optimization: Using computer technology, CAOS helps in
defining the optimal planning in order to improve surgery outcome and to reduce long
term failures and consequent revision surgeries. To do so CAOS proposes computing
various anatomical parameters and performing simulations.

IV. System handling: CAOS systems preserve the descriptive and procedural surgical
knowledge, but imply a deep change in the operational and interaction aspects of
surgeries. To attenuate the resulting steep learning curve and to ease CAOS system
handling, research proposes, for example, automating certain tasks or providing more
intuitive user interfaces.

V. Invasiveness: The invasiveness of a surgical procedure refers to the amount of
damage generated to the soft tissue (i.e., skin and muscles) in order to access the
surgical site. Because minimal invasiveness results in less pain, scarring, and recovery
time for the patient, it is nowadays the tendency to adopt less invasive approaches to
perform surgery whenever possible. CAOS follows the same path and proposes
various functionalities that support minimally invasive surgical procedures.

VI. Radiation: The use of certain imaging modalities implies a consequent radiation
exposure for the patient and medical staff. CAOS proposes scenarios where image-
based assistance is provided with less radiation.

VII. Time: When using CAOS systems additional time is often spent in the operating
room and is requested for computational needs (image capture, processing, etc.). The
evolution trend is to reduce both burdens.

VIII. Robustness: As in the algorithmic and computational domains it is preferable for
CAOS to provide functionalities, which are insensitive to the possible variations that
occur in clinical conditions. Depending on the considered CAOS functionality this
can mean insensitivity to the image quality, to the surgical material used, to the
system user, to patient motion or to the individual characteristics of a given pathology
(e.g. arthrosis) on the targeted anatomy.

IX. Cost: Up to now prices of CAOS systems remain quite high. The aim is to reduce the
costs and consequently contribute to improve their acceptance in the surgical field.

5.3.3 Most influential factors estimation
We partitioned our collection of abstracts into seven first level categories. Fig. 7 shows
the results of the computation of the evolution factor influence, for each category we
colored in red the most influential factors. During this estimation we found only eight

 14

abstracts that contained no references to any of the identified evolution factors.

Fig. 7 CAOS most influential evolution factors

5.3.4 Change scenario taxonomy

We describe here each of the seven taxonomy first level categories highlighting how
each of the estimated most influential evolution factors contributes to the functional and
technological variations introduced in the related CAOS functionality (the evolution
factors are underlined and the resulting subcategories are in bold). The obtained
taxonomy is presented in Fig. 8.
Imaging: CAOS aims at enabling minimal radiation exposure of the patient and

 15

medical staff, which implies a permanent investigation on how to use and combine
diverse imaging modalities. The accurate and precise use of a given imaging modality
requires a well defined acquisition protocol and/or calibration procedure for the
means of acquisition. Moreover, to improve the quality and accuracy of the information
provided by the acquired images, they sometimes need to be additionally processed.
3D modeling: While performing the diagnostics the surgeon has to rely on his or her
understanding of the 3D space to interpret the 2D information he or she has access to.
One of the claims of CAOS is to ease this challenging task by providing a three-
dimensional model of the patient’s anatomy that will enhance the surgeon’s
visualization of the case. Several methods were proposed to obtain these models (e.g.,
segmentation or statistical shape modeling) each of them trying to be always more
accurate. What usually vary from one method to another are the type of information it
takes as input and the nature of the information provided by the output model.
Biomechanics: The desire to always obtain better and optimized surgical outcomes led
the CAOS community to integrate findings of biomechanics into CAOS. Over the years
biomechanical methods such as kinematic analysis and finite element modeling (FEM)
have been used to provide surgeons with the possibility to simulate the post-operative
outcome of the currently planned surgery. Biomechanics contributed as well to one of
the major evolutions in CAOS: the idea to no longer rely solely on the patient’s skeletal
structure but to introduce soft tissue consideration in the computer-assisted surgical
process. This results, for example, in different ligament balancing functionalities in the
knee application family.
Anatomical constraints: An orthopaedic surgical procedure is governed by anatomical
constraints (mechanical axis, anteversion, acetabular wall thickness, etc.). In order
to allow more accurate surgical procedures CAOS systems propose to automatically
compute these parameters whenever possible. A constant feedback on these constraint
values improves the guidance offered to surgeons.
Surgical strategy: CAOS planning sub-systems help the surgeon in defining the
optimal surgical strategy. For this they provide support in trajectory definition, best
implant selection or virtual bone alignment in the case of fracture treatment. For a
long period these tasks were possible only through user interaction but recent research
proposed automating these tasks in order to optimize them.
Registration: In order to be able to guide the surgeon during surgery it is required that
CAOS systems establish the mathematical relationship between the local coordinate
system of the virtual patient anatomy (generated 3D model) and the one of the surgical
object (targeted anatomy to be operated on). This process is called registration or
matching. One of the major motivations for the various proposed methods to perform
this process, apart from their diverse algorithmic approaches, is to reduce the
invasiveness required to obtain the data they use as input. The second major drawback
of registration is that it is a difficult task to perform and understand for the surgeon.
Consequently, some effort has been made in order to ease registration handling, e.g.,
requiring less user interaction or providing intuitive accuracy feedback.
Navigation: To help the surgeon achieve his or her surgical plan various guidance
methods have been proposed such as, for example, individual templates or augmented
reality. Although CAOS always tries to be as close as possible to the traditional surgical
approach, it sometimes requires modifying or adapting the usual surgical tools. Certain
navigation approaches need to use positional information about the surgical instruments
and anatomical structures. For this there are different tracking methods. The goal is

