
Composing Unit Tests?

Markus Gälli, Orla Greevy, and Oscar Nierstrasz

Software Composition Group, University of Bern, Switzerland
{gaelli,greevy,oscar}@iam.unibe.ch

Abstract. 1 If we were to apply the testing techniques of object-oriented
systems prescribed by the XUnit framework to a car factory, the result
would be an inefficient process: A tire would be created, quality assured
and then thrown away, only to be recreated later to test the functionality
of the whole car.
XUnit makes it difficult to reuse intermediate results of low level unit
tests. As a consequence a higher level unit test is forced to recreate
test scenarios which were already created by lower level unit tests. This
duplicated testing effort is time-consuming both for setting up new sce-
narios and for running the tests. To address this problem we suggest
a semi-automatic approach to compose tests. First we describe how we
can detect candidates of composable test cases by partially ordering their
sets of covered method signatures, then we present techniques to refactor
unit tests accordingly.
Keywords: Unit testing, factories, XUnit, composition

1 Introduction

A software product line is defined as a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs
of a particular market segment or mission and that are developed from
a common set of core assets in a prescribed way.
XUnit [BG98] in its various forms is a widely-used open-source unit test-
ing framework. It has been ported to most object-oriented programming
languages and is integrated in many common IDEs such as Eclipse.
We claim that units under test can not only be single methods or classes
but also whole software components of a software product line. By al-
lowing the unit test to deliver the tested core asset as a return value, we
can reuse the tested core asset in assembling a test for a composed asset
in order to facilitate scenario creation and to reduce testing time.
The XUnit framework does not allow low level unit tests themselves to
be composed into higher level unit tests - whereas low level functionality
is composed out of lower level functionality.

? We gratefully acknowledge the financial support of the Swiss National Science Foun-
dation for the project “A Unified Approach to Composition and Extensibility” (SNF
Project No. 200020-105091/1, Oct. 2004 - Sept. 2006)

1 2nd International Workshop on Software Product Line Testing pages 16–22, Tech-
nical Report ALR-2005-017

This makes the set up of test scenarios an unnecessary tedious task and
leads to unnecessary long testing times. Our hypothesis is that a majority
of unit tests can be refactored into composed test cases.
We will explain our approach with an illustrating example of a simplified
university administration system, which consists of the following four
XUnit test cases:
– PersonTest�testNew tests if the roles of a person are defined.
– PersonTest�testName tests if the name of a person was assigned cor-

rectly.
– UniversityTest�testAddPerson tests if the university knows a person

after the person has been added to it.
– PersonTest�testBecomeProfessorIn tests if some person, after having

been added as a professor, also has this role.
In Figure 1 one can see, that all methods called in UniversityTest�testAddPerson

are also called in PersonTest�testBecomeProfesssorIn, but that neither the
methods called in test case PersonTest�testNew nor in test case PersonTest�testName

are also called completely in any other test case.

UniversityTest

University class

name(...)

Person class University

testAddPerson

addPerson(...)
name(...)

new

persons

assert(aUni persons includes(aPerson))

PersonTest

University class

Professor class

name(...)

Person class

becomeProfessorIn(...)
new

Person University
testBecomeProfessorIn

addPerson(...)

name(...)
new

professors

persons

addRole()

assert(aUni professors includes(aPerson))

PersonTest Person class

testName name(...) new

assert(person name = aName) name

PersonTest Person class

testNew new

assert(person roles notNil) roles

Fig. 1. The test for #becomeProfessorIn: covers the test for #addPerson:. The test for
#new overlaps with the test for #name. Intersecting signatures are displayed gray.

2 Approach

We first present a technique to identify comparable test cases of existing
test suites by sorting their sets of covered method signatures and then
introduce two refactorings to tune these comparable tests.

2.1 Identifying Redundant Test Cases with Coverage Sets

We say that unit test A partially covers unit test B (A ⊇ B), if only up
to tolerance method signatures covered by B are not included in the set
of method signatures covered by A (1). We say that unit test A overlaps
B (A ≡ B), if A partially covers B and B partially covers A (2). We say
that two unit tests A and B are comparable if at least either one partially
covers the other.

