
Automated Generation of Code Contracts: Generative
AI to the Rescue?

Sandra Greiner
University of Southern Denmark

Odense, Denmark

Noah Bühlmann
University of Bern
Bern, Switzerland

Manuel Ohrndorf
University of Bern
Bern, Switzerland

Christos Tsigkanos
University of Athens

Athens, Greece

Oscar Nierstrasz
Feenk

Bern, Switzerland

Timo Kehrer
University of Bern
Bern, Switzerland

Abstract
Design by Contract represents an established, lightweight
paradigm for engineering reliable and robust software sys-
tems by specifying verifiable expectations and obligations
between software components. Due to its laborious nature,
developers hardly adopt Design by Contract in practice. A
plethora of research on (semi-)automated inference to re-
duce the manual burden has not improved the adoption of
so-called code contracts in practice. This paper examines the
potential of Generative AI to automatically generate code
contracts in terms of pre- and postconditions for any Java
project without requiring any additional auxiliary artifact.
To fine-tune two state-of-the-art Large Language Models,
CodeT5 and CodeT5+, we derive a dataset of more than 14k
Java methods comprising contracts in form of Java Modeling
Language (JML) annotations, and train the models on the
task of generating contracts. We examine the syntactic and
semantic validity of the contracts generated for software
projects not used in the fine-tuning and find that more than
95% of the generated contracts are syntactically correct and
exhibit remarkably high completeness and semantic correct-
ness. To this end, our fully automated method sets the stage
for future research and eventual broader adoption of Design
by Contract in software development practice.

CCS Concepts: • Software and its engineering → Soft-
ware verification and validation; • Computing methodolo-
gies → Artificial intelligence.

Keywords: Design by Contract, Software Verification, Gen-
erative AI, Large Language Models
ACM Reference Format:
Sandra Greiner, Noah Bühlmann, Manuel Ohrndorf, Christos
Tsigkanos, Oscar Nierstrasz, and Timo Kehrer. 2024. Automated

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1211-1/24/10
https://doi.org/10.1145/3689484.3690738

Generation of Code Contracts: Generative AI to the Rescue?. In
Proceedings of the 23rd ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE ’24), Oc-
tober 21–22, 2024, Pasadena, CA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3689484.3690738

1 Introduction
Code contracts are widely recognized as a lightweight tech-
nique to achieve software reliability and robustness [40].
Introduced in the context of object-oriented programming,
the paradigm of Design by Contract encourages developers to
formally specify code contracts to be automatically verified
during program execution [41]. Preconditions specify the
expectations for clients invoking a method, while postcondi-
tions define the obligations guaranteed by the supplier (i.e.,
the method). Class invariants ensure the integrity of objects
and must hold between consecutive method calls. Conse-
quently, code contracts specify the behavior of collaborating
objects and, thus, of the software in a declarative way.
Code contracts enable benefits ranging from preventing,

detecting, and semi-automatically correcting errors at all
software development stages [26, 40, 41], to an up-to-date
documentation facilitating program understanding, main-
tenance, and evolution [40, 41, 48]. For instance, an exten-
sive empirical study [15] found that whenever projects em-
ploy contracts, the contracts tend to be extended over time,
most likely as contracts are perceived to be valuable. De-
spite the benefits, most object-oriented software in practice
lacks explicit contracts [4, 11, 15, 52]. Software defined in
programming languages featuring native support for Design
by Contract, such as Eiffel [42], tend to use more, but usually
incomplete contracts [4, 15, 60]. Besides annotation burden,
missing tool support, and lack of training [52], the over-
head of specifying contracts may be assumed to outweigh
its expected return on investment [11],
To mitigate the burden of specifying contracts manu-

ally, researchers have proposed (semi-)automated contract
inference techniques of three main types: (i) Static tech-
niques [8, 20, 21, 28, 37, 45] infer contracts from the source
code through static analysis. (ii) Dynamic techniques [1, 13,

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

1

https://orcid.org/0000-0001-8950-0092
https://orcid.org/0000-0001-6324-4780
https://orcid.org/0009-0002-2135-1136
https://orcid.org/0000-0002-9493-3404
https://orcid.org/0000-0002-9975-9791
https://orcid.org/0000-0002-2582-5557
https://doi.org/10.1145/3689484.3690738
https://doi.org/10.1145/3689484.3690738
https://creativecommons.org/licenses/by/4.0/

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA S. Greiner, N. Bühlmann, M. Ohrndorf, C. Tsigkanos, O. Nierstrasz, and T. Kehrer

14, 60] exploit various data obtained from executing pro-
grams. (iii) Mixed techniques [19, 32] employ auxiliary ar-
tifacts, such as natural language specifications. Static in-
ference (i) requires almost no upfront investment but only
deduces simple properties that hardly yield comprehensive
contracts [15]. Dynamic techniques (ii) may infer contracts of
higher completeness but require to execute the programsand
to collect the necessary data. Still, achieving completeness
is generally infeasible, similar to the task of software test-
ing [12]. While mixed techniques (iii) increase comprehen-
siveness of code contracts by regarding domain knowledge
beyond the source code or execution data, they burden devel-
opers to provide the auxiliary artifacts. Despite considerable
research efforts and obvious benefits, a recent empirical study
on contract usage in the wild [11] found no evidence for an
increasing adoption of contracts.
In this paper, we aim to exploit the strengths of a static

approach while avoiding its limitations: We envision to stati-
cally generate correct and complete contracts [1] from source
code without any upfront investment or auxiliary data. En-
couraged by the remarkable potential of Generative Artifi-
cial Intelligence (AI), particularly, of Large Language Models
(LLMs), in aiding software engineering [17, 24, 44], includ-
ing code-related tasks [5, 59, 63], we explore whether LLMs
can generate high-quality code contracts and examine the
following research questions:
RQ 1: How suitable are existing real-world code contracts to

fine-tune an LLM for contract generation?
We examine the properties and size of data necessary to
refine existing LLMs to perform the contract generation.

RQ 2: Can the fine-tuned LLM generate well-formed code con-
tracts?
We examine whether the created contracts are syntac-
tically correct and compile without any further manual
repairs. This indicates the degree of automation achieved.

RQ 3: Can the fine-tuned LLM generate logically valid code
contracts?
We examine whether the created contracts are complete
(i.e., they forbid any unintended behavior) and correct (i.e.,
they allow any known intended behavior).
To answer these questions, in an exploratory study, we

examine the quality of code contracts generated by fine-
tuned LLMs. We target Java as a widely used object-oriented
language. Thus, we need a dataset of real-world contracts
suitable for training the downstream task. We collect Java
methods featuring code contracts specified as Java Model-
ing Language (JML) [30] annotations. Based on this novel
dataset, we fine-tune CodeT5 [59] and CodeT5+ [58], LLMs
pretrained on code-related tasks, to generate code contracts,
and we systematically evaluate the models’ performances.
As result, we find 73 projects involving about 14k JML

annotations by searching multiple open-source repositories
(e.g., GitHub and Bitbucket); contributing a novel dataset

of JML-annotated software. Despite the resulting, relatively
small dataset for fine-tuning, we achieve remarkably good
results. The quantitative assessment of the models’ perfor-
mances in terms of state-of-the-art NLP metrics (RQ1) are
similar to other language translation tasks, notably between
natural languages, where LLMs are recognized as state-of-
the-art. Second, the well-formedness analysis (RQ2) shows
that more than 95% of the generated contracts do not vio-
late the syntax and static semantics of JML; i.e., the created
contracts compile for software projects neither involved in
the fine-tuning nor in the pre-training. By further analyzing
the non-compiling contracts, we find recurring error patterns
mainly related to JML-specific functionality besides omitted
symbols. Third, we find that the majority of the generated
contracts are logically valid (RQ3); i.e., they are correct and
of higher completeness (i.e., prohibit more unintended be-
havior) than reference contracts.

In summary, this paper contributes:
• A novel dataset of 14k Java methods annotated with JML.
• An instance of LLM-based contract generation using fine-
tuned CodeT5 and CodeT5+ models.

• A quantitative analysis of the fine-tuned models’ perfor-
mance using standard NLP evaluation metrics.

• A qualitative analysis of the compilability and logic va-
lidity of the generated contracts in software projects, not
used for the fine-tuning.

• A replication package [22], including the novel dataset,
the fine-tuned models, and the scripts used in our study.

2 Background
This section recalls background information on Design by
Contract, before it presents key concepts of Generative AI.

