
Testability First!
Mohammad Ghafari

University of Bern
Bern, Switzerland

mohammad.ghafari@inf.unibe.ch

Markus Eggiman
University of Bern
Bern, Switzerland

markus.eggimann@students.unibe.ch

Oscar Nierstrasz
University of Bern
Bern, Switzerland

oscar.nierstrasz@inf.unibe.ch

Abstract—[Background] The pivotal role of testing in high-
quality software production has driven a significant effort in
evaluating and assessing testing practices. [Aims] We explore the
state of testing in a large industrial project over an extended
period. [Method] We study the interplay between bugs in the
project and its test cases, and interview developers and stake-
holders to uncover reasons underpinning our observations.

[Results] We realized that testing is not well adopted, and that
testability (i.e., ease of testing) is low. We found that developers
tended to abandon writing tests when they assessed the effort to
be high. Frequent changes in requirements and pressure to add
new features also hindered developers from writing tests.

[Conclusions] Regardless of the debates on test first or later, we
hypothesize that the underlying reasons for poor test quality are
rooted in a lack of attention to testing early in the development
of a software component, leading to poor testability of the
component. However, testability is usually overlooked in research
that studies the impact of testing practices, and should be
explicitly taken into account.

Index Terms—testability, test quality, testing practices

I. INTRODUCTION

Software engineers believe that high quality of software
testing will lead to high quality in the software product.
However, it is not so clear why the state of practice does not
truly reflect this established wisdom, as software testing often
suffers from low coverage and low effectiveness.

Monitoring the activity of about 2 500 developers over
2.5 years shows that half of developers do not test, most
programming sessions end without any test execution, and
software developers only spend a quarter of their time en-
gineering tests, whereas they think they test half of the
time [1]. Consequently, software systems are often released
under-tested. What’s worse, there are contradictory views on
whether coverage criteria have a positive effect on finding
faults. Some studies claim no correlation between unit test
coverage and post-unit test defects [7], whereas a more recent
study of open source projects shows that, on average, about
30% of defective methods are covered by JUnit tests, and
the number of methods executed by a JUnit test is strongly
related to that test uncovering a defect [11]. In order to
improve the effectiveness of test suites, researcher suggest
to focus on the strength of test oracles along with code
coverage [12]. In the past years, there has been increasing
effort to assess and improve the fault-detection capability of

test suites. The state-of-the-art technique is mutation testing,
which checks the ability of a test suite to reveal artificially
produced defects [9]. Nevertheless, this technique consumes
enormous computing resources, thus hindering its application
in practice. Researchers suggest to reduce the execution time
of mutation testing, for example, by verifying the quality of
the test cases for each individual method, instead of the overall
test suite quality [14].

There is general consensus among software engineers that
to have high quality tests software needs to be testable in
the first place. However, to the best of our knowledge, the
significance of testability in the quality of test suites has not
received enough attention. There exist many definitions of
software testability [5]. In this paper we use it to mean “ease
of testing” in terms of effort needed to write tests that are both
effective in revealing defects, and manageable in the face of
changes.

We studied the interplay between bugs and test cases in a
large industrial project in which a deliberate effort was made to
improve testing quality partway through the project’s lifetime.
We affirm that many factors can influence and characterize
the testability of the project, whereas state-of-the-art work
that compares the effectiveness of various testing strategies
in multiple projects often neglects to take into account the
possibly different degrees of testability and other testing-
related characteristics of these projects.

We observed both relatively low coverage and low effec-
tiveness of tests. Many components were not tested because
they were considered hard to test. It was common for bugs
to be detected with the help of manual testing rather than
by automated tests. Developers were reluctant to write tests
for code that was subject to frequent changes. We observed
that commitment from management and team dedication were
important prerequisites to instill a healthy software testing
culture. Finally, many useful tools and techniques have come
from research efforts, yet they were often either not well-
known, or high-quality implementations were not available,
thus hampering their adoption in this company.

