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Abstract

Software systems are complex and difficult to analyze. Reverse engineer-
ing is a complex analysis that usually involves combining different techniques
and tools. Moreover, oftentimes the existing tools are not perfectly suitable
for the task, and customization of existing tools, or development of new tools
is required. Moose is an extensible reengineering environment designed to
provide the necessary infrastructure for tool integration. Moose centers on a
language independent meta-model, and offers services like grouping, query-
ing, navigation, and advanced tool integration mechanism.

1. Introduction

Reverse engineering is a complex analysis usually consisting of a combina-
tion of techniques such as: parsing the code, building a model of the code,
measuring the code, visualizing, etc (Demeyer, Ducasse Tichelaar, 1999).

Sometimes, we want to complement the code information with other kinds
of information like bug reports or documentation. For different techniques we
need different tools, but we need these tools to collaborate and complement
each other without pre-imposing the sequence of using these tools and tech-
niques. Furthermore, real-life systems come in different shapes and sizes; there-
fore we need our tools to scale (Ducasse and Tichelaar, 2003).

We present Moose – an extensible and scalable reengineering environment
that allows tools to collaborate. First, we show a scenario of using Moose on
JBoss, a large Java open source case study. Next, we briefly introduce the
most important requirements that drive Moose's design. Further we introduce
the principles of Moose, and we talk about its overall architecture. We briefly
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describe the underlying meta-model and the tools built on top of Moose. We
show the application of our tools on a case study, and in the end we draw the
conclusions and present the future work.

2. Moose at Work

Before detailing the internals of Moose, we first show some of the analyses
that can be performed with it. As a case study we chose JBoss, an open source
J2EE application server written in Java. Furthermore, to exemplify the evolu-
tionary capabilities of Moose, we chose 10 versions starting from the beginning
of 2001 until middle of 2002.

After parsing the versions with an external parser, we obtain 10 models,
each model being a snapshot of one version. In Fig. 1 we show twice the main
Moose window. In the left pane of the window, we show the JBoss models we
have loaded. On the right side of the window we display overview measures of
the selected model. The first window shows the first version we analyzed, while
the second window shows the last version. For example, the first version has
632 classes and interfaces, and the last version has 3764 (the figure includes in-
ner classes and test classes).
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Fig. 1 - Moode Model Manager with JBoss models

We start the analysis by browsing the last version (see Fig. 2). In the left
pane of the browser, we show the different groups of entities we have in the
model: classes, methods, namespaces, invocations, accesses etc. In Fig. 2 we
selected all the 5041 classes (including interfaces and inner classes) in the
model and we displayed them in a table in the right pane. Furthermore, we can
interact with the table and add/remove columns with different properties. In our
example, we added the results of number of methods (NOM) and of lines of
code (WLOC), and we ordered the classes according to the number of methods
(NOM).
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Fig. 2 - Moose Browser on the last version of JBoss

In the lower part of the right pane of Fig. 2 there is an editor of a visual query
language, which we use to filter the entities. In our example, we would like to
select the classes which have more than 20 methods and more than 200 lines of
code.

From the contextual menu of the table we can choose to display the correla-
tion between the selected properties. In Fig. 3 we display the correlation be-
tween the number of methods and the lines of code in the classes. From the
shape of the chart we can detect, for example, that most of the classes have less
than 50 methods and less than 1000 lines of code.
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Fig. 3 - The correlation chart between the number of methods and the lines of
code of the class from the last model of JBoss.

Fig. 4 - The System Complexity view of the last model of JBoss displayed in
CodeCrawler
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Fig. 5. Moose entity inspector on EJBModule class from the last model of JBoss.

