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Abstract—We propose a tool, called FuzzingDriver, to generate
dictionary tokens for coverage-based greybox fuzzers (CGF) from
the codebase of any target program. FuzzingDriver does not add
any overhead to the fuzzing job as it is run beforehand.

We compared FuzzingDriver to Google dictionaries by fuzzing
six open-source targets, and we found that FuzzingDriver con-
sistently achieves higher code coverage in all tests. We also
executed eight benchmarks on FuzzBench to demonstrate how
utilizing FuzzingDriver’s dictionaries can outperform six widely-
used CGF fuzzers.

In future work, investigating the impact of FuzzingDriver’s
dictionaries on improving bug coverage might prove important.
Video demonstration : https://www.youtube.com/watch?v=Y8j_
KvfRrI8

Index Terms—Security, fuzzing, dictionary generation

I. INTRODUCTION

Compared to non-security issues, only a small group of
developers are involved in reporting security issues in software
projects [1]. Fortunately, with the increasing adoption of mod-
ern fuzzers, developers have been able to efficiently find crit-
ical vulnerabilities. For instance, the AFL fuzzer, a coverage-
based Greybox Fuzzer (CGF), has found a large number of
security vulnerabilities in well-known software programs.1

Researchers have also been actively working on improving
coverage-based guided fuzzers. As an example, optimized
mutation algorithms introduced by MOpt have had a great
impact on increasing code coverage and discovering more
vulnerabilities [2]. Similarly, AFLSmart introduced structure-
aware fuzzing by combining the PEACH fuzzer engine with
the AFL fuzzer, and the Angora fuzzer employs data-flow
analysis, yielding a noticeable improvement in the level of
code coverage [3, 4].

Most of the coverage-guided fuzzers, e.g., AFL and Lib-
fuzzer, make use of dictionaries to optimize the fuzzing job
and induce more interesting paths. Dictionaries are generally
flat ASCII files where tokens, extracted strings from the target
program, are listed per line. Each line can consist of key:value
pairs, where the key is optional. By utilizing dictionaries,
fuzzers exercise relevant tokens, which significantly improves
the likelihood of finding new paths and use cases [5]. However,
dictionary generation is considered to be an arduous and time-
consuming task, and users often simply reuse the predefined

1https://lcamtuf.coredump.cx/afl/

dictionaries introduced by the AFL fuzzer or Google. Unfor-
tunately, such dictionaries are general-purpose and lack target-
dependent specifications. This limitation in real-life scenarios
leads to executing fuzzers without a relevant dictionary and
consequently obtaining less code coverage or increasing the
time and cost budget.

We introduce a tool, named FuzzingDriver, to automatically
generate dictionaries for each program. FuzzingDriver utilizes
CodeQL to extract valuable information, 2 i.e., commonly
occurring keywords, strings and constants, from the internals
of the target program. Such information assists fuzzers to
mutate the expected values that reside in various branches,
e.g., checksums, and achieve a higher code coverage compared
to when they employ general-purpose dictionaries. Fuzzing-
Driver generates dictionaries related to various file formats or
protocols, and can be employed as a plug-in for CGFs.3

We evaluated FuzzingDriver in two different experiments.
We first used FuzzingDriver and Google dictionaries for
fuzzing six open-source binaries. In all six binaries, Fuzzing-
Driver helped to achieve higher code coverage. In the second
experiment, we executed eight benchmarks on FuzzBench in
order to evaluate the efficacy of the AFL fuzzer armed with
FuzzingDriver’s dictionaries against six state of the art CGF
fuzzers. We achieved promising results as FuzzingDriver’s
dictionaries significantly increased the code coverage of AFL.
In particular, we obtained the highest code coverage in six
binaries and substantially higher coverage than the rivals in
three binaries. Assessing the effectiveness of FuzzingDriver in
terms of bug coverage as well as its optimization to minimize
overhead can constitute the object of future studies.