2.1 Design by Contract
Design by Contract [40, 41] introduces code contracts as a
way to specify expectations and obligations of a software
component with respect to its clients. Contracts specify these
mutual responsibilities in terms of preconditions, postcondi-
tions, and invariants to ensure correctness, clarity, and main-
tainability. Such contracts are sometimes called lightweight
or runtime contracts [15] to distinguish them from strictly
formal methods of compile-time verification, such as Hoare
logic [23]. While several (technical) domains adopt the con-
tracts paradigm [9, 18, 57], in this work, we remain in its
traditional application of object-oriented software develop-
ment [41]. In more detail, code contracts include:
Preconditions are predicates that must hold before exe-

cuting a program unit. In object-oriented languages, they
typically express the requirements that invokers of public
methods should fulfil.

Postconditions are predicates that must hold after execut-
ing a program unit. In object-oriented languages, they

2

Automated Generation of Code Contracts: Generative AI to the Rescue? GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

1 public c l a s s Stack <T> {

2 public T top() {...}

3 public boolean isEmpty () {...}

4 //@ requires !(this.isEmpty ());

5 public T pop() {...}

6 //@ ensures !(this.isEmpty ()) &&

this.top()==e;

7 public void push(T e) {...}

8 }

Listing 1. Java Class Stack with JML code contracts.

typically express the obligations or guarantees of the sup-
pliers of public methods.

Invariants are predicates that express the valid states of a
program unit. In object-oriented languages, they typically
express properties of classes that must hold for each exist-
ing instance at the start and end of every public method.
Implementing Design by Contract varies across program-

ming languages. While the programming language Eiffel is
the only current language with built-in support to specify
code contracts [42], mainstream object-oriented languages
support code contracts through dedicated annotations. In our
study, we examine code contracts specified in JML [30, 31],
expressed as built-in Java annotations. While JML encom-
passes several keywords and operators, we focus on contracts
for Java methods, in the form of pre- and postcondition an-
notations (//@ requires and //@ ensures, respectively) .
Listing 1 presents an excerpt of a Stack implementation

annotated with JML contracts (//@). The method pop() speci-
fies as a precondition that the stack not be empty when it is
called. The method push() specifies as postcondition that the
stack will not be empty and the element on top of the stack
will be the input object of the method after its execution.

2.2 Large Language Models
Language modeling models the probability of word se-
quences to predict the probability of future (or missing) to-
kens. Large Language Models (LLMs) have been pre-trained
on immense amounts of text data to learn at a large and
general scale.
The Transformer architecture [56] lays the foundation

for nearly all recent work on LLMs. Encoder-only mod-
els [6, 10, 36] excel in analytical tasks that require a deep
understanding of the input text, such as code retrieval [25]
whereas decoder-only models [50] excel in generative tasks,
such as code creation. Encoder-decoder models [33, 51, 54]
excel in adaptive tasks that analyze and generate text.
Encoder-decoder models include MASS [54], BART [33],
and T5 [51]. State-of-the-art encoder-decoder models for
code-related tasks encompass CodeT5 [59] and CodeT5+ [58]
which are pre-trained on the source code tasks: code sum-
marization, translation, and generation. Due to the encoded
knowledge, we explore their capability of annotating Java

methods, which requires analyzing the method and generat-
ing respective code contracts.

3 Methodology
LLMs pre-trained on general text-to-text tasks require fine-
tuning to learn specific downstream tasks. Thus, our study
involves three main steps: First, for learning the task of gen-
erating code contracts, we gather an appropriate dataset
from open-source repositories (Sec. 3.1). Second, the data
serves to fine-tune the CodeT5 and CodeT5+models (Sec. 3.2).
Third, we evaluate the fine-tuned models’ performance with
standard NLP metrics quantitatively (Sec. 3.3) and examine
the well-formedness of the generated contracts (Sec. 3.4 and
Sec. 3.5). We provide the gathered and processed data in an
open-source replication package [22].

3.1 Dataset Collection
Noting the absence of previous work on the intersection of
Design by Contract and machine learning, the first objective
of our work addresses curating a suitable dataset for the
training task. While empirical studies on contract usage in
practice exist, none of the existing datasets serves for fine-
tuning. Estler et al. [15] mainly study how code contracts
change as part of software evolution. Their datasets comprise
project histories, including lots of redundant information
of the unchanged (parts of) contracts. Dietrich et al. [11]
examine the usage of contracts in the wild. Their dataset
contains several projects not using contracts at all. Schiller
et al. [52] conduct case studies involving developers. Their
dataset is of small size and only involves Microsoft Code
Contracts. Zhang et al. [64] provide a dataset consisting of
514 Python functions from student exercises that the authors
annotated with contracts manually, a too small size for fine-
tuning a LLM successfully.

Consequently, we curate a dataset tailored to fine-tune the
LLMs. This requires a critical number of pairs of source code
and respective contracts from diverse projects. Targeting an
object-oriented languagewhich is widely used in practice, we
search for Java source code annotated with OpenJML speci-
fications, as popular technique for adding code contracts in
Java [11, 30, 31, 43]. As JML is mainly used to specify pre-
and postconditions for methods [43], we restrict our dataset
to JML pre- and postconditions specified for Java methods1.
We exclude interfaces because they do not contain the actual
method body based on which we fine-tune the pretrained
CodeT5 models. As a result, an entry in our dataset consists
of two parts: (1) The source code of a Java method, and (2)
its OpenJML pre- and/or postcondition annotations.

To gather publicly available software projects containing
JML annotations, we employed Sourcegraph2, a code search

1Java assertions are not considered as it cannot be reliably determined
whether an assertion is used as a code contract or for another purpose [11].
2https://sourcegraph.com/search

3

https://sourcegraph.com/search

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA S. Greiner, N. Bühlmann, M. Ohrndorf, C. Tsigkanos, O. Nierstrasz, and T. Kehrer

lang:java type:file count:all //@ requires

lang:java type:file count:all //@ ensures

Listing 2. Sourcegraph search queries for dataset collection.

Table 1. Hyperparameters used in fine-tuning.

Hyperparameter Value

Epochs 10
Batch size 8
Learning rate 5e-5
Learning rate warm-up steps 200
Gradient accumulation steps 8
Weight Decay 0.05

engine indexing open-source content of the source code host
platforms, GitHub, GitLab, and BitBucket. Listing 2 shows
the two input search strings. These queries return line-based
occurrences of the OpenJML pre- and postcondition anno-
tations, //@ requires and //@ ensures, respectively. Next, we
extracted the Java methods corresponding with the gathered
pre- and postconditions from the respective project reposi-
tories. We converted the original Java source code file into
srcML [39]. The srcML representation is fully source code
text-preserving (including comments, formatting, and white
space) but at the same time allows for structural search of
the source code. Finally, we used XPath on the XML-based
structure of srcML to extract each OpenJML annotation.

3.2 Fine-Tuning of Selected LLMs
In the next step, we use the gathered dataset to fine-tune
LLMs on the task of automatically generating OpenJML con-
tracts for a Java method. We selected the open-source mod-
els CodeT5 [59] and CodeT5+ [58] which are pre-trained on
code-related tasks in popular programming languages and
achieve state-of-the-art performance in all code-related tasks
of the CodeXGLUE benchmark [16]. These encoder-decoder
models excel in adaptive tasks, such as our task of generating
code contracts, which requires analyzing a method’s source
code and generating respective code contracts.
For fine-tuning both models, we employed the PyTorch-

based HuggingFace3 transformers library. To configure the
fine-tuning, we used the training hyperparameters suggested
for CodeT5 and CodeT5+ [58, 59] and the PyTorch imple-
mentation of the AdamW (Adam with Decoupled Weight
Decay) optimization algorithm [38]. Table 1 summarizes the
hyperparameter values used.

3https://huggingface.co/

3.3 Performance Evaluation of Fine-Tuned LLMs
To evaluate the fine-tuned models’ performance (answering
RQ 1), we apply established experimental practice for stan-
dard NLP evaluation in a 5-fold cross-validation setup: The
original dataset was randomly shuffled and split into five
subsets of equal size. We performed five rounds of separate
training for each, CodeT5 and CodeT5+. In each round, one
of the five subsets served as hold-out set; i.e., it was not used
for training but for testing, using the following metrics:
Exact match compares the generated text with the refer-

ence text. It either assumes the values 0 or 1, with a score
of 1 meaning that the generated sample exactly matches
the reference sample.

Cross-entropy represents the default loss function for most
Transformer models, ranging from 0 to 1, with 0 as best
score. It encodes the difference between two probability
distributions, concretely, the difference between the actual
distribution of words and the distribution of the words in
the test set.

BLEU [47] originates from evaluating machine translation
of natural language, ranging from 0 to 1, with 1 as best
score. It combines 𝑛-gram precision with a brevity penalty
for the final score. We compute BLEU with a maximum-
order of four; i.e., n-grams up to the size of four are con-
sidered.