Digging deeper, we found that the root of the problem
appeared to be that, when testing was not considered early
in the development process, this led to software designs that
made it more difficult to test the software post hoc. In contrast,
when a deliberate management decision was taken to improve
test coverage, this led to better software designs that were
easier to test, and thus to improvements in software quality.Preprint – ESEM 2019

ar
X

iv
:1

90
8.

01
47

6v
1 

 [
cs

.S
E

] 
 5

 A
ug

 2
01

9



Regardless of existing debates on when to start automated
testing in a software project, we hypothesize that establish-
ment of clear testing policies applied throughout the entire
development lifecycle, and early attention to testing of each
component are crucial to ensure high testability of the code
base, and thus high-quality tests. We therefore see a need to
conduct new studies with multiple projects that share the same
testing practices, and put similar effort into testing.

The rest of this paper is organized as follows. We introduce
the case study in section II. We then present our key findings in
section III, followed by a discussion in section IV. In section V
we discuss related work, and conclude the paper in section VI.

II. CASE STUDY

The goal of this work was to learn about the state of testing
in a large logistics company in Switzerland, which we will call
ABC. In particular, we investigated whether developers adopt
a consistent testing practice, and if not, what are the reasons.
In the following we discuss the reasons behind choosing this
case study, and then present our methodology.

A. Motivation

We study a digital platform for sending and receiving
physical as well as electronic mail. We chose to study this
platform for the following reasons: (i) it is a large real-world
software system comprising 14 102 files with around half a
million lines of Java and C# code, and about 15 500 issues,
(ii) we have access to five years of development history from
2013 to 2018, easing the recovery of links among commits
and issues, and (iii) we could approach over 40 developers
and stakeholders for any matter about the project.

This platform, which we will call XYZ, started as a simple
web application in 2011 and grew over time. The back-end
is a large monolithic system that had its origins in that web
application. There were automated unit tests for testing the
business logic, but the coverage was generally low. As the
project grew, it became increasingly difficult to manage. In
the summer of 2017, the team decided to structure the whole
system in a more modular way. New features should be added
as modules, and these modules should be covered by unit tests.
The team and the project management agreed to strive for
40%-80% code coverage of those new modules. Moreover, a
team of testers would manually test the portal and the mobile
apps, and manual regression tests would be executed after
every development sprint.

Figure 1 shows the history of bugs in the XYZ project. The
Y axis presents the cumulative number of bugs, and the X
axis shows the time span of the project. The red dots show
the total number of reported bugs at a given point in time, and
the green dots show the number of resolved bugs. The gray
vertical lines show the project releases.

Most of the time the green line follows closely behind the
red line, which means that the total number of open bugs in the
system at a given point in time remains more or less constant
(on average 210 bugs). Whereas developers were continuously
fixing bugs throughout the lifetime of the project, the green

20
13

-0
7

20
13

-0
9

20
13

-1
1

20
14

-0
1

20
14

-0
3

20
14

-0
5

20
14

-0
7

20
14

-0
9

20
14

-1
1

20
15

-0
1

20
15

-0
3

20
15

-0
5

20
15

-0
7

20
15

-0
9

20
15

-1
1

20
16

-0
1

20
16

-0
3

20
16

-0
5

20
16

-0
7

20
16

-0
9

20
16

-1
1

20
17

-0
1

20
17

-0
3

20
17

-0
5

20
17

-0
7

20
17

-0
9

20
17

-1
1

20
18

-0
1

20
18

-0
3

20
18

-0
5

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

6,500 1.
00

1.
10

2.
00

2.
10

2.
40

2.
50

17
.1
0

17
.2
0

17
.3
0

17
.4
0

18
.1
0

18
.2
0

Time

N
u
m
b
er

of
b
u
gs

Release version

Number of resolved bugs
Number of reported bugs

Introduction of test coverage goal

Fig. 1. Bug discovery and fixes over time

line and the red line take different paths after November 2016,
and the number of open bugs slightly increases to 249 bugs,
on average.

