
Stopping DNS Rebinding Attacks in the Browser

Mohammadreza Hazhirpasand1, Arash Ale Ebrahim, and Oscar Nierstrasz1

1University of Bern, Switzerland
{mohammadreza.hazhirpasand, oscar.nierstrasz}@inf.unibe.ch, arash.vre@gmail.com

Keywords: DNS rebinding, Browser security, Web security

Abstract: DNS rebinding attacks circumvent the same-origin policy of browsers and severely jeopardize user privacy.
Although recent studies have shown that DNS rebinding attacks pose severe security threats to users, up to
now little effort has been spent to assess the effectiveness of known solutions to prevent such attacks. We have
carried out such a study to assess the protective measures proposed in prior studies. We found that none of
the recommended techniques can entirely halt this attack due to various factors, e.g., network layer encryption
renders packet inspection infeasible. Examining the previous problematic factors, we realize that a protective
measure must be implemented at the browser-level. Therefore, we propose a defensive measure, a browser
plug-in called Fail-rebind, that can detect, inform, and protect users in the event of an attack. Afterwards, we
discuss the merits and limitations of our method compared to prior methods. Our findings suggest that Fail-
rebind does not necessitate expert knowledge, works on different OSes and smart devices, and is independent
of networks and location.

1 INTRODUCTION

In a DNS rebinding attack, an attacker uses a custom
DNS server to spoof the IP address of the victim, and
thus obtain read access to the victim’s server. DNS
rebinding attacks have been around for more than 15
years (Dean et al., 1996). Being cost effective and
relatively quick to perform, this attack is capable of
jeopardizing both the victim and the intranet to which
he or she is connected.

To orchestrate a DNS rebinding attack, the at-
tacker runs a malicious website, e.g., attacker.xyz,
with a custom DNS server. Once the victim loads
attacker.xyz, the website establishes a request in the
background to its server. The malicious server re-
turns the private IP address of the victim as a re-
sponse. Consequently, SOP in the victim’s browser is
tricked into believing that the two IP addresses belong
to attacker.xyz and grants read access to the malicious
website.

Web browsers employ same-origin policy (SOP)
to provide isolation for distinct origins (scheme, host,
and port of a URL) to protect users from different
types of attacks, e.g., cross-site request forgery, or
clickjacking (Lalia and Moustafa, 2019). However,
the DNS rebinding attack subverts the SOP and turns
a browser into an open proxy to access the victim’s re-

http://dx.doi.org/10.5220/0010310705960603

sources and other nodes inside the victim’s network.
In practice, an attacker executes DNS rebinding to
bypass firewalls, gain access to either internal ma-
chines in the victim’s private network or the victim’s
resources, fetch sensitive resources, and compromise
vulnerable internal machines.

The DNS rebinding attack can have grave con-
sequences. For instance, a study showed that popu-
lar home routers such as Linksys, Thompson, Belkin,
Dell, and Asus are vulnerable to DNS rebinding,
threating the privacy of millions of users (Heffner,
2010). Tatang et al. analyzed four Internet of Things
(IoT) devices and found three of them are vulnera-
ble to DNS rebinding attacks (Tatang et al., 2019).
They emphasized that most smart home devices heav-
ily rely on the countermeasures implemented in the
router to detect and block such attacks. Similarly,
Dorsey in a whitepaper explained that widely-used
smart devices such as Google Home mini, RokuTV,
Sonos speakers, and home thermostats are control-
lable by the attacker from outside of the victim’s pri-
vate network.1

There exist several measures to prevent DNS re-
binding attacks. Modern browsers apply a technique
called DNS pinning in order to cache the first re-

1https://medium.com/@brannondorsey/
attacking-private-networks-from-the-internet-
with-dns-rebinding-ea7098a2d325

https://medium.com/@brannondorsey/attacking-private-networks-from-the-internet-with-dns-rebinding-ea7098a2d325
https://medium.com/@brannondorsey/attacking-private-networks-from-the-internet-with-dns-rebinding-ea7098a2d325
https://medium.com/@brannondorsey/attacking-private-networks-from-the-internet-with-dns-rebinding-ea7098a2d325