To get an overview of the system, we apply a visualization called System
Complexity View using CodeCrawler like in Fig. 4. This view is a polymetric
view, which displays hierarchies (Lanza and Ducasse, 2003). Each class is
represented as a rectangle where the height of the rectangle is given by the
number of methods, the width shows the number of attributes and the color
represents the lines of code of that class. With such a view we can detect ex-
ceptional classes. For example, in Fig. 4 we show the largest hierarchy of
JBoss displayed in CodeCrawler. CodeCrawler is a visualization tool built on
top of Moose (Lanza and Ducasse, 2004).

In Fig. 5 we show an inspector applied on the EJBModule class. The in-
spector shows all the properties of an entity, and it is useful for detailed analy-
sis.

The views in CodeCrawler are interactive and we can float over the figures
and obtain a contextual menu. Moreover, due to the Moose tool integration
mechanisms, we can obtain the class menu, which is the same everywhere in
the environment. For example, in Fig. 2, Fig. 4, and Fig. 5 we have the same
contextual menu when we select a class entity. Thus, we can jump from one
tool to another in a transparent way for the user.
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Fig. 6 - Evolution of the number of classes in the considered history.

Having multiple models loaded in the environment we can perform histori-
cal analyses. For example, in Fig. 6 we display the evolution chart of the num-
ber of classes in the system.

3. Moose Requirements

Moose is designed to meet the following requirements:

External tools. Reverse engineering is a complex task that can be decom-
posed into smaller ones that may be implemented in different tools (e.g., visu-
alization, clustering). The environment should be transparent for the user by
offering mechanisms for external tools to register in order to provide a seamless
integration between the tools internal and external to the environment.

Extensible Meta Model. Third party tools should be able to adapt the un-
derlying meta model to their needs without breaking the interoperability.
Thus, the meta model should be able to represent and manipulate entities
other than the ones directly extracted from the source code e.g., associations,
relationships. Also, the entities in the meta-model should support annotations
(e.g., measurements (Ducasse Tichelaar, (2003))).

Secondly, during reverse engineering, we often need to group entities
based on their commonalities. For an example, see the lower right pane in Fig.
2, where we query the Moose repository for entities of interest. Thus the envi-
ronment should allow turning an arbitrary collection of entities into a separate
group.
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Versioning Information. Modern software development relies on
versioning systems to store the system at different stages. The versioning in-
formation is a valuable source for reverse engineering as it can reveal, for ex-
ample, which parts are changed a lot, or which ones are never changed. The
environment should be able to manage multiple models at the same time for
allowing the evolution observations. For instance Fig. 6 gives an overview of
the number of classes in the history.

Exploration. The exploratory nature of reverse engineering and reengi-
neering demands that a reengineering environment does not impose rigid se-
quences of activities.

The environment should be able to present the source code entities in
many views, both textual and graphical, in little time. It should be possible to
perform several types of actions on the views the tools provide, such as
zooming, switching between different abstraction levels, deleting entities from
views, grouping entities into logical clusters, etc.

The environment should as well provide a way to easily access and query
the entities contained in a model. To minimize the distance between the repre-
sentation of an entity and the actual entity in the source code, an environment
should provide every entity with a direct link to its location in the source
code.

A secondary requirement in this context is the possibility to maintain a his-
tory of all steps performed by the reengineer and preferably allow him to return
to earlier states in the reengineering process: A model, in the form of entities
representing the software artifacts of the target system, can be analyzed, ma-
nipulated, and browsed.

Scalability. As legacy systems tend to be large, an environment should be
scalable in terms of the number of entities being represented, i.e., at any level of
granularity the environment should provide meaningful information and not in-
cur performance penalties. An additional requirement in this context is the ac-
tual performance of such an environment. It should be possible to handle a leg-
acy system of any size without incurring long latency times.
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4. Moose Architecture

Moose uses a layered architecture (see Fig. 7). Information is transformed
from source code into a source code model. The models are based on the
FAMIX metamodel, which is described in Section 5. The information in this
model, in the form of entities representing the software artifacts of the target
system, can be analyzed, manipulated and used to trigger code transformations
by means of refactorings. We will describe the architecture of Moose starting
from the bottom.

