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Abstract. The decomposition of a software application into components and
connectors at the design stage has been promoted as a way to describe and rea-
son about complex software architectures. There is, however, surprisingly little
language support for this decomposition at implementation level. Interaction re-
lationships which are identified at design time are lost as they get spread out into
the participating entities at implementation. In this paper, we propose first-class
connectors in an object-oriented language as a first step towards making software
architecture more explicit at implementation level. Our connectors are run-time
entities which control the interaction of components and can express a rich reper-
toire of interaction relationships. We show how connectors can be reused and how
they enhance the reuse of components.

1 Introduction

In modeling software architectures Allen and Garlan distinguish between implemen-
tation relationships and interaction relationships of software modules or components:
"Whereas the implementation relationship is concerned with how a component achieves
its computation, the interaction relationship is used to understand how that computation
is combined with others in the overall system" [AG94]. Allen and Garlan propose a for-
mal model for software design that makes explicit the interaction relationships between
components using the abstraction of connector.

Describing software architectures in terms of interaction relationships between com-
ponents brings us closer to a compositional view, and hence a more flexible or open
view of an application [ND95]. First-class connectors allow us to view an application’s
architecture as a composition of independent components. We gain in flexibility, since
each component could engage in a number of different agreements, increasing the reuse
potential of individual components. Separating connectors from the components also
promotes reuse and refinement of typical interaction relationships. It opens the possi-
bility of the refinement of connectors and the construction of complex connectors out
of simpler ones.
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But whereas implementation relationships use the primitive abstractions of a pro-
gramming language such as procedure or method call, interaction relationships are
rarely captured by programming language constructs. In this sense, traditional object-
oriented languages provide little support for explicit representation of software archi-
tecture. Class hierarchies are the only design elements visible at the implementation
level - but they represent inheritance relationships, and do not reflect an application’s
architecture. In contrast, interaction relationships, such as coordination and synchro-
nization of a group of objects collaborating to achieve a task, manifest themselves as
patterns of message exchanges. Such patterns of communication have a logical and con-
ceptual identity at the design level but this identity is lost when we move from design
to implementation as the information about such collaborations is spread out amongst
the participating objects. The loss of this information makes the resulting application
opaque with respect to its architecture: the design is no longer apparent, making the
application difficult to understand, to re-use and to re-engineer.

A first step towards making an application’s architecture more explicit at the code
level is to enable the localization of information about interactions in an application’s
code. In this paper we propose one solution: enriching object-oriented languages with
an explicit connector construct. As in [AG94], our connectors are first-class objects
which represent the interaction relationships between components. Our contribution,
however, is to provide connectors at theimplementation level: our connectors are run-
time entities that not only describe, but actually control inter-component communica-
tion. Note that we are not proposing a new object-oriented language. Rather, by present-
ing our model, FLO1, we show how the traditional object model can be extended to
provide explicit connectors between components and show that the reification of such
entities promotes reuse of components as well as of typical interactions.

The paper is structured as follows: in section 2 we discuss the problem of language
support for explicit connectors. Section 3 presents the basic concepts and notation for
representing connectors in FLO. Sections 4 and 5 illustrate our approach with some
examples and section 6 discusses implementation issues. Section 7 gives an overview of
related work. Finally, section 8 concludes with a discussion - evaluating our contribution
and pointing to directions for future work.

2 Language Support for Explicit Connectors

Our work is based on the recognition that relations between components are as im-
portant as the components themselves. Providing a construct for explicitly specifying
interactions between components addresses the following common software problems:

Inability to localize interaction information: loss of design information. Some of the
design of the application is lost during the implementation since we cannot localize
information about interactions. This is most evident when we try to re-engineer an
application. Program code contains little of the interaction relationships identified
at design time, making reverse engineering a much more difficult task.

1 The FLO model is an extension of the ObjVlisp model [Coi87] and is implemented in a CLOS-
like language and in Smalltalk.



Mixing of concerns: impediment to reuse.Logically, components should
have an identity independent of the different interactions in which they could en-
gage. When no connector construct is available, component behavior includes the
connector behavior, making for less reusable components. Providing a connector
entity at implementation level allows abstraction and factorization of all the in-
formation about a connection and also allows for the reuse of typical interaction
relationships.