ROUGE [34] is used for evaluating machine translation and
text summarization, ranging from 0 to 1, with 1 as best
score. We compute ROUGE-L [35], which describes the
similarity between the reference and the generated text
based on the longest common subsequence.

TER [53] originates from evaluating machine translation.
TER describes the number of steps to transform generated
text into reference text. The normalized value ranges from
0 to 1, with 0 as best score.

3.4 Syntactic Analysis of Generated Code Contracts
One prerequisite for developers perceiving generated con-
tracts as useful is that the JML annotations are well-formed
regarding JML’s syntax and static semantics, as motivated by
RQ 2; i.e., the generated contracts should compile without
errors. Thus, we investigate whether the generated contracts
compile in selected case studies, which were not used in the
fine-tuning, and classify the occurring types of errors.
We used the best-performing fine-tuned model of the 5-

fold cross-validation to generate contracts for open-source
Java projects which are not included the fine-tuning dataset.
We implemented a fully-automated application which ex-
tracts all Java methods from a given project. The program
provides the extracted methods to the fine-tuned model to
generate the JML annotations and integrates the generated
annotations above the respective method heads in the origi-
nal source code.

4

https://huggingface.co/

Automated Generation of Code Contracts: Generative AI to the Rescue? GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

Next, we analyze whether the generated contracts compile
with OpenJML [46]. First, we automatically count how many
different types of compilation errors are reported by Open-
JML for the selected case studies. This provides us with a
first indication of the feasibility of using the fine-tuned mod-
els. Second, for the contracts violating the OpenJML syntax,
one of the authors explored the reasons for the compilation
errors reported by OpenJML manually, and examined and
classified the errors of the generated annotations. A second
author independently controlled the reported results. Even-
tually all authors discussed and consolidated the qualitative
examination and derivation of error classes.

Due to the manual analysis setup of the qualitative exami-
nation, suitable subject systems must be tractable for man-
ual inspection. Therefore, we selected two academic Java
projects and a sample of well-maintained real-world Java
projects: The academic projects, Simple-Stack and Simple-
TicTacToe, evolved in an advanced programming course
over about 20 years. They allow us to analyze compilation
errors through manual inspection. Furthermore, due to their
academic nature, the two subjects were neither involved in
the pre-training of CodeT5 and CodeT5+ nor did we use
them for fine-tuning. They thus provide an initial insight
into the models’ capability to generalize from the training
set. Additionally, we selected the real-world Java projects,
Commons-CSV, Jsoup, and Mockito, which we did not use
in the fine-tuning. These Java projects are of varying size
and complexity and form part of the Defects4J [27] collec-
tion of reproducible defects – a well-established and widely
recognized set of case studies for software testing. The fol-
lowing list presents all projects selected as subjects (key
characteristics thereof are presented in Table 4).
Simple-Stack An academic project designed to introduce
Design by Contract in an undergraduate programming
course using a classical stack implementation in Java.

Simple-TicTacToe An academic project that implements a
command-line version of the popular Tic-Tac-Toe game.

Commons-CSV4 A library that provides an interface for
reading and writing CSV files.

Jsoup5 A library for parsing, extracting, and manipulating
data stored in HTML documents.

Mockito6 A framework to create mock objects for Java unit
testing.

3.5 Logical Analysis of Generated Contracts
In addition to the syntactic analysis, we examine the logical
validity of the generated contracts – this entails assessing
the intended behavior of the source code equipped with con-
tracts. To reason about the validity of contracts, we examine
their (logical) correctness and completeness [1]: Contracts

4https://github.com/apache/commons-csv
5https://github.com/jhy/jsoup
6https://github.com/mockito/mockito

are logically valid if they allow any intended program be-
havior (correctness) but forbid any unintended one (com-
pleteness). Automatically measuring correctness and com-
pleteness of contracts is hardly possible because it requires
detailed knowledge of the programs’ semantics [1, 15].
To this end, we performed an in-depth manual analysis,

comparing generated contracts with a reference implemen-
tation with properly defined contracts and well-known pro-
gram behavior. Simple-Stack and Simple-TicTacToe (Sec. 3.4)
served as subjects for this analysis. Both projects were used
to introduce Design by Contract academically for decades
and, thus, encompass thoroughly engineered contracts. We
can reasonably assume that the reference contracts are cor-
rect whereas we cannot assume them to be complete – a
laborious exercise, contradicting the lightweight formal spec-
ification idea of contracts [15]. One author performed the
logical analysis and a second one checked it independently.

We classified the generated contracts by comparing them
with the pre- and postconditions of the respective reference-
contract. Comparing the generated condition 𝑐𝑔 with its ref-
erence condition 𝑐𝑟 results in the following classes:
Equivalent 𝑐𝑔 is logically equivalent to 𝑐𝑟 (i.e., 𝑐𝑔 ⇐⇒ 𝑐𝑟).
Generated conditions of this class are correct and can be
considered useful for developers.

Weaker 𝑐𝑔 is less restrictive than 𝑐𝑟 (i.e., 𝑐𝑟 =⇒ 𝑐𝑔). Weaker
conditions indicate incompleteness because they allow for
behavior not intended by the program according to its
reference specification.

Stronger 𝑐𝑔 is more restrictive than 𝑐𝑟 (i.e., 𝑐𝑔 =⇒ 𝑐𝑟).
Stronger conditions may be (i) valid if they forbid unin-
tended program behavior not restricted by the reference
(which may not be complete), (ii) invalid if they forbid
intended program behavior which indicates incorrectness
of the generated contract.

Unrelated 𝑐𝑔 and 𝑐𝑟 are logically unrelated. Similar to stron-
ger conditions, they may be valid or invalid (i.e., incorrect).

Please note: an unrelated match may result, for instance, if
only one reference precondition exists while our fine-tuned
model computes an additional postcondition. If the addi-
tional postcondition allows for all intended behavior while
forbidding some unintended behavior, it is a valid but an
unrelated condition and invalid otherwise.

4 Results
This section presents the outcome of our analyses, guided
by the three research questions motivated in Sec. 1.

4.1 RQ 1: How suitable are existing real-world code
contracts to fine-tune an LLM for contract
generation?

We collected a dataset containing 29,636 JML annotations
extracted from 14,270 Java methods implemented in 73 dif-
ferent repositories. Table 2 summarizes key characteristics

5

https://github.com/apache/commons-csv
https://github.com/jhy/jsoup
https://github.com/mockito/mockito

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA S. Greiner, N. Bühlmann, M. Ohrndorf, C. Tsigkanos, O. Nierstrasz, and T. Kehrer

Table 2. Key characteristics of the 73 repositories in the collected dataset. The age is stated in years.

Metric JML annotations commits forks stars pull requests age

Mean 406 2 520 33 77 56 6.90
Std. Deviat. 2 304 4 956 101 203 148 2.82

Minimum 1 1 0 5 0 0.33
25th perct. 6 21 2 7 0 5.06
Median 15 191 6 17 1 7.22
75th perct. 166 2 275 18 51 26 9.13
Maximum 19 653 21 240 776 1537 919 12.53

Table 3. Performance of the fine-tuned CodeT5, CodeT5+,
and CodeT5_without (weka in the dataset) models.

Metric CodeT5 CodeT5+ CodeT5+
without

Exact match 0.578 0.598 0.439
Cross-entropy 0.046 0.046 0.134
BLEU 0.457 0.456 0.362
ROUGE 0.837 0.849 0.763
TER 0.426 0.427 0.494

of the 73 projects which are all reported in the replication
package [22]. We observe that very few projects contribute
the majority of annotations. While the median is only 15
annotations per project, the projectweka7 contributes almost
two-thirds of all annotations. Moreover, we observe that the
second to fourth largest projects in terms of the number
of contained JML annotations (i.e., verifast8, verified_SuV 9,
and OpenJML10) relate to the domain of formal software
verification.

As the project weka contributes the majority of annota-
tions in the dataset, we fine-tuned the CodeT5+ model again
with a dataset excluding the respective weka-entries. In this
way, we explore the influence on the performance while
recognizing that the training dataset might be too small for
fine-tuning. Table 3 compiles the result of evaluating the
fine-tuned CodeT5 and CodeT5+ models in a 5-fold cross-
validation with an 80% train and 20% test split. It reports
the measurements of the metrics (cf., Sec. 3.3) for the best-
performing model. The first and second column present the
results of testing the performance with the dataset includ-
ing weka whereas the third column captures the results of
training without weka.
The results clearly demonstrate that the performance of

CodeT5 and CodeT5+ for the large training set is very similar
across the evaluationmetrics. In fact, we add the third digit to
7https://github.com/svn2github/weka
8https://github.com/verifast/verifast
9https://github.com/m3mmar/verified_SuV
10https://github.com/OpenJML/OpenJML

show the marginal differences for the majority of evaluation
metrics. More importantly, the fine-tuned models achieve a
fairly high exact match score: nearly 60% of the generated
code contracts exactly match the original JML annotation.
This result also explains the high ROUGE score of about
0.84, indicating a significant textual overlap between the
generated annotations and the provided references.

