
Butterflies: A Visual Approach to Characterize Packages∗

St́ephane Ducasse
Software Composition Group
Univ. of Bern, Switzerland

ducasse@iam.unibe.ch

Michele Lanza
Faculty of Informatics

Univ. of Lugano, Switzerland
michele.lanza@unisi.ch

Laura Ponisio
Software Composition Group
Univ. of Bern, Switzerland

ponisio@iam.unibe.ch

Abstract

Understanding sets of classes, or packages, is an im-
portant activity in the development and reengineer-
ing of large object-oriented systems. Packages repre-
sent the coarse-grained structure of an application. They
are artefacts to deploy and structure software, and there-
fore more than a simple generalization of classes. The
relationships between packages and their contained
classes are key in the decomposition of an applica-
tion and its (re)-modularisation. However, it is difficult
to quickly grasp the structure of a package and to under-
stand how a package interacts with the rest of the sys-
tem. We tackle this problem using butterfly visualizations,
i.e., dedicated radar charts built from simple package met-
rics based on a language-independent meta-model. We il-
lustrate our approach on two applications and show
how we can retrieve the relevant characteristics of pack-
ages.

Keywords: Program understanding, package metrics,
reverse engineering, software visualization

1. Introduction

It is well-known that 50% to 75% of the overall cost of
a software system is devoted to its maintenance [20]: Dur-
ing maintenance, software professionals spend at least half
their time reading and analysing software in order to un-
derstand it [8] [2]. The maintenance of object-oriented ap-
plications is harder than the ones written in procedural lan-
guages [30] because the presence of inheritance and late-
binding greatly increases the number of potential dependen-
cies within a program [30, 28, 12, 9].

In addition, nowadays most applications are structured
in terms of sets of classes, orpackages. In the context of
object-oriented applications with late-binding and frame-

∗ In Proceedings of the 11th IEEE International Software Metrics Sym-
posium (METRICS’05)

works, packages have different roles: they may contain
some key subclasses extending a framework [18] or they
may contain utility classes used throughout the system.
Therefore, packages do not have to follow the same de-
sign guidelines as classes to be well designed, as they may
represent code ownership or the deployment process. How-
ever, the way a system is decomposed into packages and
the way classes are distributed in them represent important
characteristics of the application design and constrains the
development process. Consequently it is crucial to under-
stand packages in their structure and relations with other
program elements such as classes. Providing a way to sup-
port the understanding of packages (or other sets of classes)
is important also in the context of reengineering.

Nowadays packages exist in various languages such as
Java, C#, Smalltalk and Squeak, CommonLisp, and Ruby.
They present different functionalitiese.g., in Java pack-
ages serve as namespaces, while in Smalltalk not, and in
Smalltalk classes can be extended (new behavior can be
changed on a class not belonging to a package). Packages
in all these languages share some common key functional-
ities: they contain classes and classes are in relationships
with other classes.

Our approach is based on a language independent meta-
model of source code and on the definition of measurements
based on these relationships. Using the relationships state
access, class reference and inheritance, we build dedicated
radar charts namedbutterfliesto characterize packages in
terms of their internal structure and relationships with the
entire application. The contributions of this article are (1)
the definition of some simple metrics that support the char-
acterization of packages and (2) the presentation of two but-
terfly visualizations of packages.

Structure of the paper. In Section 2 we discuss the
problems of understanding the packages that compose an
application. In Section 3 we present our approach. In Sec-
tion 4 we show how we characterize packages with the in-
formation that we extract from the source code. In Section 5
we present the butterfly views, give examples and analyze
the results of applying our approach to the case studies. In

1

Section 6 we elaborate some discussion. In Section 7 we re-
fer to related work before concluding in Section 8.

2. Understanding And Characterizing Pack-
ages

Chikofsky and Cross state that“The primary purpose
of reverse engineering a software system is to increase the
overall comprehensibility of the system for both mainte-
nance and new development”[6]. We focus on the prob-
lem of how to provide an understanding of the packages that
compose a large application. Our long term goal is to pro-
vide a means to assess the quality of packages during the re-
structuring of a system. In this paper we consider as pack-
age a group of classes that a developer has decided to put to-
gether. Our approach supports the characterization of pack-
ages without being tied to a particular language: Our ap-
proach is not based on a particular implementation language
because the underlying metamodel is language independent
[10]. We leave for future work to refine the proposed frame-
work in the context of specific language construct seman-
tics.

Our aim is to answer the following questions:

• What is the importance of a package in terms of its in-
trinsic properties such as the number of classes it con-
tains and its efferent and afferent relationships? How
many clients rely on it?

• Does the package use several other packages or is it
more self-contained?

• What is the impact of changes in the relationships be-
tween packages?

• Can we identify patterns or repeating package charac-
teristics?

• How is a package structured: does it only extend other
packages via inheritance, or does it define itself some
complex hierarchies? When classes are subclassing
other classes what are exactly the relationships that
link them (state, behavior)?