The remainder of this paper is structured as follows. In
section II, we explain how customized dictionaries improve
the fuzzing job. We present our workflow in section III and
discuss our results in section IV. We discuss related work in
section V. We conclude the paper in section VI.

II. WHY CUSTOMIZED DICTIONARIES?

Fuzzers commonly do not offer any automated approach to
generate dictionaries from target programs. Therefore, it is of
interest to propose a tool to accomplish this task with mini-
mum effort and observe to what extent FuzzingDriver’s cus-

2https://securitylab.github.com/tools/codeql/
3https://github.com/cryptomadco/fuzzingdriver
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tomized dictionaries can help the performance of (mutation-
based) CGFs, such as AFL,4 AFLFast [6], Steelix [7], VUzzer
[8], and Angora [4]. In the following, we demonstrate the ad-
vantage of employing FuzzingDriver’s dictionaries in fuzzing.

We elucidate a small yet complex example, shown in
Listing 1, to pinpoint a problem with state of the art fuzzers.5

The code reads an input file and passes the content of the
file, e.g., data, and the size of the content, as arguments to a
user-defined function called Test. In the Test function, there
are complex branches in which conditions must be satisfied
in order to set each flag to an integer number, which is the
corresponding branch number. If all the flags are set, the final
branch will trigger a violation, and accordingly, the fuzzer will
mark it as a bug.

We used a machine powered by Ubuntu 18.04 x64, 32 CPU
cores with 64GB of RAM for two experiments. Each test is
repeated five times and each time has a duration of about
five hours. In the first experiment, we selected QSYM[9] to
execute hybrid fuzzing (fuzzing and concolic execution) in
order to traverse the difficult branches. Prior to this decision,
we also selected other CGFs like AFL and libfuzzer but they
failed as the example includes many complex branches. QSYM
discovered the vulnerable point after 4 hours and 54 minutes
on average.

Listing 1. The motivational example–partial code snippet
uint8_t flags[8] = {0};
int Test(const uint8_t *Data, size_t Size) {

uint32_t *num = (uint32_t *)Data;
if (num[0] > 0x003e9ef4 && num[0] < 0x00649689) {

if (num[1] > 0x00b10797 && num[1] < 0x00f2deeb) {
if ((num[0] * num[1]) == 0x00621a27 * 0x00c01752) {

flags[0] = 0;
}

}
}

// More similar complex constraints *****
if (num[14] > 0x073f66a5 && num[14] < 0x07f04124) {

if (num[15] > 0x07414558 && num[15] < 0x078e3e98) {
if ((num[14] * num[15]) == 0x074fd355 * 0x075e1841) {

flags[7] = 7;
}

}
}

#if 0
#endif

if (flags[0] == 0 && flags[1] == 1 && flags[2] == 2 && flags[3] == 3
&& flags[4] == 4
&& flags[5] == 5 && flags[6] == 6 && flags[7] == 7 ) {

*((volatile uint8_t *)0) = 0;
}
return 0;

}

In the second experiment, FuzzingDriver extracted magic
numbers from the motivational example and generated a
dictionary of useful tokens prior to the fuzzing job. We then
executed the QSYM fuzzer with the dictionary generated by
FuzzingDriver. Interestingly, QSYM discovered the vulnerable
point noticeably faster in just 26 minutes on average. This
suggests that effective dictionary generation can substantially
help fuzzers in quickly discovering new paths in the target
applications.

III. THE WORKFLOW

FuzzingDriver comprises two parts: (1) extracting valuable
tokens from the target’s source code, and (2) a data cleaner
script written in Python.