Fig. 7 - Moose architecture.
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Export/Import. Moose supports multiple languages (Tichelaar, 2001).
Source code can be imported into the meta-model in two different ways:

• In the case of VisualWorks Smalltalk – the language in which
Moose is implemented – models can be directly extracted via the
meta-model and the parser of the Smalltalk language.

• For other source languages Moose provides an import interface for
CDIF and XMI files based on our FAMIX meta-model. CDIF and
XMI are industrial standard interchange formats, which enable ex-
changing models via files or streams. Over this interface Moose
uses external parsers for languages other than Smalltalk. Currently
C++, Java, COBOL, and other Smalltalk dialects are supported.

Core. In the center of Moose is the FAMIX meta-model. The models are
stored in memory. Every model contains entities representing the software arti-
facts of the target system. Every entity is represented by an object, which allows
direct interaction and querying of entities, and consequently an easy way to
query and navigate a whole model. Moose can maintain and manipulate several
models in memory at the same time via a model repository.

Every entity is described by a meta-description, which is then used by the
environment to display user interfaces or load/save entities. These meta-
descriptions are extensible by other tools and are used by different tools. At this
moment, the supported meta-descriptions are:

• Sub entities. Given an entity we describe the types of the sub entities
that form a containment hierarchy. For example, a method is a sub
entity type of a class.

• Menu. Every entity has a menu attached to it, and the tools can reg-
ister menu actions to a particular kind of entity and this action can
be triggered from everywhere in the environment. This mechanism
allows for tools to collaborate with each other in a transparent way
for the user.

• Properties. Every entity is annotated with the properties that can be
computed on that entity. For example, given a class we can compute
its number of methods, or denote whether the class is abstract, etc.

• Query Expressions. Groups of entities are first class entities, and
they can be annotated with queries that can be performed to select a
sub group.

• Load/Save. Every entity can be saved in flat file format (such as
CDIF or XMI). This conversion from complex entity with relation-
ships into a flat representation is based on the entity meta-
description.
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Moose provides basic tools that use the meta-descriptions:
• Browser. With the browser we can navigate the contents of the

model.
• Entity Inspector. The Inspector shows all properties of a given en-

tity.
• Selection tool  (or query tool). It selects all entities that conform to a

certain rule specified by an expression, or by a Smalltalk code. The
Selection tool is part of the Browser, but it can also be used as a
stand-alone tool.

Tools. Different tools were developed on top of Moose (S. Ducasse, M.
Lanza and S. Tichelaar, 2000), such as the Collaboration Browser (T. Rich-
ner and S. Ducasse, 2002) and a language independent refactoring engine (S.
Tichelaar, S. Ducasse, S. Demeyer and O. Nierstrasz, 2000).

Others are currently developed: ConAn (G. Arévalo, 2003), (G. Arévalo, S.
Ducasse and O. Nierstrasz, 2004), CodeCrawler (Lanza and Ducasse, 2004),
Van (T. Gîrba, S. Ducasse and M. Lanza, 2004), (D. Ratiu, S. Ducasse, T.
Gîrba and R. Marinescu, 2004) and Baobab (S. Ducasse, M. Lanza and L.
Ponisio, 2004). These tools can extend the meta-model by defining new entities
and by annotating them with menus and properties.

5. Meta-Models

The core of Moose implements the FAMIX meta-model (Demeyer et al.,
2001). FAMIX provides for a language-independent representation of object-
oriented sources and contains the required information for the reengineering
tasks performed by our tools (S. Tichelaar, S. Ducasse, S. Demeyer and O.
Nierstrasz, 2000),.

It is language independent, because we need to work with legacy systems in
different implementation languages (C++, Java, Smalltalk).

Since we cannot know in advance all information that is needed in future
tools, and since for some reengineering problems tools might need to work with
language-specific information (e.g., to analyze include hierarchies in C++), we
allow for language plug-ins that extend the model with language-specific fea-
tures. Next to that, we allow tool plug-ins to extend the model to store, for in-
stance, analysis results or layout information for graphs.