solved IP address of a website for a fixed period. Even
though this technique discards the time to live (TTL)
of each DNS record, the browsers reset the cached
DNS data in case the victim spends approximately
more than a minute on the attacker’s website. There
exists the Domain Name System Security Extensions
(DNSSEC) specification suite to prevent DNS spoof-
ing attacks. For domains owners, DNSSEC provides
a way to authenticate DNS entries in order to ensure
the response has not been altered in transit by an ad-
versary. Notwithstanding authentication, in a DNS
rebinding scenario, the attacker is the owner of the
domain name, e.g., attacker.xyz, and hence, DNSSEC
becomes ineffective. Firewalls, e.g., iptables, at the
entry point of networks can detect such attacks by
defining particular rules. Despite firewall packet in-
spections, the victim can still be unprotected while
using a virtual private network (VPN) that encrypts
DNS queries. Lastly, none of the aforementioned
techniques can keep a user completely safe from DNS
rebinding attacks.

In this paper, we investigate and discuss the ef-
fectiveness of available countermeasures in protect-
ing users against DNS rebinding attacks, and propose
a preventive measure, called Fail-rebind, based on
lessons learned from drawbacks of the prior preven-
tive measures. To that end, we address the following
research questions: “How can the current preventive
measures be circumvented, and what is the most ro-
bust way to detect and halt DNS rebinding attacks?”

We argue that the preventive shield must be im-
plemented in browsers rather than in the network or
operating system level. To this end, we propose a
Chrome and Firefox plug-in, called Fail-rebind, to
detect, alert, and block the malicious website in the
event of the attack. In our comparison with other
methods, we observe that our proposed solution is
highly reliable, practical in daily use, and can signifi-
cantly increase safety against DNS rebinding attacks.

The remainder of this paper is structured as fol-
lows. In section 2, we explain various types of DNS
rebinding attacks, current attack frameworks, and an
example attack scenario. Then, in section 3 we dis-
cuss the pros and cons of existing countermeasures
introduced in prior research. We propose and evalu-
ate our preventive measure in section 4, and conclude
the paper in section 5.

2 BACKGROUND

We first describe various types of DNS rebinding at-
tacks as well as the available attack frameworks. We
then explain how impactful the attack is in a given

scenario, and why we need a robust and reliable pre-
vention measure.

2.1 Attack types

An attacker can take advantage of DNS rebinding at-
tacks to achieve various goals. Depending on the goal,
the impact of DNS rebinding attacks is classified into
two main categories, i.e., firewall circumvention, and
IP hijacking.

2.1.1 Firewall circumvention

Network administrators consider firewalls to be an
effective defensive barrier against inbound attacks
against internal machines. However, firewall circum-
vention techniques, e.g., DNS rebinding attacks, en-
able the attacker to gain access to the victim’s local
resources and internal nodes of the victim’s network.
Attackers are keen on achieving the following objec-
tives:

— Data stealing. Web servers in a private network
might expose confidential documents to legiti-
mate users inside the network. However, the at-
tacker can steer DNS rebinding attacks in such a
way as to read and download sensitive informa-
tion from the victim’s local resources or the nodes
in the victim’s private network.

— Exploitation. With due consideration of the un-
patched victim’s local or remote services in the
victim’s network, the attacker can perform recon-
naissance and exploitation attacks against vulner-
able nodes, e.g., home routers or an internal ma-
chine with an unpatched WordPress website.

2.1.2 IP hijacking

DNS rebinding threatens both the internal nodes in
the victim’s private network and machines on the in-
ternet. In the following, we explain two types of this
attack threatening external nodes.

— Click fraud. The attacker can mount a click fraud
attack in which users inadvertently click on an
item leading them to browse a malicious target
webpage. In practice, when attacker.xyz is loaded
on the victim’s browser, the attacker can reply to
the second DNS query with an IP address of a
target website, e.g., clicktopay.xyz. Conducting
this attack on a large scale results in thousands
of unique IP addresses visiting clicktopay.xyz to
generate profits (Jackson et al., 2009).

— Bypassing IP-based authentication. Services can
rely on IP-based authentication to impose restric-
tions. However, the attacker can simply defeat

such measures by using DNS rebinding, as the
communication originates from an authorized IP
address (the victim’s browser).

Unfortunately, in all the above scenarios, the tar-
get machine logs the address of victim machine for
illegal activities.

We manually checked how many repositories are
associated with DNS rebinding on GitHub. We
searched for “DNS rebinding” and found 47 reposi-
tories. Of these, two repositories offered protection
in the form of middleware using the Go language and
the Express.js framework, and the rest of the reposito-
ries all introduced attack frameworks mainly written
in JavaScript and Python.