 16

obviously to allow the surgeons to achieve the best accuracy and at the same time to
provide systems that only require interaction that easily fits into the clinical routine.

Fig. 8 Taxonomy of change scenarios

5.4 General CAOS evolution
If we compare the percentages per year of abstracts that contain a system description
and of those that can be identified as change scenarios (Fig. 9), we can see that the
percentage of system descriptions constantly decreased over the years to reach less than
5% in 2005, while the percentage of change scenarios rapidly grew between 1998 and
2002 and stabilized around 20% afterwards.

 17

Fig. 9 CAOS Research Evolution

The evolution curves are characteristic of the general evolution of CAOS research.
Indeed, rather than investigating the development of a completely new system that will
be used for a new surgical procedure, many research groups had focused on improving
only a particular aspect of existing CAOS systems. This tendency is as well confirmed
by the fact that after 2003 the height of all obtained evolution matrices did not grow,
that is to say that after this date the system descriptions no longer contained new
features.

6. Efficiency of evolution matrices to support commonality and variability
analysis

 6.1 Evaluation approach
In order to evaluate how good a given domain analysis method is, the common practice
is to evaluate the domain model resulting from the use of this method. To do so, one has
to check if it possible to specify pre-existing or proposed systems using the domain
analysis outputs. Systems used as inputs in the domain modeling process may be used
for validation; but preferably the domain analyst will test using systems not used to
develop the model. This last point led us to use an approach borrowed from
mathematical modeling, namely holdout validation, to evaluate the effectiveness of
evolution matrices in commonality and variability analysis. The principle is the
following: observations are randomly selected from the initial data set to form the test
data and the remaining data are retained to be used as input to the tested modeling
method. Usually up to one third of the initial data is used as test data. After applying
the tested method to the training data set one must then estimate the error occurring
with the test data [28].
In our particular situation we wanted to evaluate how well the use of evolution matrices
could allow us to differentiate common and variable features. Unfortunately, to the best
of our knowledge, there is not up to now a measure that could enable the quantitative
estimation of our model. We consequently used a qualitative approach to estimate the
quality of the obtained domain model. Our evaluation was based on the following
assumptions:

• Assumption 1: A system description fits well to the domain model if it is
composed of a majority of common features plus some variation features.

• Assumption 2: After a successful modeling, the number of systems composed
only of common features should be minimal.

 18

• Assumption 3: A good commonality and variability analysis should not lead to
systems composed only of variable features.

• Assumption 4: If a feature is missing from the resulting model, it should be
included in a minimum of systems descriptions.

• Assumption 5: Each common feature should be included in more than 40% of
the tested system descriptions. Conversely, variation features should occur in no
more tan 40% of the tested system descriptions.