BLEU scores above 0.3 reflect understandable translations
whereas BLEU scores above 0.5 reflect good and fluent trans-
lation [29]. The achieved BLEU score of about 0.46 mea-
sures more than twice as high as the overall performance of
CodeT5+ (0.19) in the related code summarization task [58].
The performance of CodeT5+ trained without weka (i.e.,

with ca. 4k entries) is worse due to the extremely small
dataset. Still, the model performs well with an exact match
rate of more than 40% and a BLEU score which is just 10%
less than achieved with the three times larger dataset. This
tendency of about 10% performance reduction can also be
observed for the remaining metrics.

The quantitative performance evaluation demonstrates
that real-world contracts are suitable to fine-tune state-
of-the-art LLMs pretrained on code-related tasks. De-
spite the comparatively small dataset, we gain almost
60% exact match rate. Moreover, the performance of the
model trained only on about 4k methods shrinks only by
about 10% – a remarkable result suggesting that prelimi-
nary knowledge about code contracts resides in CodeT5.

4.2 RQ 2: Can the fine-tuned LLM generate
well-formed code contracts?

Next, we examined whether the generated code contracts
benefit or burden developers by checking whether they can
be compiled with OpenJML. Table 4 summarizes the results
of our compilation analysis assessing the well-formedness
of generated contracts by the best-performing LLM in the
training (i.e., CodeT5+ including the weka repository).
The number of generated contracts is higher than the

number of methods because the models may generate both
pre- and postconditions for a single method and even more

6

https://github.com/svn2github/weka
https://github.com/verifast/verifast
https://github.com/m3mmar/verified_SuV
https://github.com/OpenJML/OpenJML

Automated Generation of Code Contracts: Generative AI to the Rescue? GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

Table 4. Results of compilability analysis of the generated
contracts with OpenJML (ubuntu-20-04-0.17.0-alpha-15).

Project #methods #generated #errors success
contracts rate [%]

Stack 15 21 20 4.80
TicTacToe 30 48 1 97.9
commons-
csv

235 333 10 97.0

jsoup 1 288 2 182 36 98.4
mockito 1 770 2 589 175 93.2∑

5173
∑

242 ∅ 95.3

than one annotation of either type which are counted each.
The #errors column presents the number of errors counted by
OpenJML11. The success rate computes the ratio between the
remaining successfully compiled contract annotations and
all generated contracts for a project. Remarkably, more than
95% (weighted average) of all generated annotations compile,
thus, they are syntactically correct. The project Simple-Stack
represents an outlier where the model performs badly with
only one compiling annotation which we discuss further
when we analyze the reported errors.

While the model mostly acquired the syntax, semantics
and functionality of JML, still about 10% of the generated
contracts do not compile. We analyzed the type of reported
errors in-depth 1) by counting the types of errors reported
by the OpenJML compiler automatically [22], and, 2) by
examining the erroneous contracts manually.

First, Table 5 collects the resulting counts of compilation
errors for all projects. The first column states the error mes-
sage reported by the OpenJML compiler in condensed form,
the second one states the number of occurrences, and the
last one the relative frequency among all 242 errors. We
do not show errors occurring less than three times but list
them together with the error message in the replication pack-
age [22].
The majority of reported JML compilation errors are of

syntactic nature. Almost half of all errors, such as the illegal
start of an expression or statement (76 times) or missing
semicolons (27 times), occur in complex annotations where
mainly wrong symbols are used to combine clauses. More-
over, the errors partly represent a rather human behavior
which may, for instance, forget closing symbols. Particularly,
for the Simple-Stack project, the only type of error that the
model makes 20 times is stating a protected field in an an-
notation without assigning a specific visibility annotation
to the field – as reported below – one functionality of JML
that the model failed to acquire, most likely because such
situations were not covered in the training.

11OpenJMLmay report more than one compilation error for one annotation.

Table 5. Topmost occurrences of compilation error types.

Error message # amount

illegal start of expression 76 31.4 %
<char> missing or expected 48 19.8 %
unexpected JML token: 47 19.4 %
missing semicolon 27 11.2 %
public access of protected visibility 16 6.6 %
unknown backslash 6 2.5 %
incorrectly formed/terminated statement 4 1.7 %
empty character literal 3 1.2 %

1 public c l a s s Bucket {

2 //@ spec_public

3 pr ivate int size;

4 //@ ensures \result == size;

5 public int getSize () { return size; }

6 }

Listing 3. Example of a correctly referenced private variable.

Error Classification. Second, when analyzing the com-
pilation errors manually, one author inspected a random
sample from the three real-world projects of about 100 error-
provoking annotations and examined all annotations of the
academic projects manually. A second author checked the
results and they were discussed among all authors. We find
that compilability problems exhibit a small number of error
patterns, of syntactic, functional, and semantic nature.
First, the model makes purely syntactic mistakes:
Omitted symbols: Similar to Java, every statement in JML
must end with a semicolon and double quotes must en-
close Strings. Many generated contracts miss closing semi-
colons, String delimiters, or closing or opening brackets,
resulting in JML errors.

Second, several mistakes relate to the functionality and
restrictions of JML and OpenJML:
Visibility violations: In JML, visibility rules prohibit

clients seeing a public method declaration and its specifi-
cation from accessing fields or methods of more restrictive
visibility. The model sometimes stated protected or private
variables in annotations for public methods, resulting in
JML errors. To prevent the error, an additional annotation
spec_public needs to be stated before the declaration of
the private or protected field. Listing 3 presents how such
references are stated correctly.

Inheritance violations: Any pre- or postcondition of a
method in a class or interface must start with the keyword
also if and only if this method is declared in the parent
type extended or implemented by the current type. Some
generated annotations of this type lack the keyword also.

7

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA S. Greiner, N. Bühlmann, M. Ohrndorf, C. Tsigkanos, O. Nierstrasz, and T. Kehrer

1 //@ ensures \result == (squaresLeft () > 0) ==>

(squaresRight () > 0)

2 public boolean notOver () {

3 return th i s .winner ().isNobody ()
4 && th i s .squaresLeft () > 0;

5 }

Listing 4. Example of symbol hallucination: The method
squaresRight() does not exist in the source code.

Finally, the model makes semantic mistakes:
Symbol hallucinations: The model generates annotations
that involve non-existing variables, objects, or method
names. In some cases, the invented symbols are some-
how related to other existing symbols. Listing 4 presents
an instance of this error. The method squaresLeft() com-
putes how many squares of a Tic-Tac-Toe game are yet
unmarked. As themethod invokes squaresLeft(), themodel
assumes a method squaresRight() to exist.

Comparing incompatible types: The trained model uses
comparison operators with objects of incompatible types.
For instance, a generated precondition states that the re-
sult of a method returning a Boolean should be equal to a
specific string.

Invalid use of \result: In JML, the keyword \result accesses
the return value of a method inside an annotation, which is
particularly used in postconditions. In some cases, the gen-
erated contracts contain \result for void methods or con-
catenate the keyword with other method-specific Strings
(unknown backslash error), resulting in JML errors.

More than 95% of the contracts generated by the fine-
tuned LLM are well-formed. An in-depth, automatic and
manual, qualitative analysis of the remaining erroneous
contracts finds that syntactic errors are most often pro-
voked by small and easy-to-fix errors, such as missing
closing symbols, e.g., missing semicolons or brackets.
Additionally, some static semantic semantics violations
result from missing knowledge about the Java method’s
environment, such as the wrong reference of protected
or private fields or wrong typing assumptions.