4http://lcamtuf.coredump.cx/afl/
5The complete source code of the example

1) Literal extraction: We prepared eleven CodeQL queries
to extract valuable information, i.e., tokens, from the codebase.
CodeQL is an industry-leading semantic code analysis engine
introduced by GitHub.
The flexibility of CodeQL enables the users of FuzzingDriver
to write their own custom queries or modify the existing
queries to expand FuzzingDriver’s functionality. With regards
to token extraction queries, we wrote one query for finding
literals, one query for identifying user-defined comparison
functions, two queries for arrays and global variables, and
seven queries for looking into the arguments to the follow-
ing functions: strstr(), strcasecmp(), strncasecmp(), strcmp(),
strncmp(), memcmp(). These last functions are considered
critical for fuzzers in order to satisfy various branches [10].
For instance, the importance of covering such functions can
be viewed in the FFmpeg program in which there are var-
ious checks that are dependent on the strcmp function (See
Listing 2).

Listing 2. The usage of strcmp() in the FFmpeg program

if (!strcmp(key, "acodec")) opt_audio_codec (o, key, value);
else if (!strcmp(key, "vcodec")) opt_video_codec (o, key, value);
else if (!strcmp(key, "scodec")) opt_subtitle_codec(o, key, value);
else if (!strcmp(key, "dcodec")) opt_data_codec (o, key, value);

We also extract literals as hexadecimal values that are
present in the program (See Listing 4). These values com-
monly tend to be part of specific checksums or important parts
of the program. Listing 3 shows the significance of capturing
the hexadecimal values in the libxml library.

Listing 3. Hexadecimal values in the libxml library
else if (((*in >= 0x20) && (*in < 0x80)) ||

(*in == ’\n’) || (*in == ’\t’)) {
// some code

} else if (*in >= 0x80) {
if (outend - out < 11) break;
if (*in < 0xC0) {
// some code
} else if (*in < 0xE0) {
if (inend - in < 2) break;
val = (in[0]) & 0x1F;
// some code
}

Listing 4. Capturing literals
HexOrOctLiteral(){

(this instanceof HexLiteral) or (this instanceof OctalLiteral)
}

If a developer implements a custom string comparison
function within the language, then this could prevent Fuzzing-
Driver from detecting useful tokens. For instance, there
are some custom functions such as xmlStrcasecmp and
g_ascii_strncasecmp in the Libxml and glib libraries respec-
tively that they in fact rely on the Strcasecmp function. To
resolve this issue, we wrote a CodeQL query containing
regexpMatch() that captures comparisons in the target program
when a user-defined comparison function is called and tracks
how parameters flow by the DataFlow module (See Listing 5).
The regexpMatch() function considers every function in the
program whose name contains the following strings: str, mem,
strn, cmp. The list can be extended to cover a greater range of
keywords in the regex section. However, it may not detect user-
defined functions that have completely arbitrary names. This
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is noteworthy that the other CodeQL queries can be enhanced
by using the DataFlow module to track how data flow through
the parameters.

Listing 5. Capturing comparison custom defined functions
CmpArgNode() {

exists(FunctionCall fc |
fc.getTarget().getName().regexpMatch(".*(str|mem|strn|b)*(cmp|str)*") and
fc.getArgument(0) = this.asExpr()

)

As shown in Listing 6, to capture static constant values, the
CodeQL query captures values such as the one demonstrated in
Listing 7. The source code of the remaining queries is available
online.6

Listing 6. Capturing static constants

import cpp
from GlobalVariable a
where a.isStatic() and a.isConst()
select a.getAnAssignedValue().getValueText()

Listing 7. A static constant holding valuable information

static const int extend_test[16] = { /* entry n is 2**(n-1) */
0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000

};

2) Data cleaner: It is essential to have a dictionary con-
taining only useful tokens from the target program to reduce
the fuzzing overhead. The main role of FuzzingDriver’s data
cleaner is to examine the extracted tokens and remove noisy
tokens based on different criteria. In programs, there exist
strings, e.g., warning or error messages, that certainly do
not expedite the process of fuzzing and squander effort on
mutating incorrect, worthless tokens. Therefore, we provide
users with configurations so that they can define the minimum
and maximum length of tokens. It is also possible to define
an array of prohibited characters, e.g., white space, to either
remove the tokens containing such characters or replace the
character with a predefined one. We enable users to explore
statistics regarding the found English keywords and their
distribution in the target. We used the Levenshtein distance
[11] to measure the distance between two tokens. The users are
able to adjust the desired value for the distance between two
tokens. As a result, they can observe a list of duplicated tokens
and the ones whose distance is equal to or below the defined
Levenshtein threshold. All these features allow the users to
customize the output dictionary so that it contains only useful
tokens and is free of ineffective ones.