6.2 Evaluation results
 6.2.1 General comments
The evaluation was performed once for each sub-family using one third of each sub-
family as hold out samples. After applying CompAS we compared the results obtained
with and without the complete data set. We noticed that, because of the missing
descriptions, in two cases features that were identified as “Persistent + Red Giant” lost
their Persistence characteristic but remained Red Giant. The opposite phenomenon was
observed as well in one case, that is to say a feature that was initially identified as an
Idle only became a “Dayfly + Idle”. Two others complementary effects linked to the
hold out sampling were observed. In two cases features that were initially identified as
Idle became White Dwarf and in another situation a feature that was a initially Red
Giant became a Super Nova. However in these six cases (9.5% of the evaluated
features), the observed modifications did not affect the conclusions that were derived
concerning the commonality and variability characteristic of these features. Four
features that were initially identified as “Dayfly + Idle” and one that was only Idle
disappeared from the resulting models. In other words in these five cases (8%) the
concerned features were part only of the retrieved systems descriptions. The non
detection of such unique features is however not critical; when facing such a situation
the domain analyst has to further investigate and find out if it is worthwhile to consider
such functionality as a missing reusable variation or to keep it as a truly application
specific functionality. Only one feature that we initially identified as Idle became a Red
Giant that is to say changed from a variable to a common feature. Finally the only
feature which we could not decide whether to classify as a Red Giant or Idle appeared
to be a Idle in this evaluation phase.
 6.2.2 Domain model evaluation
In this section we present the qualitative evaluation of the obtained model based on the
previously mentioned assumptions:
Assumption 1: Across the four sub-families’ evaluation, we found only one system
composed mainly of variation features for a small number of common ones.
Assumption 2: For the four sub-families we evaluated, between 20% and 40% of the test
set were systems composed only of common features.
Assumption 3: For the four sub-families, no systems were found composed only of
variable features.
Assumption 4: Four of the five missing features were required for only one system
description and in each case for a different one. The last one was missing for two
system descriptions.
Assumption 5: In two cases we found common features present in less than 40% of the
test set and in two other cases we found variable feature that was present in more than
40% of the test set. We give below more details on each of the cases:
 Case 1 concerns the feature for which we initially had doubt in classifying the
followed evolution pattern and which we classified as Idle during our evaluation. This

 19

feature appeared to be a variable feature present in 66.7% of the test set. Consequently
no decision on whether this feature is common or variable can be taken using CompAS.
 Case 2 concerns a feature that we identified with and without the complete set as
a White Dwarf. This feature appeared during our evaluation as a variation contained in
44.4% of the test set. Given the fact that we considered a White Dwarf to be a common
feature which decreased in popularity to become variable, we can hypothesize that the
random sampling retrieved system descriptions that mainly belong to the time period
where this feature was considered as common.
 Case 3 concerns the previously mentioned feature that was identified as a Red
Giant with the complete data set but as a Super Nova during evaluation. It then
appeared to be a common feature that belongs to 33.3% of the test set. Although the
percentage is below the hypothesized 40% it still remains rather high (one third of the
test set). However in this case the assumption has to be rejected.
 Finally case 4 concerns a feature identified as a Red Giant with and without the
complete set but which appeared as a common feature present in only 22.2% of the test
set. To justify this situation one has to use domain knowledge. Indeed, the considered
feature, namely computed tomography, is linked to the 2D fluoroscopy feature through
an “OR” dependency. In other words, in the trauma sub-family, systems contain either
computed tomography feature or the 2D fluoroscopy one. This is actually confirmed by
the fact that 2D fluoroscopy feature was evaluated as a common feature that belongs to
88.9% of the test set. In conclusion when two or more common features are dependent
they can be contained in a rather small percentage of the considered systems, provided
that their respective percentages are complementary (the sum is equal to 100%). Table 3
summarizes the result of the evaluation of the first part of CompAS.
 Spine Hip Knee Trauma

Size of the test set 5 12 18 9

Size of the feature set 13 16 14 21

Number of systems composed mainly of variation features 1 0 0 0

Number of systems composed only of common features 2 4 4 2

Number of systems composed only of variable features 0 0 0 0

How many feature miss in the model 1 0 3 1

What is the number of systems requiring these features 1 NA 2 1

How many common features are included in less than 40% of the test system descriptions 0 0 1 1

How many variable features are included in more than 40% of the test system descriptions 0 0 1 1

Table 3: Results of CompAS Efficiency Evaluation
Because our evaluation assumptions were rejected in a minor number of cases we
concluded that evolution matrices are appropriate and efficient tools to support
commonality and variability analysis.