Contrary to our expectation, we do not observe any decrease
in the number of bugs with the introduction of testing policies
and increased effort on testing in this project. This motivated
us to dig deeper into the state of testing in this company, and
to develop hypotheses for further study.

B. Methodology

In XYZ every bug, whether identified by a developer or
other stakeholders, will be reported in the Jira issue tracker
with an issue labeled as a “bug”. Each bug report comprises
a description of the bug, and the steps that others can follow
to reproduce it. Every project in the company is versioned
on a Git repository, which is hosted on a Bitbucket server.
Developers usually create a new branch once they start to fix
a bug, and should mention the issue key when committing
a fix. Internally Jira is linked to Bitbucket server, and keeps
track of branches and commits that are relevant to an issue.
Jira provides a REST API through which we can recover this
information.



We could automatically recover commits that fixed 1 119
bugs. Of these bugs, 30% (i.e., 334 bugs) were reported after
the testing effort increased in 2017. For each bug we collected
commits, file changes associated with those commits, and the
developer information.

We were interested to understand the testing practices, and
their impact on the quality of the XYZ project. In particular,
we investigated which components in the project had bugs,
why these bugs existed, whether the components were tested
before a bug report, and whether developers wrote tests during
a bug fix. As it is a non-trivial task to acquire this information
for every bug in the project, we randomly chose 200 bugs, and
manually inspected their associated commits. Of the 200 bugs,
125 were reported after the introduction of the code coverage
policy.

Together with a senior developer in the ABC company who
was familiar with the XYZ project, for every bug, we checked
which components are involved. We then inspected whether
the code part that caused the bug was covered by a unit test. If
so, we analyzed why these tests did not fail and, consequently,
did not detect the bug. We manually identified the so-called
“focal methods under test” to understand the actual purpose
of each test case [6]. We also checked whether developers
modified, added, or removed tests during the bug fix.

We interviewed the development team members and stake-
holders regarding testing practices in the project. We mainly
interviewed eight senior developers who each had a minimum
of eight years programming experience. The interviews were
conducted face-to-face within the company or on the phone,
and they were open-ended. In each interview, we usually
explained relevant findings in the experiment first, and then
asked a question. We encouraged the interviewees to freely
discuss any details relevant to the topic. We transcribed the
interviews, and analyzed them afterwards.

III. RESULTS

In this section we present the observations that we drew
from studying 200 bugs, followed by insights that developers
and stakeholders shared with us in this regard.

A. Observations

We analyzed two hundred randomly chosen bugs in depth.
Of the 244 components affected by those bugs, only eight
components were covered by unit tests. We then evaluated
how many bugs affected those eight tested components and
the remaining 236 untested ones. Our investigation showed
that all but one of the components under test were affected
by five or fewer bugs; just one was involved in 19 bugs.
Further examinations revealed that this component handles
the fingerprinting feature via a new Android API, and it took
some time for the developers to learn how to use it in the
right way. In contrast to tested components, about a quarter of
the untested components suffered from more than five bugs.
Furthermore, we could identify eight pairs of recurring bugs,
or more precisely similar bugs in the project. We also found
a few tests that were commented out during the bug fix,

(0
,5
]

(5
,1
0]

(1
0,
1
5]

(1
5,
2
0
]

(2
0
,3
0]

(3
0
,4
0]

(4
0
,5
0
]

0

50

100

150

200

172

35

15
5 3 2 2

Bugs

C
o
m
p
o
n
en
ts

Fig. 2. Bugs per component for 236 untested components

and still commented in the latest version. Figure 2 illustrates
the distribution of bugs in the untested components. Tested
components appear to be less prone to bugs than untested ones.

For over half of the analyzed bugs, multiple files needed to
be changed to fix them. Such cases might be hard to cover with
simple unit tests, but might require integration tests. We also
discovered that some bugs are due not to coding errors but to
changes in the underlying platform or to libraries. Interestingly
20 bugs required no changes to program source file to fix them,
but rather to other kinds of files like configuration or resource
files that were excluded from the analysis.