To address the first problem, interaction relationships should be represented by an
explicit construct, as in [AG94]. This is in contrast to approaches of enriching com-
ponent interfaces with protocols which capture interaction information [YS94], and to
the approach of Darwin [MDEK95], where the connection of components is defined as
the binding of services and is foundinside the definition of a composite component.
To address the second problem, components and connectors should be independent of
each other - more specifically, although connectors must specify the kinds of compo-
nents which they connect, components should not be aware of the relationships in which
they may engage. This is in contrast to the composition-filters approach of [AWB+94],
where object interfaces must be modified to allow them to engage in new kinds of
interactions, and to the approach ofgluons [Pin93], where objects must address the
mediating gluon in order to collaborate with each other.

Given these basic properties, we first present specific issues which must be ad-
dressed in providing language support for such connectors, then summarize the design
choices made in our approach.

2.1 Requirements for First-Class Connectors

Connector Specification.Is a connector a user-defined abstraction or is it represented
by a fixed abstraction? How can connectors be specified?

Range of abstractions.A connector should be a user-defined abstraction, permit-
ting us to represent a large range of interaction relationships, rather than restricting
us to a fixed set of abstractions or mechanisms, as can be found in certain envi-
ronments (e.g. pipe/filter systems). To allow a larger range of relationships to be
described, a connector should be able to connect more than just two participants. A
connector specification should define the kinds of participants which may engage
in the interaction abstractly, in terms of the interface of those participants.
Specification process.A connector should first be definedabstractly then later in-
stantiated with the actual participants. We should be able to define a connector
incrementally - that is, a new connector could be defined from existing ones by
modifying or combining connector definitions. Finally, we would like to be able to
definegeneric connectors, to allow for the reuse of typical interaction relationships.

Connector Lifetime.Is a connector a dynamic entity which can be created and de-
stroyed, or is it active throughout the application or throughout the lifetime of its par-
ticipants? How is a connection activated and terminated?

Lifetime. Since it is natural that interactions between entities are formed and dis-
solved dynamically, a connector should be a dynamic entity which can be created
to manage an interaction and destroyed when that interaction is no longer required.



Activation and Termination. A connector should be activated and terminated in
such a way that the participants themselves need not be aware of the connection.

Connector behavior.What kinds of relationships can be expressed with a connector?
What expressive power do connectors require to represent these relationships?

Kinds of Relationships.Connectors should be used to specify all the information
relating to the interaction of components, including data conversion [AWB+94],
interface adaptation [YS94], synchronization and coordination [FA93] and other
patterns of collaboration and cooperation.
Expressive power required.In representing the communication behavior in re-
lationships such as those given above, we depend on the basic communication
paradigm of the language in which the connectors are implemented. As a general
rule, however, we consider it important for expressive power that connectors not
only be able to coordinate communication as dosynchronizers[FA93], but also to
enforce state changes in the participants.

Formal Properties. Can compatibility of a component with a connector be checked?
Can we give certain guarantees on the behavior of a composition?

Ideally we would like to have a formal notion of compatibility and substitutability
so that we know exactly what kinds of components can participate in a connection,
and which kinds of components can replace each other as participants. Further-
more, we would like to be able to prove certain connector properties (e.g. deadlock
freedom) [AG94].

2.2 Connectors in FLO

FLO is an extension of the object-oriented model with first-class connectors. Connec-
tors in FLO are user-defined: they are first defined abstractly, then instantiated. They
can be specified incrementally and, in some cases, as generic constructs. They are dy-
namically created and destroyed, with components remaining unaware of the connec-
tors in which they participate. Connectors allow for the specification of a large range
of relationships – they observe and control the communication between participants
and can also enforce state changes in the participants. FLO is based on asequential
object-oriented model: we do not yet seek, therefore, to represent synchronization and
coordination mechanisms which require concurrency for their expression. Our approach
provides adescriptive andexecutable notation for connectors, in contrast to Allen and
Garlan [AG94], who present a notation for connectors which has descriptive and ana-
lytical properties. FLO’s connectors can provide a basic test at connector instantiation
to check if the participants indeed provide the required interface, but our approach does
not, at present, formalize the notion of compatibility. In the next section we present the
basic concepts of FLO’s connectors in greater detail.