Of the 45 attack frameworks, we examined Sin-
gularity, a recently popular and rich DNS rebinding
attack framework, proposed by Doussot et al.2 At the
time of writing, this framework has received the high-
est number of stars and forks on GitHub compared
to other DNS rebinding attack frameworks. Singular-
ity offers numerous features such as a custom DNS
server, IP/port scanning, auto exploitation, and DNS
CNAME to evade firewall restriction and interactively
browse the victim’s internal network. Singularity’s
main contribution is to significantly improve the re-
binding time in browsers by 20 times (from 60 sec-
onds to 3 seconds) and introduce three circumven-
tion methods for current protection measures. It is in-
evitable that such advances imply the ineffectiveness
of the current prevention techniques in this domain.

2.2 Motivational example

Our goal is to demonstrate the grave implication of
DNS rebinding attacks on the privacy of users in a
scenario (See Figure 1). We use a laptop, a Plant
Watering System (PWS) smart device and a mobile
phone as nodes in the network. The mobile phone
has an application in which an HTTP web server is
running to allow users to browse the phone’s picture
gallery. The PWS has a web interface where features
such as auto watering on/off, soil status, and water-
ing history are accessible. We use the iptables fire-
wall to prevent external domains from resolving pri-
vate IP addresses and loopback IP addresses. Our
gateway to the internet is a router configured with
OpenDNS. The OpenDNS service extends the DNS
by introducing security features such as phishing pro-
tection, content filtering, and DNS rebinding preven-
tion. The client on the laptop uses a secure VPN con-
nection, which encapsulates and encrypts all network
traffic, and sends the user’s data through a tunnel to

2https://github.com/nccgroup/singularity

http://attacker.xyz

(DNS rebinding)

Internet

Router

(OpenDNS)

Laptop

 (192.168.10.4)

 Plant watering system

 (192.168.10.5)

.

Smartphone

 (192.168.10.8)

Firewall

Figure 1: The network scenario of the motivational example

a server located on the internet. The VPN connec-
tion forces the DNS lookup procedure to be accom-
plished through the VPN server. On the internet, the
attacker runs a web server with a domain name, i.e.,
attacker.xyz, and a custom DNS server.

Attackers commonly find the private IP address
of a victim with the help of the IP leakage in We-
bRTC and carry out IP or port scanning, e.g., loading
images or XMLHttpRequest, in order to find active
nodes based on timing thresholds (Hazhirpasand and
Ghafari, 2018). In this scenario, however, the victim
employs a secure VPN connection wherein no private
IP leakage occurs and WebRTC returns the real pub-
lic IP address of the victim. As a result, the attacker
must execute preliminary IP scanning to discover the
victim’s private IP range. Finding the private IP range
can dramatically decrease the success rate of the at-
tack provided that the network administrator sets an
uncommon range of private IP addresses, e.g., ad-
dresses in the IPv4 class A.

In our experiment, we scanned 400 common pri-
vate IP address ranges used by popular routers or net-
work administrators in 40 seconds. When the pri-
vate range is found, the JavaScript program starts to
scan the entire range (1-255), find active nodes, and
send the private IP addresses of the active nodes back
to the server. In this scenario, the attacker sets the
IP address of the PWS on the server’s custom DNS
server. Afterward, the malicious page starts fetching
the http://attacker.xyz/ website every 500 millisec-
onds in the background. In our experiment, it took
71 seconds in the Firefox browser to fetch the new
DNS information. This delay in fetching the new IP
address was due to the existence of the DNS pinning
feature in browsers. In addition, the same-origin pol-
icy did not complain as the domain name remained
the same. The malicious website was then allowed
to send POST and GET requests to the PWS web in-
terface. For example, the attacker was able to send a
GET request to turn off the auto watering system.

The failure in the OpenDNS service and the fire-
wall in detecting the attack can be explained by the

https://github.com/nccgroup/singularity

fact that the VPN connection encrypts all the traffic
and that DNS server of the VPN server resolves the
attacker’s website. Moreover, we observe that if the
user spends nearly 2 minutes on the malicious web
page, the existing countermeasure on the browsers
will lose its efficacy.