4.3 RQ 3: Can the fine-tuned LLM generate logically
valid code contracts?

To analyze the logical validity (RQ 3), we examined the
contracts generated by the fine-tuned CodeT5+ model for
the subjects Simple-Stack and Simple-TicTacToe manually.
While they convey a considerably number of compilation er-
rors, we can perform an unambiguous “quick fix” in all cases.
Table 6 summarizes the results of the analysis. It presents the
relative frequency of the generated pre- and postconditions
with respect to their reference counterparts categorized by

the comparison classes (c.f., Sec. 3.5). While possible, valid
unrelated contracts do not occur (omitted from table). The
full classification is available in our replication package [22].
First, we observe that only about 16% of the generated

conditions on average are semantically equivalent to their
reference counterparts although we obtained exact match
scores of almost 60% in our performance evaluation guided
by RQ 1 (c.f., Table 3). A possible reason is that the per-
formance of the fine-tuned CodeT5+ decreases for projects
it has not seen before, such as Simple-Stack and Simple-
TicTacToe. Additionally, Simple-Stack and Simple-TicTacToe
do not contain any trivial getter and setter methods. In our
manual analyses, we observed that such boilerplate methods
often trigger the creation of simple “non-null checks” for
which exact matches are likely. Conversely, the majority of
the semantic equivalences demonstrate that the model un-
derstood the intended program behavior, while only some
are rather trivial. As example of a trivial generated condition,
//@ requires true; or //@ ensures true;

were generated in cases of an empty reference precondition.
In contrast, for instance, the precondition
//@ requires row >= 0 && row <= gameState.length;

was generated which captures a non-trivial in-range check
on board game objects correctly.
Second, less than 10% of the generated conditions are

weaker than their reference counterparts. This indicates
that the generated contracts achieve a remarkable level of
completeness, as the generated contracts forbid unintended
behavior almost as strictly as the reference contracts. For
instance, in Simple-Stack, the model did not generate a post-
condition for the method push(E item) although it should
ensure that the given item resides on top of the stack after ex-
ecution. As an example of a missing precondition, the model
did not generate a contract for the Stack object’s method
top() which may only be invoked on non-empty stacks. This
is particularly interesting as the respective precondition
//@ requires size > 0;

was correctly generated for the method pop().
Remarkably, almost two-thirds of the generated contract

annotations (summary: 65.2%) are stronger than their refer-
ence conditions. The vast majority of them are logically valid
as they forbid more unintended program behavior than the
reference contracts. While these numbers demonstrate that
the generated contract annotations are more complete than
the reference contracts, arguably not all of the generated
stronger conditions add value for developers. Particularly,
the model created many postconditions by just copying the
expression of the return statement in the case of Boolean
functions or by combining the expression of the return state-
ment and \result using an equivalence operator in the case
of different return types. Though arguably naive, this strat-
egy creates postconditions which are logically valid, and
explains the large fraction of generated postconditions that
are stronger than the reference conditions.

8

Automated Generation of Code Contracts: Generative AI to the Rescue? GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

Table 6. Relative frequencies of logical validity evaluation of generated contracts compared to their reference annotation.

Equiv. Weaker Stronger (valid) Stronger (invalid) Unrelated
Pre-cond. 25.0% 5.0% 45.0% 10.0% 15.0%
Post-cond. 8,7% 13,0% 56,5% 17,4% 4,3%

Weighted Average 16,3% 9,3% 51,2% 14,0% 9,3%

Lastly, only less than 10% of the generated contracts on
average are logically unrelated to their reference. Together
with the invalid stronger annotations, this indicates that the
model reflected the intended behavior for more than 75% of
the subject methods, correctly.

First, more than 15% of the generated pre- and post-
conditions on average are logically equivalent to their
reference contract, constituting correct contracts. More
than 50% of the generated conditions are stronger than
their reference and logical valid. While the added value
of some annotations for developers may be limited, com-
pleteness is even higher than for the reference contracts.
Only less than 10% of the generated conditions on aver-
age are weaker than their reference counterparts. About
10% of the generated contracts are logically unrelated to
their reference annotation and invalid.

5 Discussion
This section discusses our insights gained from fine-tuning
the two LLMs and using them for automatically generating
code contracts for Java, as representative of a mainstream,
widely used object-oriented programming language. Further-
more, we outline how to build on the remarkable results of
our work to establish the automatic code contract generation
through Generative AI in practice.
First, regarding the prevalence and usage of Design by

Contract in practice, we can confirm previous research find-
ings concerning JML annotations [11]. Detecting only 73
publicly available projects using JML annotations by mining
three of the leading open-source code platforms indicates
that Design by Contract is currently not widely applied in
Java. While JML and OpenJML are not the only facilities
used for Design by Contract, they are commonly used in
Java. Thus, it is unlikely that we missed a large number of
Java projects due to the focus on JML. Further in-depth exam-
ination of the 73 projects showed that the projects containing
JML annotations are generally not widespread and often in-
active. 47 projects out of the 73 project did not mention a
single commit in the last year – an indicator that Design
by Contract is not a central focus in current software devel-
opment. Remarkably, we observe that three out of the four
repositories with the highest number of JML annotations im-
plement software relating to software verification. This gives

evidence that Design by Contract is particularly prevalent
among developers with verification domain knowledge.

By using the gathered dataset of 14k annotated Java meth-
ods, we fine-tuned the models CodeT5 and CodeT5+ for the
task of contract generation. We also tried to use them with-
out training but found that the models do not understand
the task at hand when prompting them. In contrast, after
fine-tuning, we obtain notable quantitative results – particu-
larly for the exact match and ROUGE. When assessing those
rates, it is important to regard that a program, and in our
case code contracts, can be implemented in infinitely many
ways to behave equivalently to the reference. Thus, almost
two thirds of all generated contracts exactly matching the
reference annotation, and more than 80% overlapping in the
longest common subsequences is a remarkably good result.
While the metrics BLEU, ROUGE, and TER are designed for
natural language processing tasks, they are used to evaluate
code-related LLMs in related work [16, 58, 59]. Particularly,
the BLEU scores of ca. 0.46 indicate understandable trans-
lations up to good translations [29], an estimation which is
also in line with our qualitative analysis on subject systems
not used in the fine-tuning.

Applying the best-performing fine-tuned CodeT5+ model
to real-world software projects not used in the fine-tuning
results in more than 75% compiling JML annotations on
average. By automatically and manually analyzing the com-
pilation errors, we identify visibility violations and misuse of
return parameters besides pure syntactic errors, such as miss-
ing symbols as the majority of provoking errors. Particularly,
for the subject yielding the worst performance, Simple-Stack,
we identify that the type of missing annotation could not
be provided. It requires annotating fields whereas our fine-
tuned model can only annotate methods due to the limited
size of the context window which so far restricts the number
of input and output tokens processed by the model.
When categorizing the model errors we find syntactical,

semantic, and OpenJML-related issues. Particularly for the
semantic mistakes, we sometimes observe a type of model
behavior resembling the way humans would use natural
language. A possible explanation for that behavior is the
fact that the underlying foundational model of CodeT5 and
CodeT5+, T5 [51], was originally trained on natural language
processing tasks. Moreover, we found the model hallucinat-
ing and referencing non-existing Java symbols, a phenom-
enon observed in previous work on LLMs [2]. Such effect

9

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA S. Greiner, N. Bühlmann, M. Ohrndorf, C. Tsigkanos, O. Nierstrasz, and T. Kehrer

1 //@ ensures x == 0 ==> \result == 0;

2 //@ ensures x < 0 ==> \result == -1;

3 //@ ensures x > 0 ==> \result == 1;

4 public s t a t i c int sign(in t x) {

5 i f (x == 0) { return 0; }

6 e l se i f (x > 0) { return 1; }

7 e l se { return -1; }

8 }

Listing 5.Correct and complete JML code contract generated
by the fine-tuned CodeT5+ model.

may be mitigated providing more context information to the
model; e.g., the declared fields of a class, the entire class, or
even the entire project. More context information may also
solve the problems related to visibility violations in OpenJML.
Models with access to fields and their visibility modifiers,
may not make such mistakes.

The results of our logical analysis are remarkable. Notably,
we observe not only that the majority of the generated con-
tracts are logically correct, but also that the completeness is
even higher than of the reference contracts. In some cases,
the model captured even non-trivial, intended program be-
havior and converted it into generated contracts. While we
performed the manual logical analysis only on Simple-Stack
and Simple-TicTacToe — resulting in a small sample size—
we identifiedmany cases supporting the high logical validity.
For instance, Listing 5 demonstrates a contract generated
by our fine-tuned LLM that captures the semantics of the
function sign() correctly. Conversely, we found rare cases
where the model generated tautologies as preconditions (e.g.,
//@ requires true == true) or contradictions as postconditions
(e.g., //@ ensures 2 == 1).

Consequently, our work clearly demonstrates that using a
fine-tuned LLM to generate contracts offers a large potential
to increase the adoption of code contracts in practice. With-
out any surplus effort code contracts can be generated and
embedded with our method in Java projects. At the current
state of our research artifact, developers still have to verify
the contracts manually. However, as potential next steps an
automated post-processing step could automatically compile
and quick-fix frequent errors, such as adding a missing semi-
colon or closing bracket; respective error classes and types
are reported in Sec. 4.2. Furthermore, very recent develop-
ments in the AI and the software engineering community
could be exploited to increase the context window size to
provide further context information which will positively
influence the overall quality of the automated approach. If no
additional burden is put on developers while ensuring high
quality and lightweight verification, code contracts can be
expected to be adopted more regularly in software projects.