2.1. Challenges and Constraints

Our approach targets the initial phases (e.g.,the first cou-
ple of weeks) of a reverse engineering process during which
a first mental picture of the system is formed [27].

Packages are complex entities because they con-
tain classes that can have multiple relationships. Therefore
characterizing packages requires processing and report-
ing a lot of information. We tackle this complexity by
combining metrics and visualization.

Software metricsare well-known to reduce and abstract
large amounts of information [13]. However, this leads

to only seeing isolated information about a larger phe-
nomenon. In addition, the combination of metrics leads to
dimensional inconsistencies and numbers that are meaning-
less or hard to interpret. Our goal in this paper is not to de-
fine complex metrics but to use some simple metrics to sup-
port the visual characterization of packages.

Software visualizationallows us to visually combine
multiple aspects of complex problems [26] [29]. However,
software visualizations are often too simplistic and lack vi-
sual cues for the viewer to correctly interpret them [24]. In
other cases the obtained visualizations are still too complex
to be of any real value to the viewer.

The challenge is to define a visualization that conveys the
right level of information whilescaling in terms of screen
usage so that we cancompareand identify multiple pack-
ages at the same time. We want our solution to be applicable
with limited tool support,i.e., using a tool such as MS Ex-
cel, with the advantage that people can apply butterfly views
in a broad variety of contexts. Moreover, they should not be
limited to a specific language, tool or environment. More-
over, butterfly views can easily be introduced in advanced
integrated development environments such as Eclipse.

3. Approach Overview

We adopt a top down approach: The reengineer first uses
an adapted polymetric view [19] as coarse-grained visual-
ization of the system with all its packages and their con-
nections and then uses butterfly views to get detailed infor-
mation about specific packages. We do not present the used
polymetric view in this paper to focus on the main contri-
bution, i.e., the butterfly view. The interested reader should
refer to [11].

Two butterfly views,i.e., specific radar charts, are pro-
vided: (1) a GLOBAL BUTTERFLY where the package is
compared with its surrounding context and (2) a RELATIVE

BUTTERFLY where the package is analyzed on its own.
Both views are described in detail in Section 5.

Case studies.We took as case studies BASE V ISUAL-
WORKS and CODECRAWLER:

• BASE V ISUALWORKS is a large portion of the Cin-
com VisualWorks Smalltalk environment1. It is an in-
dustrial system, developed over the last 15 years. It
defines all the runtime entities of a smalltalk envi-
ronment (classes, methods, strings, characters, collec-
tions, graphical display, memory objects) but also the
compiler framework, the coding tools (debugger, code
browsers), the OS support and all the widgets offered
by the graphical framework.

1 See http://www.cincomsmalltalk.com for more information.

2

• CODECRAWLER is a small software visualization tool
[19]2 and serves to illustrate examples in detail.

Case Study Packages Classes LOC
BASE V ISUALWORKS 94 1402 262660
CODECRAWLER 8 93 9088

4. Packages and Classes

A package contains classes which refer to other classes
or are referred to by other classes in the system. We name
clientsthe classes that access the state or invoke the behav-
ior of other classes. Consequently the used classes are called
providers. We call aclient packagea package that depends
on another one because its classes refer to classes of the
other package.

4.1. Class and Package Dependencies

We chose to take the minimal information that reveal the
essence of a package in the context of an object-oriented ap-
plication. For that reason we focus on class references, in-
heritance relationships, and use of state and behavior. An
important influence on this work is the focus on the object-
oriented context in which packages exist: In object-oriented
applications inheritance hierarchies can be spread over mul-
tiple packages. Therefore flattening packages ignoring the
inheritance relationships is not satisfactory for a precise
characterization, since packages convey semantics as well
as the design intentions of programmers. For example, a
package may contain only the abstract core of a framework,
contain only the concrete leaf classes that represent a frame-
work extension, or represent a specific product or the work
of a specific development team.

Besides being based on simple size metrics such as the
number of classes defined in a package, the information that
we use is based on three kinds of relationships, ordependen-
ciesbetween classes:

1. Inheritance: a class is a subclass of another. It inherits
its behavior.

2. State: a class may use instance variables inherited from
its ancestors.

3. Class Reference: a class makes an explicit reference of
anothere.g.,by instantiating the class.

The dependencies aredirectedwhich is important since
packages play the roles of clients and providers.

The use of facade classes could obscure the visualiza-
tion of the structure of the package. However, our approach
characterizes packages independently of the specific class

2 See http://www.iam.unibe.ch/ scg/Research/CodeCrawler/ for more
information.

to which the dependency is directed, enhancing the under-
standing of the package structure from its role as client and
provider. The effect of increased internal class dependen-
cies,e.g.,due to the use of a facade class, is considered in-
dependently in an extended visualization that relates the in-
ternal and external dependencies.

4.2. Characterizing Packages

To condense the information of a large application at the
level of its packages, we use object-oriented metrics based
on the dependencies we defined previously.