3 FLO’s Basic Concepts and Notation
3.1 Component
In the object-oriented programming context, we consider that a component is an object
or a grouping of objects. A grouping of objects can be realized using inheritance, ag-
gregation or connectors, the only restriction being that a component should provide as



an interface a set of method selectors and signatures2. A component’s interface is then
basically a set of signatures as in CORBA IDL [OMG95] and does not provide a for-
mal description of the relationships between its different methods as do the augmented
interfaces proposed by [YS94].

3.2 Connector

Connector Specification.A connector in FLO is a special object that connects compo-
nents, called itsparticipants. A component can participate in more than one connector.
A connector is specified by a connector template, which describes all the information
representing the connection between the participants by specifying how message ex-
changes influence the behavior of the participants. We call this specification thedy-
namic behaviorof the connector. A component can participate in a connection as long
as it provides an interface compatible to arole required by the connector. Roles are
specified by variable names in the connector template declaration, but they are im-
plicitly defined in the dynamic behavior of the connector; a role is the set of method
selectors on a participant which will be intercepted or invoked by the connector, so it
is a subset of a component’s interface. This will be clarified further in the discussion of
the dynamic behavior of a connector.

( defConnector connectorAB (:roleA :roleB) ; a list of role names
:inherit ((...)) ; a list of ancestors
:var ; some connector variables
:behavior ; interaction rules of connector

)

Abstraction, incremental definition, and generic connectors.Connectors are first spec-
ified abstractly by defining a connector template, then instantiated by specifying the
actual participants. This abstraction of the behavior of a connector is useful for incre-
mentally defining new connectors. A new connector template can be defined from ex-
isting connector templates by adding new interaction rules or by combining connector
definitions (see example in section 5.2).

Moreover, FLO providesgenericconnectors in certain cases. A generic connector
template specifies a connection schema which can then be instantiated to generate a new
connector template by specifying the abstract interfaces with the effective component
interfaces (see example in section 4.2).
Connector Lifetime. A connector, like other objects, has a lifetime - it is created, dur-
ing its lifetime it controls the communication between entities and it can be destroyed.
Different kinds of actions can be associated to these three distinct phases of the connec-
tor’s lifetime:

creation. Some actions are mandatory at connection creation time. For example, a
component could be initialized before being connected with others components. A
connector can also refuse to create the connection, depending on specified criteria
- that is, the connector would be destroyed without moving on to the next phase.

2 FLO is implemented on untyped languages such as CLOS, so a signature is only a list of
symbols representing formal arguments of a method.



Fig. 1.Connectors and components.

active connection.During the connection, a connector intercepts the method in-
vocations of the participants and ensures that the specification of the connection is
met. For example, a connector can forbid messages according to certain conditions,
or send new messages to other participants [AWB+94]. This behavior is specified in
a connector template definition by interaction rules (see dynamic behavior below).
destruction. Some actions can be specified when a connector is removed. A com-
ponent can be informed, for example, of the closing of the connection.

Connector Behavior.

Dynamic behavior.The behavior of a connector is defined by means of a set ofinter-
action ruleswhich specify how the messages received by participant objects should be
controlled: is the message allowed? Under which conditions? Does the reception of a
message imply the sending of other messages? We call this thecontextof a message
reception.

The rules for specifying the dynamic behavior possess the following simplified syn-
tax, their semantics differing only according to the rule operator.