3 EXISTING MEASURES

We now introduce and assess how the widely-known
preventive techniques provide inadequate safety for
users. We classified the proposed solutions into
two broad categories, namely browser-based and
server/network-based solutions. Table 2 provides an
overview of existing preventive solutions and their
drawbacks. In the following, we discuss each of them
in detail.

3.1 Browser-based solutions

Browsers implement the DNS pinning approach to
block DNS rebinding attacks. DNS pinning protects
both private and public nodes but for a short period.
They cache the IP address of the hostname for a fixed
period when it is loaded. However, browsers cannot
keep such information for a long duration as web ap-
plications may need to switch to another server due
to various reasons, e.g., the denial of service attack or
load balancing. Consequently, they update their cache
after a short period, ranging from several seconds to
minutes. Table 1 presents the average required time to
conduct a successful DNS rebinding attack on differ-
ent browsers. We performed an experiment for each
browser ten times, and employed the FakeDNS server
script.3

Despite the short period for DNS pinning, attack-
ers used creative approaches to successfully circum-
vent DNS pinning in browsers. Dai et al. dissected
DNS pinning in order to find a way to shorten the
fixed period in browsers (Dai and Resig, 2013). They
exploited DNS pinning by flooding the DNS cache
table on the victim’s browser with numerous invalid
entries to persuade the browser to do a second DNS
lookup. Their tool, called FireDrill, utilizes a Web-
Socket connection to enable the attacker to have an
interactive session with the victim’s browser. Jackson
et al. in a study suggested a number of defenses for
the socket access policies in Flash Player, Silverlight,
and JVM (Jackson et al., 2009). Their solutions were
adapted by Adobe, Microsoft, and Sun in order to pro-
vide a secure socket level access for plugins.

3https://github.com/pathes/fakedns

Table 1: Average time of a successful DNS rebinding attack
on different browsers

Browser Version OS Avg time
Google Chrome 81 Windows 10 2:05s
Chromium 80 Kali Linux 2:11s
Mozilla Firefox 75 Windows 10 1:15s
Mozilla Firefox 68 Kali Linux 1:43s

The pinning can be extended with heuristics to en-
hance its defense level. For instance, browsers can
enforce a policy to allow hostnames to rebind to any
IP addresses within a /24 network, e.g., attacker.xyz
with an IP address of 190.145.12.22 can rebind to
any address with the range 190.145.12.X. Incorporat-
ing such IP-based origins into browsers might have
negative consequences for real-time web applications
whose JavaScript WebSocket or long polling runs for
a long period and might switch to other servers due
to a failover. Unfortunately, since many distributed
DNS services, e.g., Cloudflare, have servers across
continents, it adversely affects the trade-off between
availability and security. Furthermore, each browser
currently uses a separate pin database to store DNS
replies. Having a centralized pin database can reduce
the collaborative effort among different browsers to
build a comprehensive defense measure against DNS
rebinding attacks.

A browser-level solution to DNS rebinding is the
NoScript plug-in for the Firefox browser.4 This
plug-in is intended to shield users from DNS re-
binding attacks against private nodes. Released in
2005, the plug-in protects users against web-based
attacks such as XSS, CSRF, clickjacking, man-in-
the-middle, and DNS rebinding attacks. The plug-in
blocks any scripts including JavaScript, Java, Flash
and Silverlight by default in Firefox. In our experi-
ment, when we enabled JavaScript on the attacker’s
website, the plug-in did not detect any incoming DNS
rebinding attacks. Consequently, we found this tool
not suitable for day-to-day browsing as it completely
blocks a website’s JavaScript to protect users, which
considerably reduces the functionality of the website.

Johns et al. extend SOP (named eSOP) for the
Chromium Web browser to defend users from DNS
rebinding attacks, and they describe how to utilize the
HTML5 Offline Application Cache to carry out a re-
liable DNS Rebinding attack (Johns et al., 2013). In
their proposal, a dedicated HTTP server response (X-
Server-Origin) is introduced to transfer the server ori-
gin property in the form of a comma-separated list.
When the attacker sends a request to the victim ma-
chine, eSOP checks the X-Server-Origin header of the
victim and marks the communication as invalid due
to inequality of the attacker’s domain name and the