P1

C1 C2

P3

C5 C7

P2

C3

C4

C8C6

Ref
Ref

Ref

Ref

Inh Inh

Inh

Inh

Inh

ref

P4

C9

C10
Inh+State

Inh+State

Inh

Ref
C11
Inh

Ref

Figure 1. Some packages with class depen-
dencies (C1 refers to C2, or inherits of C2, or
is a client of C2).

The metric we currently compute are listed in Table 1. In
this table the termexternal dependenciesdenotes dependen-
cies that originate from other packages and target classes of
the analyzed package or vice versa. The metric example val-
ues refer to the situation depicted in Figure 1.

We define bothabsoluteand relative metrics for pack-
ages:

• Absolute metricscount the dependencies of a given
kind and direction. An example of an absolute met-
ric of a package isRTP (Number of Class Refer-
ences To Other Packages) which is the number of
class references to classes belonging to other pack-
ages (providers) from classes belonging to the ana-
lyzed package (a client). This metric is useful to as-
sess whether a package (and its classes) is heavily us-
ing other packages.

• Relative metricsshow the relationship between the
amount of internal and external dependencies of a

3

Name Description
PP (Number of Provider Packages).Number ofpackageproviders of a package.PP(P1)=1, PP(P2)=2, PP(P4)=1.
CP (Number of Client Packages).Number ofpackagesthat depend on a package.CP(P1)=3, CP(P3)=2, CP(P4)=0.

RTP (Number of Class References To Other Packages).Number of class references from classes in the measured package to classes in other pack-
ages.RTP(P1)=2, RTP(P2)=1 ,RTP(P3)=1, RTP(P4)=0.

RRTP (RelativeNumber of Class References To Other Packages).RTP divided by the sum ofRTP and the number of internal class references.

RFP (Number of Class References From Other Packages).Number of class references from classes belonging to other packages to classes belonging
to the analyzed package.RFP(P1)=0, RFP(P2)=1, RFP(P3)=3, RFP(P4)=0

RRFP (Relative Number of Class References From Other Packages).RFP divided by the sum ofRFP and the number of internal class references.

PIIR (Number of Internal Inheritance Relationships).Number of inheritance relationships existing between classes in the same package.
PIIR(P1)=0, PIIR(P2)=0, PIIR(P3)=3, PIIR(P4)=2

RPII (Relative Number of Internal Inheritance Relationships).PIIR divided by the sum ofPIIR andEIP. RPII(P1)=0, RPII(P2)=0, RPII(P3)=1,
RPII(P4)=1.

EIC (Number of External Inheritance as Client).Number of inheritance relationships in which superclasses are in external packages.EIC(P1)=0,
EIC(P2)=2, EIC(P3)=1, EIC(P4)=1

EIP (Number of External Inheritance as Provider).Number of inheritance relationships where the superclass is in the package being analyzed and
the subclass is in another package.EIP(P1)=4, EIP(P2)=0, EIP(P3)=0, EIP(P4)=0

REIP (Relative Number of External Inheritance as Provider).EIP divided by the sum ofPIIR andEIP. REIP(P1)=1, REIP(P2)=0, REIP(P3)=0,
REIP(P4)=0.

ASC (Number of Ancestor State as Client).Number of accesses to instance variables defined in a superclass that belongs to another package.
ASC(P3)=0, ASC(P4)=1

RASC (Relative Number of Ancestor State as Client).ASC divided by the sum ofASC andASCI. WhereASCI, Number of Ancestor State Client
Internal to the Package is the ancestor state class dependencies internal to the package. We consider only dependencies from a class that is
inside the package to other classes of the same package.

ASP (Number of Ancestor State as Provider).Number of times that instance variables of classes belonging to the analyzed package are accessed by
classes belonging to other packages.ASP(P1)=1, ASC(P4)=0

RASP (Relative Number of Ancestor State as Provider).ASP divided by the sum ofASP and the number of gives ancestor state dependencies be-
tween classes when both classes belong to the package.

CC (Number of Class Clients).Number of externalclassdependencies that are clients of a package. Sum over the number of the class dependencies
(ancestor state, class reference and inheritance) that refer to a package.CC(P1)=4, CC(P2)=1, CC(P3)=3, CC(P4)=0.

NCP (Number of Classes in a Package).Number of classes in the package.NCP(P1)=2.

Table 1. Package Measurements.

given type and direction in the package. They fol-
low the pattern:

property/(property + internalproperty)

For instance, the relative metricRRTP (Rela-
tiveNumber of Class References To Other Packages)
divides RTP by the total number of class refer-
ences in a package, thus creating a normalized metric
(i.e., between 0 and 1) that denotes to what ex-
tent a package is self-contained (lowRRTP) or not
(highRRTP).

5. Butterflies: Radar Charts for Packages

Obtaining a detailed understanding of packages is dif-
ficult since packages are complex entities: they contain
classes which may have different relationships with other
classes, either within the same package or defined in other
packages and this in presence of late-binding and special-
ization [30, 28, 12].