Rule ::= Filter Operator Context
Filter ::= Selector Rolename List-Of-Calling-Args
Context ::= Message+

Message ::= Selector Rolename Args
Operator ::= implies | permitted-if | corresponds

The filter of a rule specifies which messages (method selector with calling argu-
ments) should be intercepted for which kinds of participants, given byrolename. The
operatordefines the semantics of the rule and gives meaning to thecontextof the rule.
Three operators:implies , permitted-if and corresponds are predefined3

in FLO. Finally, thecontextof the rule specifies the execution of messages: a list of

3 However, FLO has an open implementation language [Duc97b] and its meta-object protocol
allows for the definition of new operators.



method invocations on participants. Note here that in order for a component to partici-
pate in a connector it must provide in its interface all the selectors which are associated
to its rolename in the interaction rules.
These rules allow us to specify three different kinds of semantics:

Propagation is specified using theimplies operator. After the reception and the
execution of a message, some other messages, namedcompensating messagesare
sent to the sender object or to other participants.
Inhibition is specified using thepermitted-if operator. The received message
is only executed if a condition, named aguard, is satisfied4. The context part is then
a boolean expression giving the condition for which the execution is permitted.
Delegation is specified by thecorresponds operator. Instead of the received
message being executed a new message is sent to some of the participants.

Here we see that, in contrast to event-based connectors like Mediators [SN92],
FLO’s connectors canforbid method execution, and that, in contrast to Synchroniz-
ers [FA93], FLO’s connectors caninvokemethods on controlled components.

Special operations.The fact that a connector is an object means that its behavior is rep-
resented by means of methods, some of which can be specialized to adapt the connector
behavior. Because of space limitations, we do not present here special methods linked
to the creation phase of a connector and to the dynamic aspect of managing groups of
participants.

As FLO has an open implementation [KdRB91], different methods defining ameta
object protocolallow the complete connector behavior to be adapted. However, as these
aspects concern the modification of the language itself and should not concern an ap-
plication developer, they are out of the scope of this paper ( see [Duc97b] for more
information).

In summary, a connector is a run-time entity in which information about interac-
tion (data and behavior) between components is stored. Data represents the state of the
interaction, e.g. which component has received or sent a message. Connector behavior
represents behavior specific to the interaction of the participants. A connector is then an
appropriate place to specify all the information which is particular to an interaction: in
addition to specifying constraints on message exchanges when components collaborate
to achieve a task, connectors are also the right place to define conversion of data and to
adapt or enrich component interfaces (see example of section 5).

Having summarized the main properties of FLO’s connectors, we now present some
examples. These allow us to demonstrate how connectors are defined, to illustrate their
properties and to show how connectors can be reused.

4 Ensuring Exclusion

We first show how a connector template is defined and discuss connector properties,
then show how FLO provides generic connectors.
4 In case the condition is false, a default value is sent to notify the caller.



4.1 Connector Definition

We show how a template can be defined for connectors which enforce exclusion be-
tween a set of components (in a sequential setting) – that is, which allows only one
component to be active at any time.

Let us suppose that we have simple components – buttons – each of which provides
select anddeselect methods. Moreover, following the same constraint given in
[Frø94], these buttons are constructed so that each button cannot receive the same mes-
sage twice. We make this assumption here only because it allows us to provide a shorter
code example.

A reactive solution.To specify an exclusion situation among components, a connector
is defined which ensures that as soon as a new component is selected the previous one is
deselected. Another schema is presented in [Frø94], where a component can be selected
only if no other component is already selected5. This connector requires only one kind
of participant, so the list of roles is given as a set of identical role names.

In the following examples, FLO’s global constructs are represented using bold font
to distinguish them from other expressions that are specific to the defined connector.
The keywordconnectorrepresents the connector itself - that is, the instantiation of the
connector template.

1 ( defConnector reactive-exclusion ( set-of :buttons)
2 :var ((active? :initform #f :accessor active?) ; two connector
3 (last-button-selected :accessor selected)) ; variables
4 :behavior
5 (((deselect :buttons-receiver) implies (set! active? connec-
tor #f))
6 ; a button is deselected, connector state is adapted
7 ((select :buttons-receiver) implies-before
8 (when (active? connector) (deselect (selected connector))))
9 ; before a button is selected, deselect the previous one selected
10 ((select :buttons-receiver) implies
11 (set! active? connector #t)
12 (set! selected connector :buttons-receiver))))
13 ; a button is selected, connector state is adapted
14 ; end of behavior definition
15 (defmethod action-before-effective ((connector reactive-exclusion )

args)
16 (for-each deselect (give-participant connector :buttons)))
17 ; before creating the connector, all the buttons are deselected

This template definition is an abstract definition of an exclusion schema between
buttons or any other components that provide the same interface. Once defined this con-
nector template can be instantiated on different sets of buttons as shown below (lines
17 and18), resulting in two independent connectors. The interface required for par-

5 The presented solution sends message to the other participant object, hence the reactive adjec-
tive.



ticipants of this connector is that each participant provide the methodsselect and
deselect .