6 Threats to Validity
This section discusses threats to the internal and external va-
lidity [61] of our experiment and evaluation of code contracts
generated with the fine-tuned CodeT5+ model.

6.1 Internal Validity
Regarding the gathered novel dataset of 14k Java methods,
we did not analyze the quality of all included contracts in-
depth but only small random samples. This threatens internal
validity because not all annotations in the dataset may com-
pile without errors. As a consequence, the quality of the
collected annotations may impact the quality of annotations
learned by the model.

Moreover, the original pre-training datasets of CodeT5 or
CodeT5+, consisting of billions of code samples, encompasses
some projects of our training dataset and includes the three
Java projects (commons-csv, jsoup, and mockito) we used as
subject systems for the syntactic and semantic analysis. In
terms of our training dataset, that means the model may have
already seen some JML annotations before the fine-tuning
but without learning the task of generating contracts. Even
if our training dataset had been seen, it would represent an
infinitely small portion of the original training data which
might have influenced our results positively. To mitigate this
threat, we examined the academic projects Simple-Stack and
Simple-Tic-Tac-Toe for which we can also analyze the logic
validity of the generated contract annotations.

For assessing the fine-tuned models’ contract generation
capabilities, a cross-cutting question is whether a suitable
baseline exists to which wemay compare our results. Despite
a large body of research on contract inference (cf., Sec. 7), a
fair comparison is difficult. Different techniques approach
contract generation with different goals and assumptions.
On the one hand, static analysis techniques generally out-
perform a probabilistic method, such as LLMs, regarding the
compilability of the generated contracts, yet at the price of a
serious lack of completeness. On the other hand, the qual-
ity of dynamic inference or of exploiting auxiliary artifacts
heavily depends on the provided data. Thus, the only viable
evaluation goal of an experiment would be to analyze and
quantify this trade-off. While we envision such comparison
in the future, in terms of the scope of this work, we are
interested in the feasibility of this radically new approach
to contract generation. The only fair baseline to compare
with might be another Generative-AI-empowered approach,
which to the best of our knowledge, does not exist yet.

For assessing the model performance, we employed the
standard metrics, BLEU, ROUGE, and TER, which are de-
signed for assessing natural language tasks. Therefore, their
applicability to code-related tasks can be contentious [55].
Still, they can serve as a measure for relative comparisons of
different model-generated contracts. To mitigate this threat,
we draw our conclusions not only based on the quantitative

10

Automated Generation of Code Contracts: Generative AI to the Rescue? GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

performance, but also qualitatively analyze the generated
contracts in terms of well-formedness and logical validity in
selected subject systems, not used in the fine-tuning.

Finally, we assessed the logical validity of generated con-
tracts by comparing them to a reference specification. This
yields a relative rather than an absolute assessment of log-
ical correctness and completeness, which might be biased
by flaws in the reference contracts. However, the projects
for this kind of analysis were carefully selected to include
reference contracts which matured over decades. Thus, we
can safely assume the reference contracts to be correct and
useful from developers’ perspective. The manual character of
the analysis may involve human errors, which we minimized
by checking the results independently and discussing them
among all authors.

6.2 External Validity
In our experiment, we focused on the Java programming
language and JML annotations, which is a threat to the gen-
eralizability of the results obtained with respect to other con-
tract and programming languages. However, our described
methodology can be transferred to such languages, and simi-
lar results are expected to be achieved for similar languages.

Furthermore, sampling bias might be an issue that impacts
the generalizability of our results for RQ 1. One software
project (weka) contributes two-thirds of the JML annotations
in our dataset. The coding style and guidelines applied in
this project likely influenced the way our fine-tuned models
understand code and generate code contracts. We mitigate
this threat by examining the model behavior when excluding
the weka project. Despite the very small training set, the
model performance decreased at a comparatively small rate
– an indicator that the bias introduced by weka remains low.

Sampling bias might also affect the results of RQ 2 and
RQ 3, which are based on a convenience sample for the sake
of keeping the highly demanding analyses feasible, partic-
ularly, the logical analysis. While the results may not gen-
eralize to other projects, we analyzed compilability for rep-
resentative Java projects heavily used in software engineer-
ing research (Defects4j dataset). Furthermore, the academic
projects have not been seen by the LLMs, neither in pre-
training nor fine-tuning, and thus indicate generalizability.

Lastly, mapping the compilation errors to classes of compi-
lability problems was obtained from investigating more than
half of the compilation errors manually. The classification
may still be incomplete but remained quite stable even after
examining more than half of all errors, providing confidence
in their representativeness.

7 Related Work
Our generative approach resides at the intersection of classi-
cal contract inference and Generative AI. Thus, we examine
both areas below. We consider static, dynamic, and mixed

contract generation techniques, focusing on approaches re-
specting Meyer’s notion of a contract [40, 41] as also adopted
in our work. Regarding Generative AI in software engineer-
ing, we examine the work closest to ours.
Static inference techniques examine the source code of a

program to derive properties of interest through analytical
methods. Accurately inferring properties, except for themost
basic ones, is an undecidable problem in general [60]. Con-
sequently, static techniques focus on tractable problems, fa-
voring correctness over completeness. Available techniques
range from abstract interpretation [7], for automatically
discovering interval constraints [8] or affine relations [37]
among variables of a program, to inferring extended typing
information [45], out-of-bound and pointer checks [20], and
invariants of loops [21, 28]. While all of these properties may
form the basic building blocks of code contracts, they are
too simple to capture a program’s actual behavior.

Dynamic inference relies on data obtained from program
executions, ranging from simple traces to snapshots of the
entire object graph of an object-oriented program. Several
techniques are based on the seminal work on Daikon [14], an
approach and tool for dynamically generating likely program
invariants by matching pre-defined patterns of logical and
arithmetic relationships. Schiller et al. [52] generate traces
of .NET programs compatible with Daikon, a Visual Studio
add-in turns the detected invariants into contracts. On top
of simple relationships, AutoInfer [60] can infer quantifiers.
It performs a template-based invariant detection, similar to
Daikon, to infer contract clauses. The clauses are further
analyzed to eventually become contract candidates validated
against a given test suite. Another work [1] infers so-called
visual contracts over object Graph modifications performed
by Java operations, formally capturing pre- and postcon-
ditions as Graph transformation rules. Contrary to static
inference, dynamic inference cannot be applied off-the-shelf:
Typically developers need to properly instrument and exe-
cute programs. Even with tool support, such as automated
test generation, it remains a tedious task prone to errors. To
this end, dynamic inference is limited to the behaviors that
have been actually executed.
More recent inference approaches involve domain and

application knowledge beyond the source code or program
execution data to increase the logic validity of code contracts.
Milanez et al. [19] propose an approach to automatically gen-
erate contracts based on natural language code commentary
using supervised learning. Their tool “ContractSuggestor”
generates contract-like constructs in AspectJ12 using tagged
Javadoc comments of two types: Non-null properties and re-
lational properties. The technique differs from our approach
as it uses a supervised learning classification algorithm. Thus,
it is limited compared to a generative language model. More-
over, the algorithm does not use the source code for the

12https://eclipse.dev/aspectj/

11

https://eclipse.dev/aspectj/

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA S. Greiner, N. Bühlmann, M. Ohrndorf, C. Tsigkanos, O. Nierstrasz, and T. Kehrer

classification, but only the Javadoc comments. A similar ap-
proach [32] takes the source code of a Java program together
with a natural language specification as input and derives
JML contracts. A pipeline, including tokenization, stopword
removal, normalization, and lemmatization is used together
with custom lexical rules to convert the contracts given in
natural language into JML clauses. Contrary to our work,
both approaches [19, 32] require contracts manually speci-
fied in natural language which are merely converted into a
machine-readable form.