To cope with this situation, we use dedicated radar charts
which combine several metrics about a package in a sin-
gle space. The first view, GLOBAL BUTTERFLY, presents

a package in the context of the complete system. The sec-
ond view, RELATIVE BUTTERFLY, presents how the pack-
age is internally structured.

5.1. Butterfly Visualization Principles

A radar visualization is based on dividing a circle area
with a certain number of axes and to join the points of each
axis as shown in Figure 2. The radar visualization generates
an irregular surface which is greater if two contiguous axes
represent higher values. However, using a radar visualiza-
tion to represent complex constructs is not straight-forward
since the order of the axes determines the surface and the
shapes that the visualization can produce. Therefore it is
necessary to determine which criteria are to be analyzed and
how they are mapped efficiently on a radar chart.

As packages provide and use information from other
packages, we defined a distribution of the metrics to gen-
erate abutterflyshape. The left wing of the butterfly rep-
resents what the package provides to other packages, while
the right wing represents what the package uses from other
packages. The bottom part shows how inheritance is used,
i.e., whether the package has classes that are subclassed

4

in other packages and whether the package extends other
packages.

5.2. GLOBAL BUTTERFLY

NCP (# Client Packages)

used from Providersprovided to Clients

ASC (#Ancestor State
as Client)

RTP (# References
To

Other Packages)

EIC (# Inheritance as Client)EIP (# Inheritance as Provider)

ASC (#Ancestor State
as Provider)

Inheritance connection

RFP (# References
From

Other Packages)

Figure 2. Principles of the G LOBAL BUTTER-
FLY.

This view characterizes a package as presented in Fig-
ure 2. It displays information that compares the package in
the context of the complete application.

Example. Figure 3 displays the GLOBAL BUTTER-
FLY of the packagesCCCore, CCBase and CCUI from
the CODECRAWLER case study.

CCBase. Its shape leaning towards the left shows that this
package is essentially a providing package. In addition it
shows that the state of the classes in the package is directly
accessed by clients subclasses (for exampleCCCore) and
that the package also accesses state of other packages. A
close inspection of the code reveals that the references to
other packages are the ones to default types such as String
and Collection.

CCCore. It is a central package of CODECRAWLER. This
is reflected by the fact that the butterfly has two even,
long and horizontally symmetric wings. It uses the pack-
ageCCBase. The view indicates that this package uses 86
external classes while it defines 22 classes. The classes it de-
fines are referenced from other packages too (RFP (Num-
ber of Class References From Other Packages) = 58).EIC
(Number of External Inheritance as Client) shows that this
package inherits from 10 classes in the other packages, but
this package is also extended (EIP (Number of External In-
heritance as Provider) = 3). This package does not directly
use state from the superclasses which is an indication of
good design. We also learn that its state is directly accessed

CCBase

CCCore

CCUI

ASP: 40

ASP: 0

ASP: 2

ASC: 4

ASC: 0

ASC: 152

EIC: 12

EIC: 10

EIC: 2EIP: 26

EIP: 1

EIP: 3

RTP: 35

RTP: 480

RTP: 86

RFP: 6

RFP: 58

RFP: 107

Client Packages x 10: 60

Client Packages x 10: 30

Client Packages x 10: 40
9 classes

22 classes

14 classes

Figure 3. G LOBAL BUTTERFLY on the Code-
Crawler packages CCCore, CCBase and
CCUI.

by subclasses defined in other packages (ASP (Number of
Ancestor State as Provider) = 2).

As the package contains 22 classes andEIC (Number of
External Inheritance as Client) is 10, we learn that the pack-
age is not flat inheriting solely from a couple of root classes
but that it is certainly composed of inheritance hierarchies.

CCUI. The GLOBAL BUTTERFLY of CCUI shows that it
is mainly a client: its classes directly access attributes of
provider superclasses (ASC (Number of Ancestor State as
Client) = 152). This package will be impacted if the super-
classes located in other packages change. The high-value

5

(480) ofRTP (Number of Class References To Other Pack-
ages) is due to the manual building of menuse.g.,direct
instantiations ofMenuItem. This shape was expected, be-
causeCCUI contains all the CODECRAWLER UI elements.

5.3. RELATIVE BUTTERFLY

RNCP (# Client Packages) =
NCP / total number of packages

used from Providersprovided to Clients

Relative ASC
(#Ancestor State

as Client)

Relative RTP
(# References To
Other Packages)

Relative EIC
(# Inheritance as Client)

Relative EIP
(# Inheritance as Provider)

Relative ASP
(#Ancestor State

as Provider)

Relative RFP
(# References

From
Other Packages)

Inheritance connection

Figure 4. Principles of the R ELATIVE BUTTER-
FLY.