17 (define re1 (make reactive-exclusion :buttons (list b1 b2 b3)))
18 (define re2 (make reactive-exclusion :buttons (list b4 b5 b6)))

Properties. The reactive-exclusionconnector template groups all the information re-
lated to the connection.

– Line 1 :buttons is a variable representing the role of the component. Theset-of
keyword specifies that several components can take this role in the connector and
defines a role-group.

– Lines 2 and3 define two variables:active? that indicates if one button of the
group is selected andlast-button-selected that represents the last selected
button. These variables possess initial values and accessors. As in a class/instances
model, each instantiated connector possesses its own set of variable values.

– Lines5 to 13 specify how messages should be controlled to ensure that only one
button is selected. When a new button is selected, the currently selected button, if
there is one, will be deselected6.

– Lines14 and15 specify the actions that should be performed when the connector is
created. Here all buttons should be deselected. The methodaction-before-effective
invokes thedeselect method on all the participants associated with the rolename
:buttons using thegive-participant method defined for all connectors.
However, a connector can also check if the participants are in the right state to
be connected and the creation of a connector can be refused according to certain
criteria.

The fact that connectors are entities separate from components provides important
benefits - connector information is no longer spread across component code. In this
example, for instance, buttons do not need to keep track of the last selected button in
their own select and deselect methods, as would be the case with traditional
object-oriented languages. This increases the reusability of components, making their
code clearer and simpler. A connector can thus be understood at code level as a logical
unit and carries an important part of the design decisions down to the implementation
level.

4.2 Generic Connectors

FLO allows for the definition ofgenericconnector templates, currently with some re-
strictions. A generic connector template defines a general connection schema that can
be instantiated to create a specific connector template for a particular context. Generic
connector templates are defined in terms of generic interfaces that are theninstantiated
with real component interfaces. For example, a generic connector template is defined
as shown in the code below (lines1 to 12) and then instantiated in case of buttons

6 Theimplies-before allows for the definition of the action performed before the execution
of the controlled method, here the deselection of the last selected component. Using it ensures
real exclusion.



(lines13 to 15). The resulting connector template is identical to thereactive-exclusion
connector template in section 4.1.

1 ( defGenericConnector generic-reac-excl ( set-of :components)
2 :var ((active? :initform #f :accessor active?)
3 (anchor :accessor anchor))
4 :behavior
5 (((action1 :components-receiver) implies (set! active? connector #f))
6 ((action2 :components-receiver) implies-before
7 (when (active? connector) (action2 (anchor connector))))
8 ((action2 :components-receiver) implies
9 (set! active? connector #t)
10 (set! anchor connector :components-receiver))))
11 (defmethod action-before-effective ((connector generic-reac-excl ) args)
12 (for-each action2 ( give connector :components)))

13 ( defConnector reactive-exclusion-between-buttons 14
14 :is generic-reac-excl :with-participants component = buttons
15 :with-methods action1 = select, action2 = deselect)

16 (make reactive-exclusion-between-buttons :buttons (list b1 b2 b3))

A generic connector template describes a general pattern of communication be-
tween components in terms of abstract interfaces. The use of generic connectors allows
for the reuse of complex connector templates that need only be defined once. The defini-
tion of generic connectors in FLO is at present limited to specific cases - to those cases
when the context of a rule is independent of the filter. That is, the context of an interac-
tion rule should not use the arguments of the controlled message. Future improvements
of the FLO implementation will take into account these problems and propose a way to
manipulate calling arguments.