We manually inspected the code associated with each of the
200 randomly chosen bugs, and identified 140 cases that we
considered “hard to test” based on project domain knowledge.
We identified three main reasons: (i) a component violates the
single responsibility principle, (ii) it has many dependencies
on other parts of the system or external components, or (iii) no
exact definitions of correct or incorrect behavior exist, e.g., a
progress bar appearing in a wrong location. We observed that
developers almost never wrote tests for such cases. In only
three cases, i.e., 2%, the defective components were partly
covered by tests.

There were only 16 cases that we did not consider hard to
test. In seven of those, there were indeed tests that at least
partly covered the defective component. Some of those tests
existed before the bug was discovered, and some were added
when the bug was fixed.

We then asked ourselves what is the quality of the existing
tests. We consequently applied mutation testing to assess
whether the existing tests could detect changes to the source
code that were covered by the tests. Our analysis showed that
the existing tests are generally not good at detecting code
manipulations, however, tests that were introduced during the
release 17.XX onward obtained a significantly higher mutation
score in our experiment than older tests. Curiously, none of the
new components were heavily modified, though according to
the bug evolution (Figure 1) the average number of open bugs
increased. To understand the reason for this, we approached
the developers.



Tested components had fewer bugs than other components.
However, a majority of components were hard to test, thus
impacting test quality.

B. Developers’ Views

We approached team managers and developers who were
mainly involved in the top 15 of the most error-prone compo-
nents, and interviewed them about their testing practices.

We asked developers “whether writing tests is important,
and if so why the test coverage is so low.” Developers ac-
knowledged the high value of testing, but they also considered
it less important (and perhaps less glamorous) than other
tasks, such as developing new features. They stated that over
roughly a two-year period, the team was under constant pres-
sure to add more features. Furthermore, the communication
between the customer and the development team was not
very effective. The team had already started implementing
new features before all requirements were clear. This led to
misunderstandings between the developers and the customers
and resulted in many “bug reports”, which in fact were changes
in requirements. Developers stated that the high frequency of
changes demotivated them from writing tests. The team also
suffered from high turnover. As a consequence, the project
team neglected testing and quality assurance activities, which
resulted in many bugs that ended up in production.

The team manager explained that after December 2016, the
team decided to improve its Scrum process and follow it more
strictly. They improved the quality of communication between
the customer and the development team to be more open and
better structured. Quality assurance, especially automated unit
testing, was given higher priority, and a test coverage goal
was introduced and monitored using the SonarQube tool.1 As
a consequence, the quality of the product improved, which
is confirmed by feedback of both customers and developers,
as well as by a significantly higher mutation score in our
experiment. We next queried him regarding the slight increase
in the average number of open bugs starting in that period (see
Figure 1). He stated that this is a consequence of a “cleanup”
measure in which developers (rather than customers) started
to systematically report annoying but often non-critical issues,
which apparently led to the slight average increase in open
bugs. Therefore, the increase in the number of bug reports did
not necessarily indicate a decrease in the product quality.

Developers were aware of the value of testing, however,
frequent changes in the requirements, and pressure to
add new features hindered developers from writing tests.
Improved communication between stakeholders, and a clear
test coverage policy improved the quality of the product.

In most cases bugs were fixed without making changes to
any tests. We asked developers “when do you write tests?”.
We found that when the effort for developing a unit test for a
component appeared to be high, developers tended to abandon
writing tests for those components. Developers confirmed that

1http://www.sonarqube.org

several components are rather large and play an important role
in the application are prone to bugs, but are also very hard
to test. For instance, some key components that were hard
to test already at the start of the project, grew and became
more complex over time. Team members said that they never
anticipated the importance of these components in the actual
product, and so their testability was not considered at the
time. In the experiment, we found three defective components
were partly covered by tests, though they were hard to test.
Unfortunately, developers of these test cases were no longer
available to be asked what motivated them to develop such
hard-to-write tests.

Developers tended to give up writing tests for a component
that is hard to test.

