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Abstract

Software visualization tools face many challenges in
terms of their implementation, including scalability, usabil-
ity, adaptability, and durability. Such tools, like many other
research tools, tend to have a short life cycle and are vulner-
able to software evolution processes because of the complex
problem domain and the constantly changing requirements
which are dictated by research goals. In this paper we dis-
cuss the implementation of the software visualization tool
CodeCrawler according to five criteria, namely the over-
all architecture, the internal architecture, the visualization
engine, the metamodel and the interactive facilities. This
discussion generates implementation recommendations and
design guidelines that hold for our tool and the class of tools
its stands for. We then also extract common design guide-
lines and recommendations that apply for other software
visualization and general reverse engineering tools as well,
and hope that these insights can be used fruitfully by other
researchers in this field.

Keywords: Software Visualization, Tools, Reverse En-
gineering, Experience Report

1 Introduction

Reverse engineering, the understanding of legacy soft-
ware systems, has become a primary concern in software
industry. It is an important prerequisite for the maintenance
and evolution of software systems. A commonly used ap-
proach in reverse engineering issoftware visualization, the
graphical display of software.

The reverse engineering research community has imple-
mented several software visualization (SV) tools, each of
them addressing different aspects and trying to offer solu-
tions for different problems. All of these tools have advan-
tages and drawbacks of their own, and face several problems
at the levels of architecture and implementation. Such tools
are constantly changed and evolved in order to cope with
new requirements, new platforms, new languages, new im-
port/export formats, etc. This constant evolution puts pres-
sure on a researcher, since the tools he implements for his

research are often only a vehicle for it and not the primary
goal.

We have built a software visualization tool called Code-
Crawler, whose development started in 1998 and which has
been re-implemented several times since then and is cur-
rently still being developed and extended. CodeCrawler is
a lightweight software visualization tool which combines
metrics information with its visualizations [23, 9, 24]. It is
mainly targeted at static software visualization.

CodeCrawler’s implementation changed and evolved in
order to cope with the new requirements our research gen-
erated. Its current design is thus able to solve most of
the problems we encountered with static software visual-
izations. Moreover, several of the lessons learned with
CodeCrawler can be generalized into more common design
guidelines and recommendations which apply to other kinds
of software visualization tools as well.

We identify five key issues pertinent to the implementa-
tion of a software visualization tool:

1. the overall architecture, the way the SV tool as a
whole is structured. A clear separation of its three
main subsystems,e.g., the core, the visualization en-
gine and the metamodel, provides for the higher flexi-
bility that is necessary to be resistant against software
evolution processes.

2. the internal architecture, the design of the core do-
main model. Although simple at first sight, the do-
main model must be designed for extensibility, since
the added and new requirements in terms of the func-
tionality needed by the users have an impact on it.

3. the visualization engine, the way information is vi-
sualized. Since SV tools have special needs, an off-
the-shelf visualization library does not offer the de-
gree of freedom needed by the SV tool provider. On
the other hand writing a complete visualization library
from scratch is a cumbersome and lengthy process that
should not burden the SV tool provider. We describe a
compromise solution that largely satisfied our needs.

4. the metamodel, the way data is collected and stored.
This part, not directly related to software visualization,

1



but to more general and common reverse engineering
issues, should also be separated from a software visu-
alization tool and be reused as an external and well-
defined source of functionalities.

5. the interactive facilities, the direct-manipulation pos-
sibilities that are offered to the user. Although hard
to validate, it is this aspect that requires the most work
from a SV tool provider and that ultimately dictates the
tool’s usability and success.

We discuss the implementation of CodeCrawler accord-
ing to these five aspects and then generalize the lessons
learned into design guidelines and recommendations for
the implementation of software visualization tools. We
hope these lessons can ultimately be used profitably by re-
searchers in this field in case they want to start a new im-
plementation or enhance an existing implementation of a
software visualization tool.

Structure of the article. In Section 2 we introduce the
domain of software visualization. This discussion leads us
to identify five criteria that we want to test our tool against.
In Section 3 we first introduce CodeCrawler, the tool we
have implemented in our research group, and then discuss
the advantages and drawbacks of its implementation in the
context of each of the identified criteria. We then generalize
the lessons learned into design guidelines and recommen-
dations in Section 4. We then take a look at related work in
Section 5 and then conclude Section 6) by summarizing our
findings.