7. Discussion
Although software development in research is not constrained by any system
documentation process, we demonstrated in this article that relevant information could
be extracted from conference proceedings in order to identify commonality and
variability based on a quantitative evaluation of software functional evolution. An
interesting aspect of the presented results is that they combined users’ and developers’
perspectives. Indeed, the annual meeting of the International Society for Computer
Assisted Orthopaedic Surgery presents research results submitted by surgeons as well as
software developers. We actually observed that system functional descriptions could
often be found in clinical study reports and reflect the users’ perspective at that time. In

 20

other cases they were used to describe the current state of the art in articles presenting
new developments, thus providing a software developer’s perspective. Change
scenarios were more often found in technologists’ publications. We showed as well that
based on an organized review of selected conference abstracts we could identify domain
evolution factors. Based on the computation of the dominant evolution factors we could
then gain insights into the domain evolution and thereby more easily identify variation
points.
The gathering and analysis of our set of data was pretty time consuming, however this is
a known aspect of domain analysis [29, 30]. And we believe, as is usually advocated in
the domain, that the obtained results are worth the time invested since they will save
time in the future.
Our interpretation of the relation between the obtained evolution matrices and the
commonality, variability, and dependency of the features could not have been possible
without our a priori knowledge of the domain. In other words such an approach
requires good knowledge of the investigated domain and/or a close collaboration with
domain experts. The proposed approach presents, moreover, a limitation related to the
data collection. The system descriptions used to compute the evolution matrices do not
follow any template or format and are therefore subjective. Some descriptions might
therefore be incomplete, simply because the omitted functionalities were not relevant to
the treated subject; they were implicit for the audience, or became standard and
therefore were not mentioned anymore. Based on our knowledge of CAOS systems, we
have actually sometimes extrapolated the presence of certain functionalities in order to
keep the system descriptions coherent.
Because of the previously mentioned general evolution of CAOS research, we had only
a very small number of system descriptions for the years 2004 and 2005. This evolution
tendency can bias the interpretation for the evolution matrix. If we consider, for
example, the “3D fluoroscopy” feature which is interpreted as a feature with relatively
low popularity (Idle pattern), the matrix does not allow one to detect that this
functionality was indeed investigated intensively as a stand-alone feature. This growing
popularity is indeed confirmed by the numerous change scenarios (17) related to “3D
fluoroscopy” that we collected between the years 2001 and 2004.
We have seen that feature dependencies, such as constraints describing which features
require the presence of one or more features, imply identical evolution patterns for the
respective features. Other feature dependencies exist but could neither be detected nor
integrated with our approach. If we consider, for example, introducing a new imaging
modality, we know that it may require a new 3D modeling approach to be defined. For
these reasons we insist here on the fact that the presented work, in its current status, can
only be used as a tool to support and strengthen one part of domain analysis (i.e.
commonality and variability analysis). The lack of the critical dimension that constitutes
dependency handling prevents this approach from being considered as a complete
domain analysis method. We therefore envision evolving our taxonomy into an
ontology so that we can model these dependencies. Ontologies enable the definition of
concepts (change scenario, surgical procedure, medical image, etc.), their attributes and
the relationships among them [31]. An ontology of CAOS change scenarios would
permit one to define a human and computer readable consensual description of CAOS
system variability that could be shared and reused.
The high number of identified Idle patterns demonstrates that CAOS is a highly
evolving domain where numerous functionalities are still investigated and proposed.

 21

We have seen as well that functionalities are frequently adapted from one sub-family to
the other. Moreover, there is a tendency in the CAOS community to focus on
developing new functionalities rather than taking a systems implementation approach to
consolidate and integrate existing results. All these characteristics reinforce our initial
intuition that a software reuse philosophy could be of interest for the domain. In a
component-based environment one could test, integrate, and adapt a specific
contribution without having to implement a completely new system but rather by
combining the newly provided features with others to develop a more functional
system.
As demonstrated by some of our results, until now, CAOS research has largely addressed
major issues such as safety and accuracy. Other issues like cost reduction have not yet
been satisfactorily investigated. Initial studies in industrial settings suggest that
component-based application engineering results in an improvement of programmer
productivity, a reduction of time-to-market, and a decrease of maintenance costs.
Consequently, we believe that an academic investigation of the use of component-based
development for CAOS systems could open the door to less costly industrial production
of CAOS systems.