IV. EVALUATION AND RESULTS

We evaluated how FuzzingDriver can improve the efficacy
of CGF-based fuzzers. To this end, we tested our proposed
technique against two other approaches and compared the ob-
tained code coverage with the rivals. In the first approach, we
used Google dictionaries, which became available to the public
in May 2020.7 Google provides a number of dictionaries for
various file formats, e.g., CSV and JS, which can be used by

6https://github.com/cryptomadco/fuzzingdriver
7https://github.com/google/fuzzing/tree/master/dictionaries

TABLE I
THE OBTAINED BASIC BLOCK CODE COVERAGE BETWEEN GOOGLE

DICTIONARIES AND FUZZINGDRIVER WITH SEVEN BINARIES

Target Dictionary Avg T1 T2 T3 T4 T5
Google-dict 1111 984 904 1128 983 1557libjpeg FuzzingDriver 2553 4595 2020 1708 2422 2019
Google-dict 4246 4154 4093 4122 4380 4483poppler FuzzingDriver 4388 4256 4331 4699 4112 4542
Google-dict - - - - - -binutils FuzzingDriver 9370 9332 9612 9379 9522 9005
Google-dict - - - - - -libarchive FuzzingDriver 10553 9939 11333 10882 10382 10231
Google-dict 12782 12764 12592 13036 12046 13473libxml FuzzingDriver 13640 13829 13751 13390 13986 13246
Google-dict - - - - - -UnRAR FuzzingDriver 9226 9955 9047 9036 9017 9073

CGF-based fuzzers. In the second approach, we executed eight
benchmarks on FuzzBench [12], Fuzzer Benchmarking As a
Service. FuzzBench is a free service that allows researchers
to rigorously assess their fuzzers on a wide range of real-
world benchmarks (i.e., open-source programs). We tested
FuzzingDriver against six other state-of-the-art CGF fuzzers.

A. Google dictionaries

We selected six popular open-source libraries and software,
namely Libjpeg, Poppler, libxml, binutils, libarchive, and
UnRAR. The aforementioned binaries were used in various
research works to assess the fuzzers’ efficiency [6, 13].
Moreover, we chose the latest version to date (3.12c) of
AFL++ [14] and instrumented all the targets with AFL++
SanitizerCoverage. For each test, we then fed the correspond-
ing FuzzingDriver and Google dictionary to AFL++. The
configuration of the machine running the fuzzing jobs was
Ubuntu 18.04 x64, 32 CPU cores with 64GB of RAM.

Table I depicts the results of FuzzingDriver compared with
Google dictionaries in each trial run (denoted by T), and on
average of the five trial runs. FuzzingDriver outperformed
Google dictionaries in all the binaries, whereas Google dic-
tionaries did not provide any dictionaries for three targets.
Google dictionaries can be helpful when standard specifica-
tions are expected while they lack some of the most well-
known file formats. For example, Google does not present any
dictionaries for file formats such as TAR and ELF concerning
the libarchive and binutils binaries, respectively. On the other
hand, FuzzingDriver substantially improved the fuzzing jobs
in almost all of the trial tests and also on average due to careful
dictionary generation and cleansing phases.