2 Software Visualization

Priceet. al [31] define software visualization asthe use
of crafts of typography, graphics design, animation, and
cinematography with modern human-computer interaction
and computer graphics technology to facilitate both the hu-
man understanding and effective use of computer software.
Ware [38] states thatvisualization provides an ability to
comprehend huge amounts of data. However, software vi-
sualizations are often too simplistic and lack visual cues for
the viewer to correctly interpret them. In other cases the
obtained visualizations are still too complex to be of any
real value to the viewer. The goal of any software visualiza-
tion tool is ultimately to visually render software, be it in a
dynamic or static fashion. Software visualization is useful
because visual displays allow the human brain to study mul-
tiple aspects of complex problems in parallel. All software
visualization tools face problems coming form the more
general fields ofinformation visualization[38] and semi-
otics of graphics (the study of symbols and how they convey
meaning), wonderfully discussed by Tufte [35, 37, 36] and
Bertin [5].

Ware [38] describes four basic stages in the process
of data visualization, and interestingly enough these four
stages have a direct mapping on the architecture of software
visualization tools:

1. The collection and storage of data itself.

2. The preprocessing designed to transform the data into
something we can understand.

3. The display hardware and the graphics algorithms that
produce an image on the screen.

4. The human perceptual and cognitive system,i.e., the
perceiver.

We deduce from these four stages four components that
de factomust be present in one way or another in every
software visualization tool:

1. The metamodel. The data to be visualized, in this case
it is software source code, must be collected and stored
using a metamodel that provides facilities like parsing,
storing, etc.

2. The internal architecture. Based on the data pro-
vided by the metamodel, a software visualization tool
must have some kind of internal representation of what
it visualizes.

3. The visualization engine.An important part of every
tool is devoted to the graphical output of information.

4. Interactivity. The perceiver,e.g., the viewer, not only
wants to look at software, most of the times he also
wants to interact with the visualizations, since static
visualizations seldom offer exhaustive explanations to
the viewer.

Furthermore the union and interplay of these compo-
nents can be regarded as theoverall architecture of a soft-
ware visualization tool.

3 CodeCrawler

CodeCrawler is a language-independent software visu-
alization tool written in Smalltalk. CodeCrawler supports
reverse engineering through the combination of metrics and
software visualization [23, 9, 12, 24]. In Figure 1 we can
see a screen shot of CodeCrawler. Its power and flexibil-
ity, based on simplicity and scalability, has been repeat-
edly proven in several large scale industrial case studies.
To model software, CodeCrawler uses Moose, a language
independent reengineering environment. The first imple-
mentation of CodeCrawler started in 1998 as part of a mas-
ter thesis [23]. At the beginning CodeCrawler was based
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Figure 1. A snapshot of CodeCrawler’s main
window. The visualized system in this case
is CodeCrawler itself.

directly on the Smalltalk language, since its reflective ca-
pabilities provide for many functionalities that otherwise
must be provided by an external metamodel. In 1998 in the
context of the FAMOOS ESPRIT project, Moose, the first
implementation of the FAMIX metamodel, neared comple-
tion and CodeCrawler started to use Moose as metamodel.
While FAMIX provided for possibilities as language inde-
pendence (Java, C++, Smalltalk, Ada, COBOL, etc.) it also
involved more complexity. CodeCrawler has had 5 major
releases since then, it was last released in October 2002.
In its newest re-implementation, described in this article,
CodeCrawler is now also able to visualize any construct,
e.g., not necessarily out of the field of software reverse en-
gineering.

3.1 Overall Architecture

As in every software system, the general architecture of a
software visualization tool dictates on one hand how much
and which kind of functionality it provides, on the other
hand it also defines how it can be extended in case of chang-
ing or new requirements.