4https://noscript.net/

https://github.com/pathes/fakedns
https://noscript.net/

Table 2: Preventive measures for DNS rebinding attacks and their drawbacks

Approach Type Drawbacks
DNS pinning Browser Limited pinning time, can be shorten by DNS flooding
DNS pinning -
Extended IP check Browser Not applicable in real world scenarios and impose

many limitations
A centralized pin
database

Browser
OS

Necessitates of collaboration between OS and browser
vendors

NoScript plug-in Browser Blocks all javascript contents in a website
eSOP Browser Requires a server header, a custom browser, cannot detect IP/port scanning
INP Browser Requires implementation in browsers, and no detection for IP/port scanning
Brahmasani et al OS - Network Encrypted packets cannot be read - can be only used by desktop computers
dnswall Network Encrypted packets cannot be read
Host header Server Requires manual work, knowledge of hostname, erroneous implementation
Security Proxy Network Lack of implementation, and high overhead
SSL Server Requires SSL on all nodes, problematic for programs with an invalid SSL
OpenDNS / Dnsmasq Network Encrypted packets cannot be read

victim’s server origin, even though the classic (proto-
col/domain/port) SOP is satisfied.

Similarly, Afek et al. present a prevention mech-
anism, called Internal Network Policy (INP), to stop
three common attacks including DNS rebinding at-
tacks (Afek et al., 2019). In general, INP acts as a
new browser security policy by preventing access to
internal resources from external entities. They em-
phasize that INP is complementary to SOP, as SOP
only considers cross-origin access and overlooks IP
addresses. They implement a proof-of-concept (PoC)
of INP in the Chromium web browser. They extract IP
addresses after any required DNS resolution, just be-
fore the request is about to be made. In case the desti-
nation IP address has not yet been resolved, there is a
small chance that the DNS rebinding attack can take
place. Their comparison with eSOP reveals that INP
delivers better security as eSOP is incapable of pro-
tecting home routers or machines that are vulnerable
to remote command execution.

3.2 Server/network-based solution

Brahmasani et al. propose a two-level defensive solu-
tion analyzing all incoming packets on DNS port (i.e.,
53) (Brahmasani and Sivasankar, 2013). First, they
compare the hostname associated with the canonical
name of each reverse DNS lookup with the original
domain name, and in the second level they check the
HTTP response content of each IP address returned
by the DNS response. However, the solution suf-
fers from the same drawback associated with the en-
crypted packets when the victim uses a VPN connec-
tion.

Bortz et al. propose a remedy to the DNS rebind-
ing problem. They introduce and implement an open-
source DNS resolver, called dnswall, to prevent ex-
ternal hostnames from resolving to an internal IP ad-

dress. The implementation is included in FreeBSD.5

Subsequently, similar means of defense are imple-
mented in other open-source firewall projects such
as Dnsmasq, OpenWrt, DD-WRT (Fainelli, 2008).6

Software firewalls can also block DNS resolutions to
the loopback interface but this defense is not adequate
as services bind to other network interfaces. Both de-
fensive measures can be inadvertently circumvented
by the victim when using a VPN connection. Fur-
thermore, restricting access to private IP ranges, as
defined in RFC 1918 (Rekhter et al., 1996), is not
necessarily a comprehensive solution. This is due to
the fact that large companies or universities do not al-
ways use RFC 1918 addresses for their internal nodes.
Craig Heffner explained that the attacker can use DNS
rebinding to gain access to private nodes in a local
network, if such machines are configured both on a
private and a public IP address (Heffner, 2010).

An semi-robust obstacle to DNS rebinding attacks
is to compare the HTTP host header. In DNS rebind-
ing, the attacker cannot spoof a fake host header and
accordingly, the victim’s web application/server is
able to check whether the host header is consistent
with the address of the requested website. This
technique requires developers or server managers to
manually add the security check to their either web
application or web server (See Listing 1). Notably,
security checks can be error-prone or implemented
incompletely on servers with many hostnames, which
allows the attacker to access a subset of the victim’s
data. This technique cannot be employed on servers
or applications with no prior knowledge of their
hostname. Lastly, this technique provides partial
robustness and safety as the attacker can still trigger
request and receive the response from the target

5https://svnweb.freebsd.org/ports/head/dns/
dnswall/

6https://dd-wrt.com/

https://svnweb.freebsd.org/ports/head/dns/dnswall/
https://svnweb.freebsd.org/ports/head/dns/dnswall/
https://dd-wrt.com/

server. This may result in some valuable data leaks
regarding the target defensive strategies.