5 A kind of Client-Server Connector

In this example we show a connector in which participants play different roles, and
demonstrate how a new connector can be defined from existing connectors.
For the sake of exposition, our example is a rather simplified schema of a client-server
relationship between tools. It allows us, however, to illustrate that connectors in FLO
can forbid message execution according to specified criteria, in contrast tomediators
[SN92], or to implementations of the MVC model [KP88] or the Observer design pat-
tern [GHJV94], which only propagate messages.

Suppose that we have a simple calculator component that generates new data when
the methodcomputes-new-value is invoked, and we would like to display the cal-
culated data on a graph displayer that displays a limited number of values on x-y axes,
and has a method for displaying a value (add-new-value ) and one for removing
a value by clicking on the display (remove-one-value ). We want to express that
each value computed by the calculator should be displayed by the graph displayer - this
means in particular that if the graph displayer is full (methodfree-variables? )



a new value should not be computed. An additional constraint is that the format of the
calculator result values is not compatible with the format required by the displayer, so
the values must be converted.

5.1 Connector between Calculator and Graph Displayer.

The following connector definition ensures that all the constraints mentioned above are
satisfied:

1 ( defConnector calculator-displayer (:calculator :displayer)
2 ;two distinct participants
3 :behavior
4 (((compute-new-value :calculator val) implies
5 (add-new-value :displayer (convert connector val result)))
6 ; when a new value is computed, the displayer is aware
7 ; the value is converted to be understood by the displayer
8 ((compute-new-value :calculator val) permitted-if
9 (free-variables? :displayer))))
10 ; computing a new value is only possible if the displayer can display it
11 ; end of behavior definition
12 (defmethod convert ((connector calculator-displayer ) v1 v2)
13 (list (from-float-to-pixels v1) (from-float-to-pixels v2))
14 ; a conversion from two floats to a list of two pixels

The keywordresult at line5 represents the value returned by the controlled method,
here the methodcompute-new-value . The connector template above can be instan-
tiated as follows:

17 (define c (make calculator))
18 (define d (make displayer :x 120 :y 200))
19 (define calc-disp (make calculator-displayer
20 :calculator c :displayer d :x 50 :y 70))

This example illustrates that, in contrast to the MVC model [KP88] or the Observer
design pattern [GHJV94], which are design descriptions, a connector actuallycontrols
the message exchange between participants, ensuring the integrity of the design. Here,
the calculator cannot produce a new value if the displayer is not in the appropriate state.

Distinct roles. In this example, the connector requires participants that play differ-
ent roles. Here two roles are defined – a calculator which provides a method called
compute-new-value and a displayer which provides the methodsadd-new-value ,
free-variables? , specify-axes andclear-variables .

A place to define connector behavior.A connector allows for the definition of connec-
tion information, one aspect of which is data conversion. Line5 specifies that the result
of the call to the calculator should be converted before sending theadd-new-value
method to the displayer. Whereas with traditional object-oriented languages this con-
version would be included in the interface of the component, with a new conversion
method being added for each new interaction, here the conversion is a method, called



convert , local to the connector itself (lines12 and13). The components themselves
need not provide such a conversion method - since a component should not be required
to anticipate its possible connection with other incompatible components.

5.2 Reusing and Composing Connectors

We now show how connector templates can be composed to create new templates. Sup-
pose that we want to visualize with a new grapher, calledhistory, all the values calcu-
lated by the calculator. In addition we would like that when a user selects a vertex in
the first graph displayer the corresponding value is highlighted in the history graph. We
assume that the history grapher provides a way to change the color of a value (methods
find-values andchange-color ).

There are different possibilities to implement this new connection. We can define
a separate connector template and instantiate from it a new connector which links the
history grapher to the graph displayer and to the calculator, retaining the existing con-
nector which links the calculator to the graph displayer. Or we can define a connector
template for a connector which links all three components to each other (see figure 2),
thus no longer requiring the existing connector. We now present these two solutions.

Fig. 2. Two possibilities for defining a new connector: (A) Addition of a separate connector and
(B) Derivation of a global connector from the previous definition.