While the GLOBAL BUTTERFLY provides information
about a package, it does it by measuring the package in the
context of the complete system. However, it is difficult to
assess how a property existsin the contextof the package
itself. For example, the information that a package defines
a lot of classes is refined when we know that most of the
classes are inheriting from a class defined inside the pack-
age itself or when most of the classes are subclasses of an
external class. Presenting such detailed information is the
purpose of the RELATIVE BUTTERFLY, whose principles
are described in Figure 4. To minimize context-switching it
has the same axes as the GLOBAL BUTTERFLY, but uses
relative metrics described in Table 1.

Note that obtaining 1 as value for a relative metrics in-
dicates that the property does not have a strong value in-
side the package compared to the outside. For example,
RASP (Relative Number of Ancestor State as Provider) of
CCbase in Figure 5 is 1, which means that there is no state
access between the classes inside the package.

WhenRRTP (RelativeNumber of Class References To
Other Packages) is equal to 1, it means that there is a weak
class reference dependency between the classes inside the
package compared to the class reference dependencies they
have with other classes outside the package.

As the following example illustrates, there is an interplay
between the two views. In particular the information dis-

CCUI

CCBase

CCCore

RASC: 1.0

RASC: 1.0

RASC: 0.0

RASP: 1.0

RASP: 0

RASP: 0.074

RRFP: 0.98

RRFP: 0.32

REIC: 0.25

REIC: 0.45

REIC: 1.0

REIP: 0.2

REIP: 1.0

REIP: 0.81

RRTP: 0.95

RRTP: 0.8

RRFP: 0.73

RRTP: 0.97

Figure 5. R ELATIVE BUTTERFLY on the Code-
Crawler packages CCCore, CCBase and
CCUI.

played by the GLOBAL BUTTERFLY allows one to qualify
the finer level of description given by the RELATIVE BUT-
TERFLY.

Example. Figure 5 shows the RELATIVE BUTTERFLY

views of three packages of CODECRAWLER: CCBase,
CCCore andCCUI.

CCBase. We see that its classes do not directly access
state, sinceRASP (Relative Number of Ancestor State as
Provider) andRASC (Relative Number of Ancestor State
as Provider) are 1. This happens even when such classes are

6

Kernel-Support

Magnitude-GeneralKernel-Objects

Tools-Changes

Figure 6. Butterfy views of selected packages of BASE V ISUALWORKS.

accessing the state of external superclasses (ASC (Num-
ber of Ancestor State as Client)= 4) and their state is ac-
cessed by clients classes (ASP (Number of Ancestor State
as Provider)= 40, as we saw in Figure 3). As the value of
REIC (Relative Number of External Inheritance as Client)is
0.25, we learn that this package has 3 times more internal
inheritance than it is inheriting from others.REIP (Rela-
tive Number of External Inheritance as Provider) = 0.81 in-
dicates that it is more subclassed from the outside than from
the inside. In fact it indicates that it is 26 times subclassed
from other packages whereas there are only 6 inheritance
dependencies in the package. However, it could still be the
case that its classes are much more subclassed: A class can
be subclassed by a class in another package that then acts as
another hierarchy root to numerous classes.

CCCore. ConsideringCCCore, we see that it does not ac-
cess the state of other packages (RASC (Relative Number
of Ancestor State as Client) = 0). It has more references to
the outside than references between the classes inside the
package (RRTP (RelativeNumber of Class References To
Other Packages) = 0.8) and it has a bit more references from
other packages (RRFP (Relative Number of Class Refer-
ences From Other Packages) = 0.73) than internal class ref-
erences.REIP has a value of 0.2 which means that the pack-
age has a lot more internal inheritance relationships than it
has direct subclasses.

CCUI. RegardingCCUI we see that theREIC (Relative
Number of External Inheritance as Client) value ofCCUI
(REIC = EIC/(EIC + PII)) is 1. This confirms that it
does not define an inheritance hierarchy. InterpretingRRTP
(RelativeNumber of Class References To Other Packages)

whose value is 97%, we learn that the package classes have
few class references among them, because there are 480 ref-
erences to external classes and only 3% of internal refer-
ences (i.e.,14 internal references).RRFP (Relative Number
of Class References From Other Packages) is 32%, since
there are 6 external and 14 internal references (RFP (Num-
ber of Class References From Other Packages)).

5.4. BASE V ISUALWORKS Case Study

We applied our approach to a large case study (BASE

V ISUALWORKS) and selected some characteristic packages
displayed in Figure 6. The butterfly views reveal some typ-
ical situations:

Kernel-Objects. It is mainly a provider package. It con-
tains some major inheritance hierarchy root classes such as
Object andModel. It contains some important classes such
as Boolean, True, False and some key subclasses. This
package is heavily subclassed (EIP (Number of External
Inheritance as Provider) = 229) and its classes are consider-
ably referenced (RFP (Number of Class References From
Other Packages) = 170).

Out of its 16 classes, 5 classes subclass classes belong-
ing to other packages (EIC (Number of External Inheritance
as Client) = 5).Kernel-Objects has classes that directly ac-
cess attributes of their superclasses located in other pack-
ages (ASC (Number of Ancestor State as Client) = 10).
We learn also that its state is accessed by subclasses de-
fined in other packages (ASP (Number of Ancestor State
as Provider) = 28). In the source code we see that the class

7

Model attribute ’dependents’ is referenced by classes in the
packagesInterface-Models andInterface-Support.