Listing 1: The host header check in the entire application
if ($ SERVER[′HTTP HOST′] == ”localhost”) {

// Application code runs

} else {
echo ”Something is wrong”;

}

Pandiaraja et al. propose a defensive system,
called Security proxy, through the use of the Ad-
vanced Encryption Standard encryption algorithm
and a hash function (Pandiaraja and Parasuraman,
2015). The Security proxy system provides a secure
environment for DNS queries to be securely commu-
nicated. However, the proposed system is not eval-
uated from the security, performance or feasibility
point of view.

A website can protect itself from being targeted by
DNS rebinding attacks by having an SSL certificate
on the server side. When an attacker attempts to bind
attacker.xyz to the IP address of a website secured
with SSL, browsers consider the certificate invalid
due to the mismatched domain name (attacker.xyz).
As a result, once the new IP is set, the background
JavaScript code cannot fetch the source code of the
target website and receives HTTP 302 Found redi-
rect status. In our analysis, browsers return a warning
page indicating the SSL certificate is not trusted, and
fortunately, the attacker cannot dismiss this error mes-
sage programmatically. We also realized that having
a signed or self-signed certificate has the same pre-
ventive effect on halting the DNS rebinding attack.
Importantly, SSL can be ineffective when the web
server does not force SSL on all incoming connec-
tions. A recent study has shown that a large number
of websites do not enforce the usage of digital sig-
natures (Van Goethem et al., 2014). This leaves the
opportunity open for attackers to conduct DNS re-
binding attacks aimed at public nodes. Our finding
confirms that using either the .htaccess file or HTTP
Strict Transport Security (HSTS) is mandatory. How-
ever, misconfiguring the HSTS response header in a
way that the web server only returns the header with-
out forcing HTTP to HTTPS connections would ren-
der it ineffective. We examined commonly used web
servers or server software with default configurations
to observe whether any software forces the use of
HTTPs (See Table 3). The results offer compelling
evidence that no evaluated software forces users to
use a digital certificate. Furthermore, users might
consider forcing HTTPS over HTTP unnecessary in
a private network.

In Tatang et al. experiment, the Teltonika RUT500

Table 3: Forcing to use SSL in different web servers and
server software

Web server Version Operation System Forced SSL
XAMPP 7.2.33 MacOS No
XAMPP 7.2.33 Windows 10 No
WampServer 3.2.0 Windows 10 No
IIS 10 Windows 10 No
XAMPP 7.2.3 Kali Linux No
LAMP 7.3.2 Kali Linux No
Apache 2.4.41 Kali Linux No
Ngnix 1.16.1 Kali Linux No

router is capable of detecting DNS rebinding attacks
owing to the activation of the DNS rebinding protec-
tion in Dnsmasq (Tatang et al., 2019). Nevertheless,
they noticed that the user’s localhost is still vulnera-
ble. Similar to OpenDNS, Dnsmasq is unable to de-
tect the attack when the victim uses a VPN connec-
tion.

Lastly, in the preceding approaches, we notice that
network-based solutions require administrative work,
expert knowledge, and their robustness is question-
able, e.g., the SSL method or Host header. On the
other side, browser-based approaches offer a better
level of security, e.g., INP or eSOP.

4 FAIL-REBIND

The aim of this section is to introduce our pro-
posed approach for halting DNS rebinding attacks and
compare our approach with preceding approaches.
Given the lack of robust protection in widely-used
browsers, we have developed a plug-in, named Fail-
rebind, for the Chrome and Firefox browsers 7. DNS
rebinding is launched on browsers, even though it
goes through all network devices, e.g., firewalls,
routers. Layers of encryption render packet inspec-
tion infeasible at the network. On the other hand, an-
alyzing requests on browsers to halt DNS rebinding is
fast and not complicated, which can benefit the user
regardless of the customized network devices. In the
following, we first explain Fail-rebind’s approach in
order to detect and halt DNS rebinding attacks, and
then evaluate its effectiveness in two different scenar-
ios as well as comparing Fail-rebind with preceding
approaches, discussed in section 3.

4.1 Approach

We used the web request API in Chrome and Fire-
fox in order to observe and analyze the traffic of each
tab in real-time. The API works similarly and has

7https://github.com/Microsvuln/DNS-
Rebinding-Attack-Prevention

https://github.com/Microsvuln/DNS-Rebinding-Attack-Prevention
https://github.com/Microsvuln/DNS-Rebinding-Attack-Prevention

Yes

No
Is in whitelist?

onHeadersReceived

Yes

No

Against rule?