We asked “does the discovery of bugs lead to new tests
being written”, and realized that developers do not follow the
practice of writing new tests that reproduce reported bugs,
though they knew it. We found that developers generally
ignore this advice especially when they are confident that
they can easily reproduce the bugs manually. They usually
fix what they assume to be trivial bugs without writing tests.
Of the eight pairs of recurring bugs, all were detected by
testers who performed manual tests before rolling out the
software. It seemed that none of the developers were aware
of recurring bugs, and unanimously agreed that they would
have written a test if they had been aware of the recurrence of
these bugs. Further discussions with developers revealed that
they seldom consider the impact of a bug (i.e., its severity) to
decide whether or not to write tests, which is staggering. They
mentioned that if a bug is critical, it is fixed immediately and
the corrections are deployed as a hotfix. Otherwise, it is moved
to the backlog of the project and resolved in one of the next
development sprints. We noticed that developers never had a
formal training for testing, and tests were only reviewed in an
ad hoc way, without the help of specific guidelines.

Developers decided to write a test mostly based on their
personal opinion rather than upon a clear guideline. The
impact of a bug barely influenced this decision.

Finally, when we asked “what specific tools do you use to
facilitate testing”, developers only named the SonarQube tool.
We then particularly asked if they use any tool, for instance, to
(i) recover the traceability links between tests and production
code, (ii) assess the quality of tests, and not just their coverage,
and (iii) recognize recurring bugs. The answer was mainly
negative: few developers knew about a couple of free mutation
testing tools, but they said that they crash and do not work as
they expected.

C. Threats to Validity

We have drawn our observations based on a single case,
which is reflective of other similarly-sized software projects
in the ABC company. However, the results may not generalize
to the state of practice in other companies in Switzerland or
abroad.



The findings of this experiment were limited to a subset
of randomly chosen bugs in the XYZ project that we could
automatically link with commits. We manually studied the
bugs, and associated commits and test cases, which could have
been imprecise due to a lack of experience with the project.
We reduced this threat by asking a senior developer in the
ABC company to help us throughout the whole journey. Also,
whenever an issue arose that we could not resolve together,
we approached team members and stakeholders of the XYZ
project.

We did our best to interview the right person for each
matter. For instance, to learn about recurring bugs, we asked
developers who fixed such bugs. Nevertheless, in cases where
the right person was not available we queried a peer in the
development team or the manager. Moreover, to reduce bias
during the interviews, we kept our questions open-ended, and
encouraged the interviewees to discuss any matter related to
the topic. The interviews were conducted in German and
English, and it may be possible that we misunderstood the
answers. We mitigated this threat by double-checking our
conclusions with the practitioners.

IV. DISCUSSION

We observed that testing is limited in the XYZ project, and
from developers’ insights we found that the root cause of this
phenomenon is that the testability of the project is low.

We see a clear need to encourage developers to start
testing early, mainly to ensure testability i.e., the possibility
to write automated tests without requiring high effort. We
believe realizing the “testability” goal requires commitment
from both management and from the development team. For
instance, management should establish regular training about
software testing, guidelines for writing and reviewing tests,
and recognition for testing efforts as being equivalent in value
to development tasks. Moreover, developers should commit
to a culture of testing. Finally, tool support may exist either
as research prototypes or as industrial products, but only few
tools are adopted in practice; both industrial applicability and
awareness of these tools must be improved.

There are enduring debates in the state-of-the-art work that
studies the impact of testing practices. For instance, Bissi et
al. conduct a systematic review to identify publications that
compare the effect of Test Driven Development (TDD) and
Test Later Development (TLD) [2]. They conclude from the
findings of previous studies that TDD yields more benefits than
TLD for internal and external software quality, but it results in
lower developer productivity. Pancur et al. compare TDD and
TLD based on productivity, code coverage, fault-finding capa-
bilities, etc. [8]. The experiment is conducted with fourth-year
undergrad students during a course on distributed systems. The
students are introduced in general to testing as well as TDD
and TLD. They conclude that the benefits of test-driven devel-
opment compared to iterative test-last development are small,
and there is no difference regarding productivity. Fucci et al.
conduct an experiment with professionals in two companies.
From four runs of a workshop about unit testing and TDD