CodeCrawler adopts the what we call abridgearchitec-
ture described above, as we see in Figure 2: the internal
architecture,e.g., the core of CodeCrawler, acts as a bridge
between the visualization engine (on the left) and the meta-
model (on the right). It uses as visualization engine the
HotDraw framework [6, 21] and as metamodel the FAMIX
metamodel [11], whose implementation is called the Moose
reengineering environment [13] [14]. Both of them are de-
scribed in more detail later on. In order to keep a certain

Figure 2. The general architecture of Code-
Crawler, composed of three main subsys-
tems: the core, the metamodel and the vi-
sualization engine.

flexibility CodeCrawler uses facade classes which hide both
the visualization engine and the metamodel from the core.
It thus can limit the effects of changes happening on the
visualization engine and the metamodel. This has the ad-
vantage that only the facade classes must be changed when
the visualization engine or the metamodel changes. An ex-
ample of such a change is the newly supported GXL format
[18], which directly affects only Moose and does not af-
fect the implementation of CodeCrawler, except for adding
a new menu item in CodeCrawler’s file menu. An example
of a major future change is to use a 3D visualization en-
gine. Although at first sight a massive change, this would
affect again only the visualization engine’s facade classes.
In a second moment CodeCrawler would then start to ex-
ploit the added third dimension for its visualizations and
only then this would have an effect on the implementation
of its core.

3.2 Internal Architecture

The internal architecture of software visualization tools
is largely dictated by their domain model. This depends on
the type of visualizations the tool provides. CodeCrawler
is focused on visualizing static information about software,
i.e., thus working mainly at a structural level. Other visu-
alizations types, not discussed here, includealgorithm vi-
sualization and animation, computation visualization. Ac-
cording to the taxonomy presented by Priceet al.[27] Code-
Crawler is astatic code visualizationtool.

The internal architecture of CodeCrawler,i.e., all things
not related to the visualization engine or the metamodel,
can be divided into four parts: (1) the core model, (2) the
polymetric views subsystem, (3) the layout engine and (4)
the user interface and service classes.

The Core Model. We can see a simple class diagram of
CodeCrawler’s core model in Figure 3. CodeCrawler uses
nodes to represent entities (classes, methods, subsystems,
etc.) and edges to represent relationships (inheritance, in-

3



Figure 3. The core model of CodeCrawler.

vocation, access, etc.) between the entities. The nodes and
edges are contained within a class that represents a graph in
the mathematical sense. Both the node class (CCNode) and
the edge class (CCEdge) inherit from an abstract superclass
which represents a general item (CCItem). CCItem serves
as bridge between the visualization part (it contains an at-
tribute named figure which points to a figure class). It is
also a bridge to a parallel plugin hierarchy (it contains an
attribute named plugin which points to a plugin class). The
classes in the plugin hierarchy provide most of the func-
tionality of the nodes and edges. We decided to separate
this functionality into an own hierarchy (instead of putting
it inside the node and edge classes) in order to obtain more
flexibility and a higher degree of extensibility. The plugin
hierarchy ultimately serves as another bridge [16] to the
metamodel representing the software. In our case the ab-
stract superclass CCItemPlugin defines an attribute named
entitywhich points to the needed class,e.g., in the case of
visualizing software it point to a class in Moose which rep-
resents a software artifact. To protect against changes in
the metamodel we use again facade classes,i.e., in Code-
Crawler we implemented a hierarchy of FAMIX plugins
which have counterparts in Moose. To make an example,
in order to represent a FAMIX class in Moose (called at this
time MSEClass), CodeCrawler implements a CCFAMIX-
ClassPlugin class which interfaces with MSEClass. The re-
turn in extensibility of this implementation became obvious
when some students extended CodeCrawler’s plugin hier-
archy in order to model and visualize other kinds of enti-
ties, for example for the fields of concept analysis, web site
reengineering and prolog rule repositories.

The Polymetric Views.All information regarding a cer-
tain visualization (what is to be visualized, how, where,
which metrics, etc.) is stored by means of a view specifica-
tion class (CCViewSpec). When it comes to display a view
of a software system, a view builder (CCViewBuilder) in-
terpretes an instance of a specification class and builds the
needed visualization. The specifications of the views are
easily composed and modified in the view editor window

depicted in Figure 4.

Figure 4. CodeCrawler’s View Editor. The
views are composed piece by piece and can
then be directly invoked from the main win-
dow.