A ⊇ B ⇔ |Signatures(B) \ Signatures(A)| <= tolerance|tolerance ∈ ℵ(1)
A ≡ B ⇔ A ⊇ B ∧B ⊇ A(2)

.
Based on this partial order we developed the following algorithm to iden-
tify comparable test cases, which are candidates for refactoring:
First we instrument the code and obtain traces of method calls that are
invoked during the execution of the tests. Then we extract and store the
set of method signatures of each test into an InstrumentedTestCase object.
We sort all this InstrumentedTestCase objects according to the cardinality
of the sets starting with the smallest. For each InstrumentedTestCase we
detect the first covered test, that is both bigger than it and includes its
method signatures tolerating tolerance methods not to be included in
the bigger one. If we find one, we move the partially covered one into the
covering one. If we find that both partially cover each other, we merge
these two tests, building an equivalence relation between them. For our
example using a tolerance 2 of we end up with a partial order of our
tests depicted in Figure 2.

PersonTest>>testBecomeProfessorIn

UniversityTest>>testAddPersonLegend: A B means A covers B

PersonTest>>testNew PersonTest>>testName

Fig. 2. A sample test hierarchy based on coverage sets.

2.2 Refactoring comparable test cases

Having identified comparable tests forming a partial order, we can refac-
tor them: We start again with the smallest test case and try to include
it into its next smallest comparable test case with either of the following
two refactorings:

– Abstract assertions: Move the assertion from the test into a post
condition of the method under test. In our toy example the asser-
tions are already abstract enough to work directly as post condi-
tions of the method under test. We thus could move the includes

assertion of the UniversityTest�testAddPerson into a post condition of
University�addPerson itself. Otherwise one can try to convert the con-
crete assertion of the unit test into an abstract assertion serving then
as the post condition.

– Publish Test Result: If an object created by a low level test can be
immediately used as parameter or receiver for the method under test
of a higher level test, we can directly call the low level test from our
higher level test, eliminating the need to run the low level test stan-
dalone and to recreate the scenario. This is certainly only possible,
if the test framework allows us to let the tests return objects. In
JUnit Version 4.0 all tests have to be void, thus this kind of easy
test composition would not be possible there.

Person class University class

name(...)

Person class Person
testBecomeProfessorIn

name(...)
new

assert(aUni professors includes(aPerson))

becomeProfessorIn(...)

name(...)

assert(person name = aName)

assert(person roles notNil)

new

University

addPerson(...)

persons

addRole()

Professor class

Fig. 3. The tests refactored. Only one test has to be run now, instead of four, as it
captures all former subtests in post-conditions.

3 Status and Future Work

Having analyzed [GLNW04] the partial order of the unit tests of Code-
Crawler, a code visualization tool, [Lan03] using a tolerance=0, the re-
sulting graph looked like seen in Figure 4. Observing the three right
subgraphs formed by the test covering relationship one can see that a

surprising high number of these tests are comparable, but we have not
yet refactored them.

Fig. 4. The coverage hierarchy of the Code Crawler tests visualized with Code Crawler.

In [GLNW04] we automatically detected several covering relationships
between unit tests like in the following interesting two examples (the
former ist always covering the later):
– LoaderTest�testConvertXMIToCDIF

(LoaderTest�testLoadXMI)
– SystemHistoryTest�testAddVersionNamedCollection

(SystemHistoryTest�testAddVersionNamed)
A possible refactoring suggested by the first covering relationship is to
test the loader of some XMI data structure and, letting the test giving
back the XMI structure, reusing the structure to convert it to another
structure called CDIF in the covering test.
The second covering relationship indicates an n-to-1 relationship between
addVersionNamedCollection and addVersionNamed, where reusing the result
of addVersionNamed or changing the concrete assertion of addVersionNamed

into some post condition can lead to a composed unit test.
We plan to refactor a big case study after having analysed it with our
approach and show that we can efficiently reduce testing time and pro-
vide reusable tests. With this case study we want to answer the following
questions:
– How much can we speed up the execution of the test suite?
– Can we decide automatically between several refactorings?
– Can we use our partial ordering of coverage to give us a hint, if a

refactoring was successful and all former tests are still run?
– How can we prioritize our tests in an efficient way so that atoms are

only run within their calling tests but not stand alone?