The left side of Fig. 8 shows a reduced schema of FAMIX the Moose meta-
model. On the right side of the figure we show another meta-model called
Hismo. Hismo is a meta-model for software evolution analysis that comple-
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ments FAMIX. The evolution of any FAMIX entity can be analyzed by its
Hismo associated version/history entity.

Fig. 8 - Meta-models in Moose. On the left side we show the FAMIX meta-model,
while on the right side we show Hismo, a history centric meta model which is

based on FAMIX.

To exchange model information between different tools we have adopted
CDIF and XMI (Schlapbach, 2001). Both CDIF and XMI are industrial stan-
dards for transferring models created with different tools. The main reasons
for adopting these formats are that firstly they are industry standards, and sec-
ondly they have a standard plain text encoding which tackles the requirements
of convenient querying and human readability. Next to that the CDIF/XMI
framework supports the extensibility we need to define our model and plug-
ins. As shown in Fig. 7 we use CDIF and XMI to import FAMIX-based in-
formation about systems written in JAVA, C++ and other languages. The in-
formation is produced by external parsers such as Columbus (see
www.frontendart.com), or Memoria (LOOSE Research Group, 2004).
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6. Tools

In Fig. 9 we present a detailed schema with the tool inter-relationships. The
relationship edges are annotated with the purpose. In this schema we did not
represent the dependencies between these tools and Moose.

Fig. 9 - Moose Tools and their relationships.

CodeCrawler. CodeCrawler is a visualization tool implementing polymet-
ric views (Lanza and Ducasse, 2003), which are based on a graph notion
where the nodes and edges in the graph can wrap the entities in the model. For
example, in Fig. 4 we see a screenshot of CodeCrawler displaying a hierarchy
of JBoss. From the picture we see that from CodeCrawler we can access the
menu related to the node we select because we have access to the entity.

Although CodeCrawler was first developed as a visualization tool for
software systems, in its latest implementation it turned into a general-purpose
visualization tool, which can accommodate different needs. For example, in
Fig. 9 it is shown that all the tools use CodeCrawler for different visualiza-
tions.
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Baobab. Baobab is a tool to understand dependencies between modules (S.
Ducasse, M. Lanza and L. Ponisio, 2004). It extends FAMIX with the notion of
dependency between different parts of the system and provides various meas-
urements for these dependencies. It uses CodeCrawler for showing the types of
modules in the system (e.g., provider modules, client modules).

ConAn. ConAn is a concept analysis tool and manipulates concepts as first
class entities. Its target is to detect different kinds of patterns in the model based
on combining elements and properties.

ConAn uses CodeCrawler for visualization purposes and supports analyses
like:

• X-Ray views for understanding the internal of classes. The X-Rays
aim at describing the details of classes. For example, they can show
how state is used in a class and detect if the class attributes are used
in chunks (G. Arévalo, S. Ducasse and O. Nierstrasz, 2004).

• Identification of recurring code patterns. ConAn can detect design
patterns (e.g., Composite design pattern) or other kind of patterns
that frequently occur in the code (e.g., Star Classes are those classes
which are used by a lot of other classes) (G. Arévalo, Frank Buchli
and Oscar Nierstrasz, 2004).

• Views for hierarchy understanding. ConAn facilitates the under-
standing of class hierarchies as a whole by detecting, for example,
methods which reuse the behavior in the super class, or methods
which access directly the state in the super class (G. Arévalo, 2003).

Van. Van is a tool for analyzing the evolution of systems. At its core, it de-
fines the Hismo meta-model which is based on the notion of history (see Fig. 7).
Hismo is independent from FAMIX, but it works closely with it. Van offers dif-
ferent analyses.