at these two companies, they find that the order in which test
and production code are written has no important influence on
software quality or developer productivity [4]. They conclude
that the claimed benefits of TDD may be due to the fact that
TDD-like processes encourage fine-grained, steady steps that
improve focus and flow. Finally, Borle et al. study open source
Java projects that have adopted TDD to some extent. They
find that this practice is relatively rare in GitHub projects, and
that the characteristics of projects with and without TDD are
almost the same [3]. These studies were conducted in different
and incomparable settings, for example one with a student
project, and the other with professionals through a course of
workshops. The subjects had different levels of experience, and
the effort they put into testing is likely different. Consequently,
the level of testability in these projects may vary, and so we
cannot easily draw any valid conclusions about the relative
benefits of the different practices.

Regardless of the contradictory views on test first or later,
we argue the need for “testability first!”: we hypothesize that
establishment of clear testing policies applied throughout the
entire development lifecycle, and early attention to testing of
each component are crucial to ensure high testability of the
code base, and thus high-quality tests.

In order to draw reliable conclusions about the impact of
testing practices, such as whether writing tests before code is
advantageous, we therefore see a need to conduct new studies
with multiple projects that share the same level of testability:
similar effort has been put into testing from management to
the development team.

V. RELATED WORK

Kochhar et al. interview and survey practitioners to under-
stand the characteristics of good test cases and testing prac-
tice [10]. For instance, practitioners agree that high coverage
does not mean that a test suite can detect more bugs, and
that designing tests that cover different requirements is often
superior to maximizing code coverage. They also strongly
concur with writing a test that cover a bug fix.

Petric et al. study how effectively defective code is actually
tested in seven open source Java projects, and show that most
of these projects are under-tested. On average about 30% of
defective methods are covered by JUnit tests, and the number
of methods touched by a JUnit test is strongly related to that
test uncovering a defect [11].

Gren and Antinyan study the relationship between unit
testing and code quality, and find no correlation between unit
test coverage and post-unit test defects [7].

Schwartz et al. investigate the cause behind contradictory
answers to the question whether coverage criteria have a
positive effect on finding faults [12]. They find that test suites
with high code coverage are not able to find specific types
of faults as frequent as other types. They conclude that code
coverage alone does not ensure that faults are triggered and
detected, and that the selection of input and oracle can improve
the effectiveness of test suites.



Toure et al. investigate the ability of a synthetic metric
called “Quality Assurance Indicator” to predict early the
testing effort in object-oriented software systems [13]. They
analyze eight open-source Java projects, and show that the
models trained based on this metric have a promising perfor-
mance to predict the effort required for writing unit test cases.

Garousi et al. summarize a pool of 208 papers that help both
practitioners and researchers to prepare, measure, and improve
software testability [5]. They report that observability and
controllability are the two most frequent factors affecting testa-
bility, and common ways to improve testability are testability
transformation, improving observability, adding assertions, and
improving controllability.

VI. CONCLUSIONS

We have presented our observations on the state of testing
in a large industrial software project. We affirmed that various
factors can influence and characterize the testability of a
project.

We found that test coverage was relatively low until a
deliberate policy was put in place to improve it. Mutation
testing revealed that existing tests were often of low quality.

In general developers gave up writing automated tests when
the effort was high, though there was incentive to write tests
for critical components. When they were pressured to prioritize
development of new features over tests, test coverage suffered.
A deliberate management policy to improve test coverage led
to an increase in tests and in the quality of the code.

Developers were reluctant to test software that undergoes a
high rate of change. They typically did not write new tests
while fixing bugs, and the bug severity had no impact on
writing tests. Developers were not aware of recurring bugs,
and therefore such bugs were mostly captured during manual
testing.