The inheritance connection situated at the bottom of the
relative butterfly view shows that there is inheritance in-
side this package: (REIC (Relative Number of External In-
heritance as Client) = 0.33 andREIP (Relative Number of
External Inheritance as Provider) = 0.96). Indeed, it con-
tains the hierarchy involving the classesBoolean, False
and True, for instance. The relative butterfly view shows
that a high percentage of the packages in the system de-
pend on this one (RClientPackages (Relative Number of
Client Packages) = 0.83).

Kernel-Support. This package has a shape of both client
and provider. Indeed, it provides functionality to manage the
system such as class externalizers, that are used by the code
browsing tools such as the ones ofTools-Changes. To pro-
vide such functionality it relies on more primitive packages
such asKernel-Objects. Its clients are only 2% of the pack-
ages in the system.

Magnitude-General. This package is a provider package
which merely contains the abstract classMagnitude, and
the concrete classesDate, Time, TimeZone and Char-
acter. The needle-like butterfly left wing in the axis cor-
responding toRFP indicates that it is heavily used (RFP
(Number of Class References From Other Packages) = 321)
but it does not use many classes. In fact, its classes have few
direct references to classes in other packages (RTP (Num-
ber of Class References To Other Packages) = 25) and do
not use state from ancestors (ASC (Number of Ancestor
State as Client) = 0).

However, its clients are more than half of the packages
(RClientPackages (Relative Number of Client Packages)
= 0.56), but only accessing it directly or through inheritance
(EIP (Number of External Inheritance as Provider) = 8 and
ASC (Number of Ancestor State as Client) = 0). The REL-
ATIVE BUTTERFLY indicates that there are few references
among the classes in this package (RRFP (Relative Num-
ber of Class References From Other Packages)= 0.96) but
there is some inheritance.

Tools-Changes. This package has a client shape. This is
not surprising since it is building all the tools related to
the logging facilities of the environment, hence it relies
on infrastructure such as the one provided by the pack-
age Kernel-Support of UIBuilder-Framework. It has 7
classes, 5 of which have their superclasses in other pack-
ages. In fact, 4 of its classes subclass ApplicationModel,
defined in the packageUIBuilder-Framework.

The RELATIVE BUTTERFLY shows that 93% of the di-
rect references are to classes in other packages (RRTP (Rel-
ativeNumber of Class References To Other Packages) =
0.93). That leaves only 7% of direct references existing in-
side the package. The RELATIVE BUTTERFLY also shows

that there is inheritance in the package (REIC (Relative
Number of External Inheritance as Client) = 0.71).

6. Discussion

Our approach is based on a simple metamodel of source
code and measurements. The butterfly views depict how a
package is internally structured and how it relates to the rest
of the system. Butterfly views has proven to be successful
to provide insights about the system structure in terms

Program Understanding Context. The butterfly views
are the main contribution of this article, but they are part
of a larger process in which polymetric views [19] are
used to offer an overview of all the packages an appli-
cation is composed of [11]. In addition we support op-
portunistic understanding [21] in the sense that the user
browsesif necessarythe package and the code it con-
tains. Our approach compresses information such as all the
different relationships between classes. The loss of granu-
larity is balanced by the gain in simplicity and scalability:
the packages and the relationships between the pack-
ages can be assigned properties and metrics that allow a
precise characterization.

We learned that using the surface of the radar to convey
information is working well, and it is important to quantify
precisely such information. Therefore, having the value of
the metrics expressed as part of the axis labels provides use-
ful complementary information. Determining the order of
the axes is a challenging task, as a different order can pro-
duce different shapes. We tried and evaluated several con-
figurations before obtaining the butterfly configuration that
communicates the role of the package presented in this pa-
per. In addition the user should be trained as with any visu-
alization technique.

Visualization Concerns. From a visualization point of
view, our approach has the following properties:

• Butterfly views condense information using a minimal
amount of screen space. This allows the user to see
multiple butterfly views at the same time and compare
them.

• Because a butterfly view represents one package, there
is a direct mapping between the subject and its repre-
sentations.

• Butterfly views, contrary to time wheel visualizations
[7] are not rotation invariant, however their symmet-
ric shape offers a goodgestalteffect and makes them
easily identifiable.

• Butterfly views are not interactive. This is not intrinsic
to them but the result of a choice to have an approach
which can be easily done with different tools.