Yes

No

Is the IP addr
against rule?

onHeadersReceived

Yes

No

Is the IP addr
against rule?

Website loaded

onBeforeRequest

Blocked page -

Blacklist the URL

Figure 2: The Fail-rebind’s workflow

a common life cycle for a successful request in both
browsers. Fail-rebind employs the following three
events:

— onBeforeRequest: This event is fired when a re-
quest is about to be made, which can be blocked
or redirected.

— onHeadersReceived: This event is fired when an
HTTP(S) response header is received and enables
extensions to add, modify, and delete response
headers. Canceling a request is possible in this
event.

— onResponseStarted: This event is triggered when
the first byte of the response body is received. In
this event, modifying and canceling the request is
not possible.

Figure 2 depicts the workflow of the Fail-rebind
plug-in. Fail-rebind consists of two components,
namely IP scanning, and DNS rebinding detection.
The IP scanning component first detects every attempt
at private IP scanning. The user is able to whitelist his
trusted local domains; therefore, the IP scanning de-
tection module ensures that requests are initiated from
untrusted domains and do not point to any private IP
ranges. If such requests are to be made, they will be
blocked in the onBeforeRequest event and the corre-
sponding website will be blacklisted.

To stop DNS rebinding attacks, we must obtain
the IP address of a request alongside its domain name.
This is accomplished slightly differently in the two
browsers due to the behavior of the web request API.
In Chrome, the IP address of a request can be obtained

Table 4: Comparison between fail-rebind and other ap-
proaches

Desktop
mobile

No Expert
Knowledge

Network
independent

Location
independent

Fail-rebind 3 3 3 3
SSL 3 5 5 5
HTTP Header 3 5 5 5
Security Proxy 3 5 5 5
dnswall 3 5 5 5
Brahmasani et al 5 5 5 5
eSOP 5 3 3 3
INP 5 3 3 3

in the onResponseStarted event, while in Firefox it
is in the onHeadersReceived event. If the obtained
IP address complies with private IP range rules, the
corresponding tab will be redirected to a custom block
page and the website will be blacklisted.

4.2 Evaluation

To evaluate Fail-rebind, we assess the two plausible
scenarios explained in subsection 2.2. We arm the
Firefox browser with the Fail-rebind plug-in and navi-
gate to the malicious website, i.e., attacker.xyz. Given
that a VPN is used by the user, the malicious website
needs to scan private IP address ranges. When at-
tacker.xyz establishes the first request to 192.168.0.1,
Fail-rebind evaluates the request in the onBefor-
eRequest event. As the website and its request are
not in the whitelist, Fail-rebind blocks the request and
adds the website to its blacklist. Finally, the user is
informed of the attack and access to the website is de-
nied.

In another scenario, our assumption is that the at-
tacker.xyz website is already aware of the user’s pri-
vate IP address range. Therefore, the IP address of
the PWS system (i.e., 192.168.10.5) is set as the sec-
ond IP address on the attacker’s DNS server. When
the malicious page establishes continuous requests to
attacker.xyz to defeat DNS pinning in Firefox, Fail-
rebind checks each request’s IP address in the on-
HeadersReceived event. The moment Firefox re-
ceives the new IP address (i.e., 192.168.10.5), Fail-
rebind evaluates the IP address against the built-in
rules. As the received IP address is private, Fail-
rebind blocks the request, blacklists the attacker.xyz
address, and warns the user with a customized er-
ror page. Similar to other existing measures, our ap-
proach can afford protection against DNS rebinding
attacks targeted only at private nodes (firewall cir-
cumvention) not at public nodes (explained in sub-
section 2.1). We compared Fail-rebind to other ap-
proaches from four significant perspectives, explained
in Table 4. The major advantage of our proposed so-
lution is its location-independence compared to some
of the previous methods, e.g., SSL, HTTP header, and
dnswall. This feature allows for abundant flexibility
in surfing websites in any location without jeopardiz-

ing the private network’s nodes. Moreover, our pro-
tection mechanism as well as other approaches. e.g.,
SSL, can provide safety for users both in mobile and
desktop browsers. However, in many scenarios, the
victim cannot request all the nodes in their private net-
work to install SSL on their websites but Fail-rebind
protects the victim irrespective of the security of the
nodes in the internal network. A major advantage of
using browser-based solutions, including Fail-rebind,
eSOP, and INP, is that they do require neither ex-
pert knowledge nor special network devices to be in
place. Lastly, however, a user may prefer browsers
where plug-in development is not yet supported, and
accordingly, the user’s activity on one platform may
still have deleterious effects on its network’s nodes.
We also contacted the Firefox developers and shared
our findings. We have discussed possible solutions for
implementing our prototype as a preventive measure
inside the browser.