We observe a lack of attention to the testability of software
in the state-of-the-art work that studies the impact of testing
practices and methodologies. We hypothesize that establish-
ment of clear testing policies applied throughout the entire
development lifecycle, and early attention to testing of each
component are crucial to ensure high testability of the code
base, and thus high-quality tests. We therefore see a need to
conduct new studies with multiple projects that are similar in
terms of testability.

ACKNOWLEDGMENT

We appreciate the entire development team and stakeholders
of the XYZ project who supported us during this experiment.
We also thank the anonymous reviewers for their valuable
feedback that led to a more coherent version of this paper.

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile Soft-
ware Assistance” (SNSF project No. 200020-181973, Feb. 1,
2019 - April 30, 2022).

REFERENCES

[1] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian
Proksch, Sven Amann, and Andy Zaidman. Developer testing in the
IDE: Patterns, beliefs, and behavior. IEEE Transactions on Software
Engineering, 45(3):261–284, March 2019.

[2] Wilson Bissi, Adolfo Gustavo Serra Seca Neto, and Maria Claudia
Figueiredo Pereira Emer. The effects of test driven development on
internal quality, external quality and productivity: A systematic review.
Information and Software Technology, 74:45 – 54, 2016.

[3] Neil C. Borle, Meysam Feghhi, Eleni Stroulia, Russell Greiner, and
Abram Hindle. Analyzing the effects of test driven development in
GitHub. Empirical Software Engineering, 23(4):1931–1958, Aug 2018.

[4] Davide Fucci, Hakan Erdogmus, Burak Turhan, Markku Oivo, and
Natalia Juristo. A dissection of the test-driven development process:
Does it really matter to test-first or to test-last? IEEE Transactions on
Software Engineering, 43(7):597–614, July 2017.

[5] Vahid Garousi, Michael Felderer, and Feyza Nur Klçaslan. A survey on
software testability. Information and Software Technology, 108:35 – 64,
2019.

[6] Mohammad Ghafari, Carlo Ghezzi, and Konstantino Rubinov. Automat-
ically identifying focal methods under test in unit test cases. In 2015
IEEE 15th International Working Conference on Source Code Analysis
and Manipulation (SCAM), pages 61–70, Sep. 2015.

[7] Lucas Gren and Vard Antinyan. On the relation between unit testing
and code quality. In 2017 43rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 52–56, Aug
2017.

[8] Matja Panur and Mojca Ciglari. Impact of test-driven development on
productivity, code and tests: A controlled experiment. Information and
Software Technology, 53(6):557 – 573, 2011. Special Section: Best
papers from the APSEC.

[9] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and
Mark Harman. Chapter six — Mutation testing advances: An analysis
and survey. volume 112 of Advances in Computers, pages 275 – 378.
Elsevier, 2019.

[10] Kochhar Pavneet Singh, Xin Xia, and David Lo. Practitioners’ views on
good software testing practices. In Proceedings of the 41st International
Conference on Software Engineering, ICSE ’19, 2019.

[11] Jean Petrić, Tracy Hall, and David Bowes. How effectively is defective
code actually tested?: An analysis of JUnit tests in seven open source
systems. In Proceedings of the 14th International Conference on Predic-
tive Models and Data Analytics in Software Engineering, PROMISE’18,
pages 42–51, New York, NY, USA, 2018. ACM.

[12] Amanda Schwartz, Daniel Puckett, Ying Meng, and Gregory Gay.
Investigating faults missed by test suites achieving high code coverage.
Journal of Systems and Software, 144:106 – 120, 2018.

[13] Fadel Toure, Mourad Badri, and Luc Lamontagne. Predicting different
levels of the unit testing effort of classes using source code metrics: a
multiple case study on open-source software. Innovations in Systems
and Software Engineering, 14(1):15–46, Mar 2018.

[14] Sten Vercammen, Mohammad Ghafari, Serge Demeyer, and Markus
Borg. Goal-oriented mutation testing with focal methods. In Proceedings
of the 9th ACM SIGSOFT International Workshop on Automating TEST
Case Design, Selection, and Evaluation, A-TEST 2018, pages 23–30,
New York, NY, USA, 2018. ACM.