Adding a separate connector.We define a separate connector template calledCDH as
shown below (lines1 to 11) and instantiate it (line13) on the previous components
(i.e. the graph displayer and the calculator) plus the new one (i.e. the history graph).
For the sake of simplicity, we assume now that the returned values of the calculator
are compatible with the history graph. There are now two independent connectors:cdh,
instantiated from templateCDH (line 13), andcalc-disp, instantiated from template
calculator-displayer. It is possible to remove one without being concerned about the
other one, and the variable names (:calc , :displ and :history ) are also inde-
pendent. The displayer should provide two new methods:select anddeselect .



1 ( defConnector CDH (:calc :displ :history)
2 :behavior
3 (((compute-new-value :calc val)
4 implies (add-point :history val result)))
5 ; when a new value is computed, the history graph adds it
6 ((select :displ point)
7 implies (change-color :history (find-values :history point))
8 ; when a point is selected in the displayer,
9 ; the corresponding values in the history are highlighted
10 ((deselect :displ point)
11 implies (change-color :history (find-values :history point)))))

12 (define h (make history))
13 (define cdh (make CDH :displ d :calc c :history h))

Connector Inheritance.Instead of having two separate connectors, it is possible to de-
fine by inheritance one connector template which manages the connections described by
CDH andcalculator-displayer(figure B in figure 2). Here we can enrich thecalculator-
displayerconnector template with new interaction rules as shown in lines1 to 11 or use
multiple inheritance between connector templatesCDH andcalculator-displayer(lines
13 to 16).

1 ( defConnector Global-CDH (:calc :displ :history)
2 :inherit-from (( calculator-displayer
3 ( rename :calculator as :calc :display as displ)))
3 :behavior
4 (((compute-new-value :calc val)
5 implies (add-point :history val result)))
6 ; when a new value is computed, the history graph displays it
7 ((select :displ point)
8 implies (change-color :history (find-values :history point))
9 ; when a point is selected in the displayer,
10 ; the corresponding values in the history are highlight
11 ((deselect :displ point)
12 implies (change-color :history (find-values :history point)))))

13 ( defConnector Global-CDH (:calc :displ :history)
14 :inherit-from (( calculator-displayer
15 ( rename :calculator as :calc :display as displ))
16 ( CDH)))

The last template definition is equivalent to the previous one. This last example
shows that the inheritance mechanism provides a way to rename the variable represent-
ing the role of the participants. It also shows that when two connector templates are
composed to give a new connector template through multiple inheritance, the roles of
the participants are composed to give a new role.



6 Implementation Issues

The FLO model is based on full message passing control as offered by reflexivity and
the open aspect of languages like CLOS [KdRB91,DBFP95] or Smalltalk [GR89]. Few
object-oriented languages offer message passing control. Preprocessing the code, as
used in Synchronizer [FA93] or OpenC++ [Chi95], can be a solution to introduce such
control of message passing. Another approach is to use an implicit invocation mecha-
nism that can be easily added to any language [NGGS93]. However, this solution does
not allow full message passing control because implicit invocation cannot support inhi-
bition or redirection of messages.

The connectors described in this paper are fully implemented in CLOS, and a new
version is under development in Smalltalk at the University of Berne (see http://iamwww.unibe.ch/∼ducasse/).
Moreover, we are now evaluating the introduction of reflexive facilities into Java [Gol97]
to support connectors.

7 Related Work

Allen and Garlan propose a formal approach to connectors which is independent of
object-oriented languages, their main motivation being to formalize software architec-
tures in general [AG94]. Their formalism allows one to reason about the compatibility
of a component’s interface, orport, with a connector’srole, and to prove properties
such as deadlock-freedom of a connector. Whereas component ports in [AG94] are pro-
cesses, our ports are just sets of methods. Our connectors have a dynamic behavior part,
specified by interaction rules, which corresponds to Allen and Garlan’s connectorglue,
but therole part of our connectors is implicitly defined in a connector specification as
explained in section 3.2. Furthermore, though FLO’s connectors can provide a basic
test at connector instantiation to check if the participants provide the required interface,
our approach does not, at present, formalize the notion of compatibility.