8

Using Other Metrics. Our current approach uses a set of
simple metrics that describe relationships between classes.
We would like to investigate the use of other advanced met-
rics describing the cohesion, coupling or the stability over
time of the packages. However, current metrics on cohe-
sion and coupling mainly focuses on classes. Such class co-
hesion/coupling metrics are difficult to apply to packages
since packages are not a simple generalization of classes
but play different roles in the software development pro-
cess. In addition current cohesion metrics for classes do not
take into account inheritance as they flatten it [17, 3, 4].
Metrics such as LCOM [5] have been heavily criticized and
as such have little value. It is our goal to evaluate whether
some cohesion metricse.g.,LCOM* [16] or other cohesion
and coupling metrics [1, 23] can support our visual charac-
terization.

Current Limits. Even if the current approach is effective
for getting a detailed view on packages, a common problem
in radar plots is that not all metrics can be mapped onto a
value between 0 and 1,e.g.,size. Figure 3 is a case in point.
In addition, there are still questions we plan to investigate:

An advantage of our approach is that butterfly views can
be generated with MS Excel or any simple chart-drawing
tool. More information could be added following the in-
fobug approach [7], but it would be at the expense of
simplicity of interpretation. In the future we would like
to enhance the butterfly views with information about the
classes, or the evolution of the classes in a package.

We do not take into account invocations. Introducing
them may lead to other views on coupling and cohesion but
may introduce noise due to late-binding,e.g.,an invocation
can have multiple potential receivers.

Because we only consider the direct relationships a class
has, we do not assess whether a class belonging to a pack-
age is central to an application. To do this, we plan to intro-
duce transitive relationships such as counting the total num-
ber of subclasses instead of the direct ones. Moreover, such
information can be retrieved by opportunistic code reading.

The butterfly views hide the structural complexity of
packages behind easy-to-grasp shapes that allow for a cate-
gorization. Due to space and time limitations we do not in-
clude a full categorization of packages based on their visu-
alization within the butterfly views, which is left as future
work.

7. Related Work

Researchers have long realized of the usefulness of struc-
tural metrics for object oriented systems. They derived
many design metrics from the ones originally thought for
structured programming. However, these metrics [14] [16]
focus on classes or whole systems, and generally not on sets
of classes, or packages. Hautus introduced Pasta, a tool to

analyze the structure of Java programs and a metric to de-
termine the quality of the package architecture [15]. Allen
et al. defined information theory-based — as opposed to
counting — coupling and cohesion metrics for modules [1]
that are represented as graphs. They define module and in-
tramodule in terms of the subgraph’s information and co-
hesion in terms of intramodule coupling. However this ap-
proach does not take into account classes, inheritance and
their relationships. Already, metrics for packages such as ef-
ferent and afferent couplings, abstractness, instability, dis-
tance and cycle have been applied successfully to the em-
pirical analysis of java packages [22].

Briand et al. provide a conceptual framework to cate-
gorize metrics related to cohesion and coupling [17, 3, 4].
However, they flatten inheritance,i.e.,a class is the sum of
all its superclasses behavior and rely exclusively on the co-
hesion of package to understand them. This approach is lim-
ited because packages convey more semantical information
related to the intent of the developer or the organisation in
which the application is developed.

Graphical representations of software have long been ac-
cepted as comprehension aids. Many tools enable the user to
visualize software using static information. Sharble and Co-
hen introduce the use of a compass-type plot for eight met-
rics [25]. We apply this idea to describe packages by their
role in the system. The difference with their work is that our
approach exploits the vertical symmetry to characterize the
package as client or provider.

To the best of our our knowledge, only the infobug vi-
sualization [7] tries to support the understanding of files
in a glyph oriented way as our butterflies do. Chuah
and Eick present a way to visualize project informa-
tion through glyphs. Glyphs are graphical objects repre-
senting data through visual parameters. The difference with
our work is that they use glyphs for viewing project man-
agement data (i.e., evolution aspects, programming lan-
guages used, and errors found in a software component),
while our work focuses on describing how a package re-
lates to the rest of the system in a fine-grained way, i.e. vi-
sualizing how a package relates with others according to
different dependency types (inheritance, state, or class ref-
erence) and the role that the package plays in the system
(client, central, or provider).

Most of the tools that address the problem of large scale
software visualization do not have such a fine degree of
granularity for the dependencies as our approach. Our ap-
proach differs in exposing relationships between packages
at a fine degree.

8. Conclusion

We presented a novel approach that supports the reengi-
neer in obtaining a mental picture of an object-oriented sys-

9

tem, understand its packages and cope with its complexity.
The main idea is that we consider packages as first class

entities that we enrich with metrics describing them. We
provide two radar visualizations named butterfly views that
help to understand and categorize packages. The butterfly
views not only show how a package relates to the rest of the
system, but also how it is internally structured. The goal of
the work presented here is to support reengineers but also
researchers working on remodularisation to get a better un-
derstanding of object-oriented applications.
Acknowledgments.We gratefully acknowledge the finan-
cial support of the Swiss National Science Foundation for
the project “RECAST: Evolution of Object-Oriented Appli-
cations” (SNF Project No. 620-066077, Sept. 2002 - Aug.
2006).

References

[1] E. Allen and T. Khoshgoftaar. Measuring coupling and cohe-
sion of software modules: An information theory approach.
In Seventh International Software Metrics Symposium, 2001.