8. Future work
The presented overview of commonality and variability in CAOS provides an abstract
representation of the domain. The previously mentioned lacking information about feature
dependencies as well as other information such as illegal feature combinations and default
settings constitutes what is called the knowledge configuration of the domain. Combining
our domain model with configuration knowledge would enable one to configure any
concrete CAOS applications. This transition from a high level domain model to a
concrete system description can nowadays be performed either manually or automatically.
In the manual approach the developer, based on his or her understanding of the domain
model, matches a system description expressed in common language to a computer
readable description of the system. In generative programming, which proposes methods
to automate the process, the developer uses a domain specific language (DSL) to describe
applications and the transition to concrete implementations is performed automatically
[6].
We will investigate if the use of an ontology as a means for domain modeling could allow
us to encode the knowledge configuration. We could then provide a means to ease and
automate not all the transition process but only the transition from the high level domain
representation to a computer readable system description. Indeed concept of relationships,
axioms, and rules that are part of ontological engineering could be used to define the
knowledge configuration. Moreover, the consensual aspect of the definition of ontology
terminology could lead to an application descriptor whose vocabulary would be
accessible to all the actors of the domain. The dynamic aspect of ontology that is to say
the fact that they are made to be extended and modified could ensure an always up-to-date
representation of the domain. Finally, ontologies are not only human readable but as well
computer readable, so we could then investigate the development of an ontology based
tool that will allow us to provide computer support in application description.
We could imagine that ultimately the functional aspect of our domain model could be
used to provide users with a computer-based catalog of the available features that could
help in configuring applications but as well in informing about the possible functional
improvements of a given application. While the technological aspect could be used as a
source of information on how to improve the non-functional aspect of a system based on

 22

the different existing technological approaches for a given feature.
Acknowledgement: This work was supported by the Swiss National Center of
Competence in Research on “Computer Aided and Image Guided Medical Intervention
(CO-ME)”.
References
[1] A.M.M.A. Mohsen, T.J. Cain, M.R.K. Karpinski, K.P. Sherman, F.R. Howell, R.,
Phillips et al., The basic orthopaedic principle and the non-invasive intelligent
orthopaedic guide concept, in Proceedings of the 2nd International Workshop of
Mechatronics in Medicine and Surgery (Medimec), Bristol, UK, 1995.
[2] F. Langlotz, L.P. Nolte, Computer-assisted orthopaedic surgery from theory to the
operating room, Techniques in Orthopaedics 18 (2003) 140-148.
[3] L.P Nolte, T. Beutler, Basic principles of CAOS, Injury 35 (2004) SA6-SA16.
[4] C. Szyperski, Component Software - Beyond Object-Oriented Programming,
Addison-Wesley, 1998.
[5] D.L. Parnas, On the design and development of program families, IEEE
Transactions on Software Engineering SE-2 (1976) 1-9.
[6] K. Czarnecki, U.W. Eisenecker, Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.
[7] D. Draheim, L. Pekacki, Process-Centric Analytical Processing of Version Control
Data, in Proceedings of the International Workshop on Principles of Software
Evolution (IWPSE), Helsinki, Finland, 2003.
[8] H. Gall, M. Jazayeri, J. Krajewski, CVS release history data for detecting logical
couplings, in Proceedings of the International Workshop on Principles of Software
Evolution (IWPSE), Helsinki, Finland, 2003.
[9] M. Fischer, H. Gall, Visualizing Feature Evolution of Large Scale Software based
on Problem and Modification Report Data, Journal of software maintenance and
evolution : Research and Practice 16 (2004) 385-403.
[10] A.I. Anton, C. Potts, Functional Paleontology: System evolution as the User sees,
in Proceedings of the 23rd Internatinal Conference on Software Engineering (ICSE),
Toronto, Canada, 2001.
[11] M. Lanza, The evolution matrix: recovering software evolution using software
visualization techniques, in Proceedings of the International Workshop on Principles of
Software Evolution, Vienna, Austria, 2001.
[12] Cambridge dictionaries online. dictionary.cambridge.org [April 13th, 2006]
[13] G. Arango, Domain analysis methods, in: W. Schäfer, R. Prieto-Díaz, M.
Matsumoto (Eds.) Software Reusability, Ellis Horwood, New York, NY, 1994, pp 17-
49.
[14] S. Wartik, R. Prieto-Díaz, Criteria for comparing domain analysis approaches,
International Journal of Software Engineering and Knowledge Engineering 2 (1992)
403-431.
[15] K. Kang, S. Cohen, J. Hess, W. Nowak, S. Peterson, Feature-Oriented Domain
Analysis (FODA) Feasibility Study, Technical report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburg PA, 1990,
www.sei.cmu.edu/publications/documents/90.reports/90.tr.021.html [April 13th, 2006]
[16] Software Technology for Adaptable Reliable Systems (STARS). Organization
Domain Modeling (ODM) Guidebook Version 2.0, STARS-VC-A025/001/00,
Lockheed Martin Tactical Defense Systems, Manassas VA, 1996.
www.cs.bu.edu/faculty/allemang/Papers/ODM.pdf [April 13th, 2006]