The Layout Engine. The complex problems that go
with graph drawing and graph layouts have been a subject
of research for many years [2]. The layout class hierarchy
is part of CodeCrawler,i.e., we do not use any external or
commercial graph layout library. The reason for doing so
is that in Smalltalk there is no freely available standard-
ized layout library, as is the case for other programming
languages like Java or C++. Although an interfacing with
libraries written in C would not have been a problem, we
decided against that in order to keep as much control as pos-
sible. This trade-off between having or delegating control
must be carefully evaluated. In CodeCrawler all layouts (at
this time ca. 15) inherit from a common abstract superclass
(CCAbstractLayout). A layout class takes as input a collec-
tion of node figures and assigns a position to each of them.

The Service and UI Classes.Besides the classes men-
tioned above, CodeCrawler contains many more classes
which provide for various services, for example storing con-
stants and color mappings. Other classes are pure user in-
terface classes (Dialogs, Panels, etc.). In order to keep the
size of this paper within reasonable limits, we omit their
discussion.

3.3 Visualization Engine

The primary task of a software visualization tool’s visu-
alization engine is to provide for the graphical output on the
screen.

We can see a simple class diagram of the visualization
engine in Figure 5. CodeCrawler uses as visualization en-
gine the HotDraw framework, a lightweight 2D editor writ-
ten in Smalltalk, consisting of ca. 150 classes. It provides
for basic graphical functionalities like zooming, scaling, eli-
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Figure 5. The visualization engine of Code-
Crawler. CodeCrawler subclasses and ex-
tends some basic HotDraw figure classes.
The class hierarchy composed of the
classes CCItemFigureModel, CCNodeFigure-
Model and CCEdgeFigureModel serves as Fa-
cade for the HotDraw figure classes.

sion and comes with a collection of simple figures (rect-
angles, lines, ellipses, composite figures, etc.) that can be
easily reused and extended through subclassing, as Code-
Crawler does indeed: the subclasses include CCDrawing,
which represents the drawing surface on which the visual-
ization is displayed, and several figures classes (CCRectan-
gleFigure, CCLineFigure, etc.) which add functionality to
the quite simple HotDraw figure classes. However, these
subclasses do not offer protection against changes in Hot-
Draw, since the subclasses would be affected too. Therefore
in CodeCrawler three classes (CCItemFigureModel, CCN-
odeFigureModel and CCEdgeFigureModel), organized in a
small hierarchy, serve as facade classes for the figure classes
that subclass HotDraw’s classes. This allows us to replace
on-the-fly the graphical representation,e.g., the figure, of a
node or an edge. Furthermore, the facade classes implement
several operations that we want to effect on figures (graph-
ical operations, geometric transformations, etc.) and dele-
gate them to the appropriate concrete figures on the screen.

3.4 Metamodel

The primary task of a metamodel is to collect and store
the data that later on is visualized.

Figure 6. The architecture of Moose, Code-
Crawler’s metamodel.

CodeCrawler uses Moose, a language independent
reengineering environment written in Smalltalk, to model
software systems [13, 14]. In Figure 6 we see the inter-
nal organization of the Moose reengineering environment.
Moose is based on the FAMIX metamodel specification
[11] [34], which provides for a language independent repre-
sentation of object-oriented source code and contains the re-
quired information for reengineering and reverse engineer-
ing tasks like navigation, querying, metrics, refactorings,
etc. It islanguage independent, because in the context of the
FAMOOS ESPRIT project we needed to work with legacy
systems written in different implementation languages. It is
extensible, since we cannot know in advance all information
that is needed in future tools. Since for some reengineering
problems (e.g., refactorings [34]) the tools might need for
language specific information, we allow for language plug-
ins that extend the model with language specific features.
Next to that we also allow the tool plug-ins to extend the
model with tool specific information.
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The FAMIX metamodel comprises the main object-
oriented concepts – Class, Method, Attribute and Inheri-
tance – plus the necessary associations between them – In-
vocation and Access. Note that the complete FAMIX meta-
model includes many more aspects of the object-oriented
paradigm, and contains source code entities like formal pa-
rameters, local variables, functions, etc. We opted against
the use of UML because it is not sufficient for modeling
source code for the purpose of reengineering, since it is
specifically targeted towards OOAD and not at represent-
ing source code as such [10].

Moose, a full-fledged reengineering environment, pro-
vides CodeCrawler with several services from parsing
(Smalltalk and Java) to reading exchange files in different
formats (XMI, CDIF, GXL, RSF, ...). CodeCrawler uses
the functionalities provided by Moose either directly using
delegation or by subclassing some of Moose’ classes. Fur-
thermore, the plugin hierarchy in CodeCrawler contains a
subtree composed of FAMIX plugins, which serves as fa-
cade for the actual FAMIX classes in Moose. This is de-
scribed in detail in the Section 3.2.