4 Related Work

In previous work we showed that failing unit tests are presented in a ran-
dom order, whereas they could be presented in a meaningful order using

the partial order of covered method signatures. [GLNW04] We also de-
fined a taxonomy of unit tests [GLN05], where we manually categorized
more than 1000 unit tests of Squeak, an open source object oriented de-
velopment system. Our results from this large case study show that most
unit tests are either atoms, which we call one-method tests, or compos-
able out of these one-method-tests. In [GND04] we suggested a Smalltalk
browser where one can integrate tests with the methods under test and
where tests are stored as factory methods on the class side of the re-
turned object. Liebermann and Hewitt also tightly integrate testing and
programming in [LH80] and reuse tests.
McGregor [McG01] suggested a way to compose partial tests along vari-
ation points.
Edwards also underlined the importance of examples [Edw04].
Test case prioritization [RUCH99] has been successfully used in the past
to increase the likelihood that failures will occur early in test runs. The
tests are prioritized using different criteria, the criterion which most
closely matched our approach was total function coverage [EMR00]. Here
a program is instrumented, and, for any test case, the number of func-
tions in the program that were exercised by this test case is determined.
The test cases are then prioritized according to the total number of
functions they cover by sorting them in order of total function coverage
achieved, starting with the highest.

5 Conclusion

We have presented a partial order using sets of covered method signatures
to detect comparable test cases. We have introduced two refactorings
which can be applied to some of these comparable test cases in order to
reduce testing time and increase reuse of test scenarios. We have given
first evidence that relevant portions of test cases do partially cover each
other, and that results obtained by the partial order are semantically
meaningful. We have not yet applied our approach to a big case study.

References

[BG98] Kent Beck and Erich Gamma. Test infected: Programmers love
writing tests. Java Report, 3(7):51–56, 1998.

[Edw04] Jonathan Edwards. Example centric programming. In OOPSLA
04: Companion to the 19th annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications,
pages 124–124. ACM Press, 2004.

[EMR00] Sebastian G. Elbaum, Alexey G. Malishevsky, and Gregg Rother-
mel. Prioritizing test cases for regression testing. In International
Symposium on Software Testing and Analysis, pages 102–112. ACM
Press, 2000.

[GLN05] Markus Gälli, Michele Lanza, and Oscar Nierstrasz. Towards a
Taxonomy of SUnit Tests. In Proceedings of ESUG Research Track
2005, September 2005. To appear.

[GLNW04] Markus Gälli, Michele Lanza, Oscar Nierstrasz, and Roel Wuyts.
Ordering broken unit tests for focused debugging. In 20th Inter-
national Conference on Software Maintenance (ICSM 2004), pages
114–123, 2004.

[GND04] Markus Gälli, Oscar Nierstrasz, and Stéphane Ducasse. One-
method commands: Linking methods and their tests, October 2004.
OOPSLA Workshop on Revival of Dynamic Languages.

[Lan03] Michele Lanza. Codecrawler — lessons learned in building a soft-
ware visualization tool. In Proceedings of CSMR 2003, pages 409–
418. IEEE Press, 2003.

[LH80] Henry Lieberman and Carl Hewitt. A session with tinker: Inter-
leaving program testing with program writing. In LISP Conference,
pages 80–99, 1980.

[McG01] John D. McGregor. Testing a software product line. Technical
report, Carnegie Mellon University, 2001.

[RUCH99] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and
Mary Jean Harrold. Test case prioritization: An empirical study.
In Proceedings ICSM 1999, pages 179–188, September 1999.