 23

[17] W. Tracz, L. Coglianese, P. Young, Domain-specific Software Architecture
engineering Process Guidelines, ADAGE-IBM-92-02, IBM Corporation, Federal
Sector Division, Owego NY, 1993, citeseer.ist.psu.edu/tracz93domainspecific.html
[April 13th, 2006]
[18] J. Bayer, D. Muthig, and T. Widen, Customizable Domain Analysis, in
Proceedings of the 1st International Symposium on Generative and Component-Based
Software (GCSE) Engineering , Erfurt, Germany, 1999
[19] R. Holibaugh, Joint Integrated Avionics Working Group (JIAWG) Object Oriented
Domain Analysis Method (JODA), Version 1.3, Technical Report CMU/SEI-92-SR-3,
Software Engineering Institute, Carnegie Mellon University, Pittsburg PA, 1993,
www.sei.cmu.edu/pub/documents/92.reports/pdf/sr03.92.pdf [April 13th, 2006]
[20] H. Gomaa, An Object-Oriented Domain Analysis and Modeling Method For
Software Reuse, in Proceedings of 25th the Hawaii International Conference on System
Sciences, Kauai HI, USA, 1992
[21] W. Vitaletti, E. Guerrieri, Domain Analysis within the ISEC RAPID Center, in
Proceedings of the 8th Annual National Conference on ADA Technology, Atlanta GA,
USA, 1990
[22] W. Frakes, R. Prieto-Diaz, C. Fox, DARE: Domain analysis and reuse
environment, Annals of Software Engineering 5 (1998) 125-141.
[23] J.M. Neighbors, Draco: a method for engineering reusable software components,
in: T.J. Biggerstaff, A. Perlis (Eds.), Software Reusability, Vol. 1, Addison-
Wesley/ACM Press, 1989.
[24] Y. V. Srinivas, R. Jüllig, SPECWARE: Formal Support for Composing Software,
in Proceedings of the International Conference on the Mathematics of Program
Construction, Kloster Irsee, Germany, 1995
[25] D.R. Smith, KIDS: A semi-automatic program development system, IEEE
Transactions on Software Engineering 16 (1999), 1024-1043.
[26] M. Lanza, S. Ducasse, Polymetric views – A lightweight visual approach to reverse
engineering, in IEEE Transactions on Software Engineering 20 (2003) 782-795.
[27] Trolltech Qt 3.3 whitepaper,
www.trolltech.com/pdf/whitepapers/qt33-whitepaper-a4.pdf [April 13th, 2006]
[28] R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and
model selection, in Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI), Montréal, Québec, Canada ,1995
[29] A. Fantechi, S. Gnesi, I. John, G. Lami, J. Dörr, Elicitation of Use Cases for
Product Lines, in Proceedings of the Fifth International Workshop on Product Family
Engineering (EPF), Siena, Italy, 2003
[30] K. Lee, K.C. Kang, J. Lee, Concepts and Guidelines of Feature Modeling for
Product Line Software Engineering, in Proceedings of the Seventh International
Conference on Software Reuse: Methods, Techniques, and Tools, Austin, USA, 2002
[31] B. Chandrasekaran, R. Josephson, R. Benjamins. What Are Ontologies, and Why
Do We Need Them, in IEEE Intelligent Systems 14 (1999) 20-26.