5 Conclusion

As far as user privacy is concerned, the impor-
tance of halting the DNS rebinding attack cannot be
overstated. We first showed that this attack can ad-
versely affect internal nodes. Then, we evaluated the
current prevention systems and discussed their weak-
nesses. We also proposed a browser-based plug-in for
two popular browsers, i.e., Chrome and Firefox. Our
approach functions perfectly under an encrypted con-
nection, detects DNS rebinding attacks at its initial
stages, and does not suffer from the drawbacks of pre-
vious systems. However, as the proposed solution is
a browser-specific solution, a similar approach needs
to be developed and incorporated into browsers as an
internal component.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support
of the Swiss National Science Foundation for the
project “Agile Software Assistance” (SNSF project
No. 200020-181973, Feb. 1, 2019 – April 30, 2022).

REFERENCES

Afek, Y., Bremler-Barr, A., and Noy, A. (2019). Eradicating
attacks on the internal network with internal network
policy. arXiv preprint arXiv:1910.00975.

Brahmasani, S. and Sivasankar, E. (2013). Two level ver-
ification for detection of DNS rebinding attacks. In-

ternational Journal of System Assurance Engineering
and Management, 4(2):138–145.

Dai, Y. and Resig, R. (2013). FireDrill: Interactive DNS
rebinding. In Presented as part of the 7th USENIX
Workshop on Offensive Technologies.

Dean, D., Felten, E. W., and Wallach, D. S. (1996). Java
security: From HotJava to Netscape and beyond. In
Proceedings 1996 IEEE Symposium on Security and
Privacy, pages 190–200. IEEE.

Fainelli, F. (2008). The OpenWrt embedded development
framework. In Proceedings of the Free and Open
Source Software Developers European Meeting, page
106. sn.

Hazhirpasand, M. and Ghafari, M. (2018). One leak is
enough to expose them all. In International Sympo-
sium on Engineering Secure Software and Systems,
pages 61–76. Springer.

Heffner, C. (2010). Remote attacks against SOHO routers.
Blackhat USA.

Jackson, C., Barth, A., Bortz, A., Shao, W., and Boneh, D.
(2009). Protecting browsers from DNS rebinding at-
tacks. ACM Transactions on the Web (TWEB), 3(1):1–
26.

Johns, M., Lekies, S., and Stock, B. (2013). Eradicating
DNS rebinding with the extended same-origin policy.
In Presented as part of the 22nd USENIX Security
Symposium (USENIX Security 13), pages 621–636.

Lalia, S. and Moustafa, K. (2019). Implementation of web
browser extension for mitigating CSRF attack. In
World Conference on Information Systems and Tech-
nologies, pages 867–880. Springer.

Pandiaraja, P. and Parasuraman, S. (2015). Applying secure
authentication scheme to protect DNS from rebind-
ing attack using proxy. In 2015 International Confer-
ence on Circuits, Power and Computing Technologies
[ICCPCT-2015], pages 1–6. IEEE.

Rekhter, Y., Moskowitz, B., Karrenberg, D., Groot, G. d.,
and Lear, E. (1996). Rfc1918: Address allocation for
private internets.

Tatang, D., Suurland, T., and Holz, T. (2019). Study of DNS
rebinding attacks on smart home devices. In Computer
Security, pages 391–401. Springer.

Van Goethem, T., Chen, P., Nikiforakis, N., Desmet, L., and
Joosen, W. (2014). Large-scale security analysis of the
web: Challenges and findings. In International Con-
ference on Trust and Trustworthy Computing, pages
110–126. Springer.

	Introduction
	Background
	Attack types
	Firewall circumvention
	IP hijacking

	Motivational example

	Existing measures
	Browser-based solutions
	Server/network-based solution

	Fail-rebind
	Approach
	Evaluation

	Conclusion