• Changes characterization based on historical measurements. Van
defines different measurements for summarizing the evolution of
entities that allow for comparison of different evolutions (T. Gîrba,
S. Ducasse and M. Lanza, 2004).

• Improved design flaws detection. Van uses historical information to
improve the detection of design flaws. For example, a if a GodClass
is detected in the latest version, but in the same time it was changed
very seldom in its history we say it is a HarmlessGodClass because
it was not a maintainability problem in the past (D. Ratiu, S. Ducasse,
T. Gîrba and R. Marinescu, 2004).

• Evolution visualization. Van uses CodeCrawler to produce different
visualization of the evolution of parts of the system. For example,
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we provide a visualization to understand different evolution patterns
for entire class hierarchies (T. Gîrba and M. Lanza, 2004).

• Hidden dependencies detection based on change information. Van
uses ConAn for detecting concepts like parallel inheritance based on
change information (T. Gîrba, S. Ducasse, R. Marinescu and D. Ratiu,
2004).

• Past refactorings detection. Having the historical information about
the code, Van can detect past refactorings like renamings, movings,
splitting.

Quala. Quala is built on top of Van and is a tool used to describe different phases
of the evolution of the system. It extends the Hismo meta-model with the concept of
phase as a first class entity, which is a sub-history which complies with a certain rule.
For example, Quala can detect growing phases, shrinking phases, refactoring phases.
These phases are used to describe the evolution of entities.

7. Industrial Validation

Moose and the tools built on top of it have been used to reverse engineer
industrial systems several times. Due to non-disclosure agreements with the
industrial partners we cannot provide detailed descriptions of our experiences,
but limit ourselves to provide a list of case studies (industrial and non-
industrial) that we have performed.

System Language Lines of Code Classes

Z (Network Switch) C++ 1’200’000 ~2300

Y (Network Switch) C++/Java 140’000 ~400

X (Multimedia) Smalltalk 600’000 ~2500

W (Payroll) COBOL 40’000 -

SORTIE (Forest Management) C/C++ 28’000 ~70

Duploc (Research Prototype) Smalltalk 32’000 ~230

Jun (Multimedia and 3D Framework) Smalltalk 135’000 ~700

Squeak  (Multimedia Environment) Smalltalk 260’000 ~1800

JBoss (Application Server) Java 300’000 ~4900

V (Logistics) C++ 120’000 ~300

Tab. 1 – A Selection of the Case Studies performed with Moose.

In Tab. 1 we see that the systems were written in different programming
languages and have sizes quite different from each other. As far as scaleability
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concerns, we point out that we never had more than one week to reverse
engineer the systems. Despite these narrow time constraints imposed on us,
we always have been able to extract information which was deemed relevant
by the actual maintainers of the software system.

8. Conclusions and Future Work

Reverse engineering is a complex task and requires combining different
techniques and tools. We presented Moose, a reengineering environment de-
signed to be:

• extensible, to support unexpected needs,
• exploratory, to allow for flexible sequence of actions, and
• scalable, to cope with large systems.

In this chapter we briefly showed Moose at work when analyzing 10 ver-
sions of JBoss, a large open source J2EE application server. We showed how
we browse the model, how we use measurements, how we visualize the model
and how we combine different tools and techniques.

On top of Moose several tools were built, each of them having its own focus:
clustering, visualization, concept analysis, and version analysis. We showed how they
extend Moose and how collaborate with each other using meta descriptions.

Moose Availability

Moose is completely implemented in Smalltalk under the BSD license: it is
free and open source software. Moose runs on every major platform (Win-
dows, Mac OS, Linux, Unix). Moose is freely available for download. The
current webpage of Moose is located at:

 http://www.iam.unibe.ch/~scg/Research/Moose/.

Moreover, Moose is also available as free goodie on the VisualWorks
Smalltalk CD, a professional, commercial development environment devel-
oped and sold by the company Cincom which however also exists in a non-
commercial version freely available for download at:

 http://www.cincomsmalltalk.com/
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