Recently, Generative AI was examined to derive program
invariants with similar results to ours [3, 49, 62]. First, exam-
ining the baseline of untrained or unspecific prompts does
not produce reasonable contracts. Conversely, once properly
prompted or trained, the LLMs create more valid contracts
than available in the training sets. In more detail, Lemur
is a novel tool and framework to perform program verifi-
cation of loop invariants by using GPT4 [62]. It employs
the LLM to generate novel properties which are treated as
assumptions up to the point that they are proven to be invari-
ants. Contrary to our work, the approach does not fine-tune
the model. It relies on continuously prompting and rank-
ing the results and outperforms existing ML-based verifiers
in benchmarks for invariant synthesis significantly. A simi-
lar experiment [3] explored prompting GPT3 and GPT4 for
ranking invariants generated with zero-shot prompting by
the LLMs. Training the model to properly rank the gener-
ated invariants improved the ranks. Pei et al. [49] examine
scratchpad prompting and fine-tuned GPT4 based on test sets
created with Daikon. Both methods outperformed Daikon,
particularly, for a small number of available execution traces.
In contrast to these works, we fine-tuned T5 pretrained on
code related tasks on a novel dataset to generate pre- and
postconditions for methods with remarkable results. More-
over, we did not only regard the resulting ranking of the
generated valid invariants or the accurate creation of ex-
pected invariants, but also examined the contracts generated
for unseen subjects qualitatively and quantitatively. In a post-
processing step, our uniquely reported error classification
may help to optimize the results.

8 Conclusion
This paper presented how to harness the power of LLMs
to automatically generate code contracts for Java methods,
as representative of a mainstream object-oriented program-
ming language, without depending on dynamic analyses or
auxiliary data. While we can confirm earlier findings that De-
sign by Contract is currently not widely adopted by software
developers, we could collect a novel dataset of approximately
14k Java methods annotated with almost 30k JML contracts,
which – as one contribution of our study – can fuel fur-
ther research in the field. We used the JML contracts dataset
to teach two state-of-the-art LLMs the task of automatic

code contract generation. Despite the small dataset, the fine-
tuned models achieve remarkable quantitative results when
evaluated with traditional NLP metrics. Qualitatively inves-
tigating the contracts generated for subjects not used in the
fine-tuning demonstrated that more than 95% of annotations
compile and the majority are of impressive logical validity.
Thereupon, we identify key research directions towards

dataset diversification, expanding context, and input engi-
neering. Firstly, diversifying the dataset — for instance, by
including contracts from frameworks other than OpenJML
(e.g., oval13, cofoja14) — represents one way to broaden the
training. Secondly, more context information, such as in-
cluding class fields or the interface declaration in the input,
may benefit the quality of generated contracts. Thus, prompt
engineering and appropriate input slices are future ways to
explore for improving the quality of generated contracts.

All in all, our work represents a pioneering step to a novel
application area of LLMs, to statically retrieve contracts of
high correctness and completeness. In comparison to pre-
vious traditional static, dynamic and mixed methods, the
correctness and completeness of the fully automatically gen-
erated code contracts is remarkably high without demanding
any additional burden from the software developers. Even
for syntactically or logically erroneous contracts, the fixes
are rather easy and can be expected to be minimized through
automatic postprocessing and methods that allow LLMs to
process more information, particularly, entire software repos-
itories to provide necessary context knowledge. In this way,
Generative AI provides a highly valuable resource to be ex-
ploited for increasing the adoption of the lightweight concept
of Design by Contract in software engineering practice.

Acknowledgments
This work is partially supported by the Hellenic Foundation
for Research and Innovation Project 15706.

References
[1] Abdullah Alshanqiti, Reiko Heckel, and Timo Kehrer. 2018. Inferring

visual contracts from Java programs. Automated Software Engineering
25 (2018).

[2] Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan
Su, Bryan Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung,
Quyet V. Do, Yan Xu, and Pascale Fung. 2023. AMultitask, Multilingual,
Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and
Interactivity. (2023).

[3] Saikat Chakraborty, Shuvendu Lahiri, Sarah Fakhoury, Akash Lal,
Madanlal Musuvathi, Aseem Rastogi, Aditya Senthilnathan, Rahul
Sharma, and Nikhil Swamy. 2023. Ranking LLM-Generated Loop
Invariants for Program Verification. In Findings of the Association for
Computational Linguistics: EMNLP 2023, Houda Bouamor, Juan Pino,
and Kalika Bali (Eds.). ACL, 9164–9175.

[4] Patrice Chalin. 2006. Are practitioners writing contracts? Rigorous
Development of Complex Fault-Tolerant Systems (2006).

13https://sebthom.github.io/oval
14https://github.com/nhatminhle/cofoja

12

https://sebthom.github.io/oval
https://github.com/nhatminhle/cofoja

Automated Generation of Code Contracts: Generative AI to the Rescue? GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

[5] Mark et al Chen. 2021. Evaluating Large Language Models Trained on
Code. arXiv:2107.03374 [cs]

[6] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Man-
ning. 2020. ELECTRA: Pre-training Text Encoders as Discriminators
Rather Than Generators. arXiv:2003.10555 [cs]

[7] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a
unified lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proc. of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages.

[8] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic discovery of
linear restraints among variables of a program. In Proc. of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages.

[9] Patricia Derler, Edward A Lee, Stavros Tripakis, and Martin Törngren.
2013. Cyber-physical system design contracts. In Proc. of the ACM/IEEE
4th International Conference on Cyber-Physical Systems.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proc. of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Vol. 1. ACL.

[11] Jens Dietrich, David J. Pearce, Kamil Jezek, and Premek Brada. 2017.
Contracts in the Wild: A Study of Java Programs. In 31st ECOOP 2017
(LIPIcs, Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 1–29.

[12] Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall.
[13] Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin.

1999. Dynamically discovering likely program invariants to support
program evolution. In Proc. of the 21st international conference on
Software engineering.

[14] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant,
Carlos Pacheco, Matthew S Tschantz, and Chen Xiao. 2007. The Daikon
system for dynamic detection of likely invariants. Science of computer
programming 69, 1-3 (2007).

[15] Hans-Christian Estler, Carlo Alberto Furia, Martin Nordio, Marco
Piccioni, and Bertrand Meyer. 2014. Contracts in Practice. In FM 2014:
Formal Methods. Vol. 8442. Springer, 230–246.

[16] Shuai Lu et al. 2021. CodeXGLUE: A Machine Learning Benchmark
Dataset for Code Understanding and Generation. CoRR abs/2102.04664
(2021). https://doi.org/10.48550/arXiv.2102.04664

[17] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho
Sengupta, Shin Yoo, and Jie M. Zhang. 2023. Large Language Mod-
els for Software Engineering: Survey and Open Problems. CoRR
abs/2310.03533 (2023). https://doi.org/10.48550/ARXIV.2310.03533
arXiv:2310.03533

[18] Hakim Ferrier-Belhaouari, Pierre Konopacki, Régine Laleau, and Marc
Frappier. 2012. A design by contract approach to verify access control
policies. In IEEE 17th Intl. Conf. on Engineering of Complex Computer
Systems. IEEE.

[19] Alysson Filgueira Milanez. 2018. Fostering Design By Contract by
Exploiting the Relationship between Code Commentary and Contracts.
Ph. D. Dissertation. Federal University of Campina Grande.

[20] Cormac Flanagan and K Rustan M Leino. 2001. Houdini, an annotation
assistant for ESC/Java. In International Symposium of Formal Methods
Europe. Springer.

[21] Carlo Alberto Furia and Bertrand Meyer. 2010. Inferring loop invari-
ants using postconditions. Fields of Logic and Computation: Essays
Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday (2010).

[22] Sandra Greiner, Noah Bühlmann, Manuel Ohrndorf, Christos
Tsigkanos, Oscar Nierstrasz, and Timo Kehrer. 2024. Replication Pack-
age: Automated Generation of Code Contracts - Generative AI to the
Rescue? https://zenodo.org/doi/10.5281/zenodo.13351003

[23] Charles Antony Richard Hoare. 1969. An axiomatic basis for computer
programming. Commun. ACM 12, 10 (1969).

[24] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li,
Xiapu Luo, David Lo, John C. Grundy, and Haoyu Wang. 2023. Large

Language Models for Software Engineering: A Systematic Literature
Review. CoRR abs/2308.10620 (2023). https://doi.org/10.48550/ARXIV.
2308.10620 arXiv:2308.10620

[25] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and
Marc Brockschmidt. 2020. CodeSearchNet Challenge: Evaluating the
State of Semantic Code Search. arXiv:1909.09436 [cs, stat]

[26] J-M Jazequel and Bertrand Meyer. 1997. Design by contract: The
lessons of Ariane. Computer 30, 1 (1997), 129–130.

[27] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A
Database of Existing Faults to Enable Controlled Testing Studies for
Java Programs. In Proc. of the 2014 Intl. Symposium on Software Testing
and Analysis. ACM, 437–440.

[28] Laura Kovács and Andrei Voronkov. 2009. Finding loop invariants for
programs over arrays using a theorem prover. In International Confer-
ence on Fundamental Approaches to Software Engineering. Springer.

[29] Alon Lavie. 2011. Evaluating the Output of Machine Translation Sys-
tems. In Proc. of Machine Translation Summit XIII: Tutorial Abstracts.