In contrast to Allen and Garlan’s formal approach, our contribution is to provide an
executablenotation for connectors: connectors which not only describe component rela-
tionships, but also enforce them.Contracts[HHG90] are design formalisms used to ex-
press cooperation between objects, but they describe rather than enforce the constraints
on the message exchange between participants. Also, many design patterns [GHJV94]
can be expressed using connectors - in this way retaining and enforcing design decisions
at implementation level.

The problem of providing a language construct to express and also control interac-
tion relationships has been approached from a variety of angles. Pintado [Pin93] pro-
posesgluonsto mediate object collaborations. His approach emphasizes collaborations
between objects as client-server protocols, and does not allow for the specification of
more general patterns of collaboration, in particular for ones where no server is re-
quired, such as the example in section 4. Similarly, components in Darwin [MDEK95]
interact through services required and services provided, so that the unit of connection
is basically a binding of services of two components. In the Composition-Filters ap-
proach of SINA [AWB+94],Abstract Communication Types are proposed for enforcing
invariant behavior among objects. But, object interfaces must be modified before an ob-
ject can engage in a new kind of interaction – an impediment to the reuse of components
in new contexts.



Yellin and Strom [YS94] represent interaction relationships using protocols spec-
ified in the object’s interface. When two components are functionally compatible, but
their interface protocols are not compatibleadaptorsare used to translate the interfaces.
Adaptors are connector-like constructs but in the context of augmented interfaces they
require a limited expressive power and can represent only two-party relationships.

Sullivan and Notkin [SN92] separate connectors from the components at the im-
plementation level by providingmediators, proposed to facilitate tool integration. Our
connectors are close to mediators in the sense that they are based on an implicit mes-
sage passing mechanism which allows components to remain truly independent [SG96].
In contrast to mediators, however, our connectors are explicit programmable entities
which not only relay messages, but can forbid message delivery, redirect messages or
send compensating messages to the participants.

Frølund and Agha [FA93] proposesynchronizersfor multi-object coordination in a
concurrent language. Synchronizers are similar to our connectors but there is a main
difference between the two approaches. A synchronizer only updates its own state on
receiving a message from a participant, but it cannot itself send messages to its par-
ticipants and alter their state. A synchronizer only coordinates communication. Our
connector is, in this sense, more active - it can enforce state changes in the participants
by sending messages to components.

8 Conclusions
We have proposed first-class connectors in a sequential object-oriented language as
dynamic user-defined abstractions which coordinate and control component communi-
cation. We consider FLO’s connectors a powerful construct for expressing interaction
between components and for structuring software in a way which gives equal impor-
tance to relationships and to the components they relate. Our contribution is to provide
a descriptive and executable notation for connectors and thus enable the localization of
information about interaction of components at the level of implementation.

We have also shown how connectors themselves can be reused: through inheritance
or through generic connectors which describe schematic interaction relationships, and
have argued that the presence of connectors promotes the reuse of components in new
contexts.

Executable connectors are a first step towards the goal of making software archi-
tecture more explicit at implementation. Connectors enrich the design vocabulary and
carry some design information to the application code. They do not, on their own, lead
to better designs, but they are an aid in the codification and enforcement of design
idioms (e.g. design patterns [Duc97a]). We further plan to investigate the use of con-
nectors in enforcing more general design constraints, as in architectural styles [SG96].
We see this use of connectors as a contribution to the goal of composing applications
from existing software artefacts.

We plan to pursue our work on connectors in three main directions:

Genericity. In particular, improving generic connectors by developing constructs to
manipulate calling arguments and by introducing parameters for connectors which
would allow generic connectors to be instantiated with code fragments to tailor a
generic interaction schema to a particular context.



Concurrency. We are currently extending our approach to concurrent objectoriented
languages with active objects. A connector is then an entity that synchronizes con-
current objects and controls their communication. This leads us to introduce new
kinds of operators to handle different synchronization schemes.

Formal approach. The current approach lacks a formalization of componentconnector
compatibility and of component substitutability. To formalize these notions we may
need to revise our notion of component interface and connector role, perhaps in the
line of augmented interfaces proposed in [YS94].
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