[2] V. Basili. Evolving and packaging reading technologies.
Journal Systems and Software, 38(1):3–12, 1997.

[3] L. C. Briand, J. W. Daly, and J. Ẅust. A Unified Frame-
work for Cohesion Measurement in Object-Oriented Sys-
tems. Empirical Software Engineering: An International
Journal, 3(1):65–117, 1998.

[4] L. C. Briand, J. W. Daly, and J. K. Ẅust. A Unified
Framework for Coupling Measurement in Object-Oriented
Systems. IEEE Transactions on Software Engineering,
25(1):91–121, 1999.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for ob-
ject oriented design.IEEE Transactions on Software Engi-
neering, 20(6):476–493, June 1994.

[6] E. J. Chikofsky and J. H. Cross, II. Reverse Engineering and
Design Recovery: A Taxonomy.IEEE Software, pages 13–
17, Jan. 1990.

[7] M. C. Chuah and S. G. Eick. Information rich glyphs for soft-
ware management data.IEEE Computer Graphics and Ap-
plications, pages 24–29, July 1998.

[8] T. A. Corbi. Program understanding: Challenge for the
1990’s. IBM Systems Journal, 28(2):294–306, 1989.

[9] U. Dekel. Revealing JAVA Class Structures using Concept
Lattices. Diploma thesis, Technion-Israel Institute of Tech-
nology, Feb. 2003.

[10] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 —
The FAMOOS Information Exchange Model. Technical re-
port, University of Bern, 2001.

[11] S. Ducasse, M. Lanza, and L. Ponisio. A top-down pro-
gram comprehension strategy for packages. Technical Re-
port IAM-04-007, University of Berne, Institut of Applied
Mathematics and Computer Sciences, 2004.

[12] A. Dunsmore, M. Roper, and M. Wood. Object-Oriented In-
spection in the Face of Delocalisation. InProceedings of
ICSE ’00 (22nd International Conference on Software Engi-
neering), pages 467–476. ACM Press, 2000.

[13] N. Fenton and S. L. Pfleeger.Software Metrics: A Rigorous
and Practical Approach. International Thomson Computer
Press, London, UK, second edition, 1996.

[14] N. Fenton, S. L. Pfleeger, and R. L. Glass. Science and Sub-
stance: A Challenge to Software Engineers.IEEE Software,
(7):86–95, July 1994.

[15] E. Hautus. Inmproving java software through package struc-
ture analysis. InInternational Conference Software Engi-
neering and Applications, 2002.

[16] B. Henderson-Sellers.Object-Oriented Metrics: Measures
of Complexity. Prentice-Hall, 1996.

[17] M. Hitz and B. Montazeri. Measure coupling and cohesion in
object-oriented systems.Proceedings of International Sym-
posium on Applied Corporate Computing (ISAAC ’95), Oct.
1995.

[18] R. E. Johnson. Documenting frameworks using patterns. In
Proceedings OOPSLA ’92, volume 27, pages 63–76, Oct.
1992.

[19] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering.IEEE Transactions
on Software Engineering, 29(9):782–795, Sept. 2003.

[20] B. Lientz and B. Swanson.Software Maintenance Manage-
ment. Addison Wesley, 1980.

[21] D. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental
Models and Software Maintenance. In Soloway and Iyengar,
editors,Empirical Studies of Programmers, First Workshop,
pages 80–98. Ablex Publishing Corporation, 1996.

[22] Maven. http://maven.apache.org.
[23] V. B. Mi šić. Cohesion is structural, coherence is func-

tional: Different views, different measures. InProceedings
of the Seventh International Software Metrics Symposium
(METRICS-01). IEEE, 2001.

[24] M. Petre. Why looking isn’t always seeing: Readership skills
and graphical programming.Communications of the ACM,
38(6):33–44, June 1995.

[25] R. C. Sharble and S. Cohen. The object-oriented brewery:
a comparison of two object-oriented development methods.
ACM SIGSOFT, Software Engineering Notes, 18(2):60–63,
1993.

[26] J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price, ed-
itors. Software Visualization — Programming as a Multime-
dia Experience. The MIT Press, 1998.

[27] M.-A. D. Storey, F. D. Fracchia, and H. A. M̈uller. Cogni-
tive Design Elements to Support the Construction of a Men-
tal Model during Software Exploration.Journal of Software
Systems, 44:171–185, 1999.

[28] D. Taenzer, M. Ganti, and S. Podar. Problems in object-
oriented software reuse. In S. Cook, editor,Proceedings
ECOOP ’89, pages 25–38, Nottingham, July 1989. Cam-
bridge University Press.

[29] C. Ware. Information Visualization. Morgan Kaufmann,
2000.

[30] N. Wilde and R. Huitt. Maintenance Support for Object-
Oriented Programs.IEEE Transactions on Software Engi-
neering, SE-18(12):1038–1044, Dec. 1992.

10