[30] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. 2006. Preliminary
Design of JML: A Behavioral Interface Specification Language for Java.
ACM SIGSOFT Software Engineering Notes 31, 3 (May 2006), 1–38.

[31] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and
David R. Cok. 2005. How the Design of JML Accommodates Both Run-
time Assertion Checking and Formal Verification. Science of Computer
Programming 55, 1-3 (March 2005).

[32] Iat Tou Leong and Raul Barbosa. 2021. Generation of Oracles Us-
ing Natural Language Processing. In 2021 28th Asia-Pacific Software
Engineering Conf. Workshops (APSEC Workshops). IEEE, 25–31.

[33] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Ab-
delrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettle-
moyer. 2020. BART: Denoising Sequence-to-Sequence Pre-Training
for Natural Language Generation, Translation, and Comprehension.
In Proc. of the 58th Annual Meeting of the Association for Computational
Linguistics. ACL, 7871–7880.

[34] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of
Summaries. In Text Summarization Branches Out. ACL, 74–81.

[35] Chin-Yew Lin and Franz Josef Och. 2004. Automatic evaluation of
machine translation quality using longest common subsequence and
skip-bigram statistics. In Proc. of the 42nd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL-04). 605–612.

[36] Zhuang Liu, Wayne Lin, Ya Shi, and Jun Zhao. 2021. A Robustly
Optimized BERT Pre-Training Approach with Post-Training. In Proc.
of the 20th Chinese National Conference on Computational Linguistics.
Chinese Information Processing Society of China, 1218–1227.

[37] Francesco Logozzo. 2004. Automatic inference of class invariants. In
Intl. Workshop on Verification, Model Checking, and Abstract Interpreta-
tion. Springer.

[38] Ilya Loshchilov and Frank Hutter. 2017. Decoupled Weight Decay
Regularization. (2017). https://doi.org/10.48550/ARXIV.1711.05101

[39] Jonathan I. Maletic and Michael L. Collard. 2015. Exploration, analysis,
and manipulation of source code using srcML. In Proceedings of the
37th International Conference on Software Engineering - Volume 2 (ICSE
’15). IEEE, 951–952.

[40] Bertrand Meyer. 1992. Applying ’Design by Contract’. Computer 25,
10 (Oct. 1992), 40–51. https://doi.org/10.1109/2.161279

[41] Bertrand Meyer. 1997. Object-oriented software construction. Vol. 2.
Prentice hall Englewood Cliffs.

[42] Bertrand Meyer. 1998. Design by Contract: The Eiffel Method.. In
TOOLS (26). 446.

[43] Alysson F Milanez, Igor N S Ataıde, and Tiago L Massoni. 2021. Inves-
tigating the Use of JML Contracts. (2021).

[44] Changan Niu, Chuanyi Li, Bin Luo, and Vincent Ng. 2022. Deep Learn-
ing Meets Software Engineering: A Survey on Pre-Trained Models of
Source Code. (7 2022), 5546–5555.

13

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2003.10555
https://doi.org/10.48550/arXiv.2102.04664
https://doi.org/10.48550/ARXIV.2310.03533
https://arxiv.org/abs/2310.03533
https://zenodo.org/doi/10.5281/zenodo.13351003
https://doi.org/10.48550/ARXIV.2308.10620
https://doi.org/10.48550/ARXIV.2308.10620
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/1909.09436
https://doi.org/10.48550/ARXIV.1711.05101
https://doi.org/10.1109/2.161279

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA S. Greiner, N. Bühlmann, M. Ohrndorf, C. Tsigkanos, O. Nierstrasz, and T. Kehrer

[45] Robert O’Callahan and Daniel Jackson. 1997. Lackwit: A program
understanding tool based on type inference. In Proc. of the (19th) Inter-
national Conference on Software Engineering. IEEE Computer Society.

[46] OpenJML.org. 2024. OpenJML. https://www.openjml.org/
[47] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2001.

BLEU: A Method for Automatic Evaluation of Machine Translation.
In Proc. of the 40th Annual Meeting on Association for Computational
Linguistics - ACL ’02. ACL, 311.

[48] David Lorge Parnas. 2011. Precise Documentation: The Key to Better
Software. In The Future of Software Engineering, Sebastian Nanz (Ed.).
Springer, 125–148.

[49] Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng
Yin. 2023. Can Large Language Models Reason about Program Invari-
ants?. In International Conference on Machine Learning (Proceedings
of Machine Learning Research, Vol. 202), Andreas Krause, Emma Brun-
skill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (Eds.). PMLR, 27496–27520.

[50] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. 2019. Language Models Are Unsupervised Multi-
task Learners. OpenAI blog 1, 8 (2019), 9.

[51] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020.
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. Journal of Machine Learning Research 21, 140 (2020),
1–67.

[52] Todd W. Schiller, Kellen Donohue, Forrest Coward, and Michael D.
Ernst. 2014. Case Studies and Tools for Contract Specifications. In Proc.
of the 36th International Conference on Software Engineering. ACM,
596–607.

[53] Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea Micciulla, and
John Makhoul. 2006. A Study of Translation Edit Rate with Targeted
Human Annotation. In Proc. of the 7th Conference of the Association
for Machine Translation in the Americas: Technical Papers. 223–231.

[54] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2019.
MASS: Masked Sequence to Sequence Pre-Training for Language Gen-
eration. In Proc. of the 36th International Conference on Machine Learn-
ing (Proc. of Machine Learning Research, Vol. 97). PMLR, 5926–5936.

[55] Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien Nguyen.
2019. Does BLEU score work for code migration?. In 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC). IEEE,
165–176.

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention Is All You Need. In Advances in Neural Information Processing
Systems, Vol. 30. Curran Associates, Inc.

[57] Anh Duc Vu, Jan Arne Sparka, Ninon De Mecquenem, Timo Kehrer,
Ulf Leser, and Lars Grunske. 2023. Contract-driven design of scientific
data analysis workflows. In 2023 IEEE 19th International Conference on
e-Science (e-Science). IEEE.

[58] Yue Wang, Hung Le, Akhilesh Gotmare, Nghi D. Q. Bui, Junnan Li,
and Steven C. H. Hoi. 2023. CodeT5+: Open Code Large Language
Models for Code Understanding and Generation. In Proc. of the 2023
Conference on Empirical Methods in Natural Language Processing. ACL,
1069–1088.

[59] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021.
CodeT5: Identifier-aware Unified Pre-trained Encoder-DecoderModels
for Code Understanding and Generation. In Proc. of the 2021 Conference
on Empirical Methods in Natural Language Processing. ACL, 8696–8708.

[60] Yi Wei, Carlo A Furia, Nikolay Kazmin, and Bertrand Meyer. 2011.
Inferring better contracts. In Proc. of the 33rd International Conference
on Software Engineering.

[61] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, and
Björn Regnell. 2012. Experimentation in Software Engineering. Springer.

[62] Haoze Wu, Clark Barrett, and Nina Narodytska. 2024. Lemur: Inte-
grating Large Language Models in Automated Program Verification.
In The Twelfth International Conference on Learning Representations.

[63] Zhiqiang Yuan, Junwei Liu, Qiancheng Zi, Mingwei Liu, Xin Peng,
and Yiling Lou. 2023. Evaluating Instruction-Tuned Large Language
Models on Code Comprehension and Generation. (2023). https:
//doi.org/10.48550/ARXIV.2308.01240

[64] Jiyang Zhang, Marko Ristin, Phillip Schanely, Hans Wernher Van
De Venn, and Milos Gligoric. 2022. Python-by-Contract Dataset. In
Proc. of the 30th ESEC/FSE. ACM.

Received 2024-06-18; accepted 2024-08-15

14

https://www.openjml.org/
https://doi.org/10.48550/ARXIV.2308.01240
https://doi.org/10.48550/ARXIV.2308.01240

	Abstract
	1 Introduction
	2 Background
	2.1 Design by Contract
	2.2 Large Language Models

	3 Methodology
	3.1 Dataset Collection
	3.2 Fine-Tuning of Selected LLMs
	3.3 Performance Evaluation of Fine-Tuned LLMs
	3.4 Syntactic Analysis of Generated Code Contracts
	3.5 Logical Analysis of Generated Contracts

	4 Results
	4.1 RQ1: How suitable are existing real-world code contracts to fine-tune an LLM for contract generation?
	4.2 RQ2: Can the fine-tuned LLM generate well-formed code contracts?
	4.3 RQ3: Can the fine-tuned LLM generate logically valid code contracts?

	5 Discussion
	6 Threats to Validity
	6.1 Internal Validity
	6.2 External Validity

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