We used a tool named AFL-cov to visualize the coverage
provided by FuzzingDriver.8 AFL-cov employs test cases
produced by the AFL-based fuzzers and interprets from one
test case to the next one to determine which new functions
and lines are hit by AFL. We selected some parts of the
code which had been examined by using FuzzingDriver and
Google dictionaries. Figure 2 shows the part of the code in the
libxml binary that had been fully covered by the fuzzer with
the help of FuzzingDriver, however the right side, indicated
with the red color, shows that the same piece of code had not
been traversed when Google dictionaries were used. We also
realized that FuzzingDriver performed well on targets in which

8https://github.com/vanhauser-thc/afl-cov
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encoding/decoding occurs frequently. As another example, we
witnessed that the function responsible for carrying out MCU
decoding on libjpeg is fully covered with the help of the tokens
extracted by FuzzingDriver while AFL++ ould not traverse the
same path with the help of Google dictionaries.

B. FuzzBench

The reason that we selected the FuzzBench platform is
the fact that the platform was mentioned for benchmarking
fuzzers in a number of recent research work [14, 15]. We ran
FuzzBench [12] to conduct a benchmark between the AFL
fuzzer armed with FuzzingDriver’s dictionaries and other state-
of-the-art fuzzers on FuzzBench. More precisely, we evaluated
the AFL enabled FuzzingDriver fork against the original
AFL, Fairfuzz[16], MOpt[2], AFLSmart[3], AFLFast[6] and
Lafintel fuzzers.9 We conducted our experiment on eight
targets with five trial runs and each trial duration was ten
hours. As shown in Figure 1, FuzzingDriver significantly
improved the code coverage of the AFL in all the benchmarks.
In benchmark with five binaries, FuzzingDriver gained the
highest code coverage among the tested fuzzers. Moreover,
in the rest of the binaries, FuzzingDriver achieved second
place among its competitors. Comparing the original AFL
with the AFL armed with FuzzingDriver reveals that the
boosted version with FuzzingDriver performed substantially
better in four targets, namely libpcap, libxml, libpng, and
proj4. FuzzingDriver distinctly gained more coverage in three
binaries, namely libpcap, libpng, and libxml. However, in three
binaries (i.e., bloaty, php parser, and libjpeg), the performance
of the fuzzers is somewhat similar. To observe a detailed
version FuzzingDriver’s trial tests, please visit the fuzzer’s
repository.

V. RELATED WORK

Wang et al. proposed a novel data-driven seed generation
approach, called Skyfire, that processes a large number of
existing samples, extracts the knowledge of grammar and
semantic rules, and generates well-distributed seed inputs
for fuzzing programs [17]. However, Skyfire is designed to
work with a probabilistic context-sensitive grammar (PCSG) to
specify both syntax features and semantic rules and its purpose
is different from the current study. Householder and Foote
proposed a workflow for black-box fuzzing and an algorithm
for selecting parameters to maximize the number of unique
errors detected in a fuzzing campaign [18]. AFLFast strength-
ened its successor’s performance, AFL, by various strategies
to exercise the low-frequency paths. AFLFast discovered three
previously unreported CVEs that are not discovered by AFL
and identified 6 previously unreported CVEs 7x faster than
AFL [6]. Li et al. proposed GTFuzz that is capable of seed in-
put prioritization, dictionary generation and offers an enhanced
seed mutation algorithm [19]. However, they did not provide
any source code of their work and we could not make any
comparison. Similar to FuzzingDriver, Mathis et al. proposed

9https://lafintel.wordpress.com/

a new approach, called LFuzzer, to automatically extracts
tokens using dynamic tainting of implicit data transformations
[20]. However, our approach necessitates less complexity to
understand and is easier to extend.

VI. CONCLUSION

We presented a tool, called FuzzingDriver, for dictionary
generation for any targets. It identifies tokens from any file
formats that are necessary to traverse a program. We evalu-
ated FuzzingDriver against Google dictionaries and showed
that FuzzingDriver significantly increases code coverage in
fuzzing. We also demonstrated that FuzzingDriver helps the
AFL fuzzer to outperform six widely-used CGF fuzzers in
terms of code coverage. Further research is needed to investi-
gate the impact of FuzzingDriver on bug coverage.
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