To limit the size of this paper, we do not further describe
Moose, but rather point the reader to the referenced articles.

3.5 Interactive Facilities

Once the visualization is rendered on the screen, the user
not only wants to look at it, he also wants to interact with
it. According to Storeyet al. [33] this helps to reduce the
cognitive overhead of any visualization.

Figure 7. CodeCrawler at work. The context
menus are dynamically built depending on
the entity or relationship that is selected.

In Figure 7 we see CodeCrawler at work. In Code-
Crawler the HotDraw framework provides for direct manip-
ulation at a purely graphical level,i.e., the user can click,
drag, double-click, delete, zoom out/in, spawn child win-
dows, etc. CodeCrawler uses that functionality by provid-
ing context-based (pop-up) menus for each node and edge.
Note that depending on the type of the node (class, method,
etc.) different choices are offered to the user. For example
it is possible to open a class browser on a node, or look at
a list of senders of a certain method, etc. In the context of
a master in our group [30], a student has implemented on
top of CodeCrawler several navigation facilities that enable
the user to go back/forth from one view to another (macro
navigation) or that offer the user context-based navigation
aids (micro navigation).

The context menus and the micro navigation are lo-
cated within the plugin hierarchy, since they are context- or
entity-based. The macro navigation and all other graphical
interactions like geometric transformations and all multi-
windowing techniques are located in CodeCrawler’s main
window.

4 Lessons Learned

In this section we take the lessons learned from the
implementation of CodeCrawler and generalize them into
more common design guidelines and recommendations.
These apply not only for static software visualization tools
like CodeCrawler, but in a wider context for visualization
tools and reverse engineering tools in general.

4.1 Overall architecture

In the case of a software visualization tool, as we have
seen in Section 2, the general architecture is readily identi-
fied and is composed of (1) thevisualization engine, (2) the
metamodel, and (3) thecoreor theinternal architecture.

The visualization engine. It provides for the graphi-
cal capabilities of the SV tool. In some cases the SV tool
provider uses or extends a commercial or external graphi-
cal library,e.g., OpenGL, DirectX, while in other cases he
implements it by himself. We do not recommend to imple-
ment a graphical library from scratch, as this can become
a long and painful implementation marathon without any
real improvement of the tool’s capabilities. Another design
decision that the SV tool provider must take is whether he
wants to use a 2D or 3D visualization engine. We do not
think that 3D involves a much higher complexity, it rather
puts more pressure on direct manipulation issues,i.e., how
can the visualized software be interacted with and how can
it be navigated?

The metamodel. The metamodel provides for the SV
tool’s data collection and data storage capabilities. The
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metamodel itself can be language independent (thus provid-
ing for a representation of several programming languages
at the same time), language dependent or in some cases
even be the language itself without any additional meta-
information.

The core. Ultimately the core is the part of the SV tool
where the domain model and the tool’s functionalities are
modeled and implemented.

Both the visualization engine and the metamodel can be
considered asexternaltools whose evolution cannot be di-
rectly controlled by the SV tool provider, unless they pro-
vide one or both of them. However, this involves more
work which distracts from the implementation of the SV
tool’s core capabilities. It is therefore useful to provide a
mechanism of protection against changes happening in ei-
ther the visualization engine (e.g., the visualization engine
is not supported anymore, not up-to-date, does not work on
a certain platform, etc.) or in the metamodel (e.g., the im-
plementation changes). By providing the right protection
mechanisms it is even thinkable to replace either the visu-
alization engine or the metamodel without having a (big)
impact on the SV tool core. In our case we do so by means
of Facade classes, in a more general case the main point is
to define precise interfaces to the both the metamodel and
the visualization engine. The quality and stability of these
interfaces ultimately defines the overall stability of the tool.

4.2 The Internal Architecture

The core task of any visualization tool is to visualize
(parts of) this internal graph representation. The visualiza-
tion can be done by different means, but most tools visualize
nodes as rectangles and edges as connecting lines between
the rectangles. The internal architecture thus provides for
functionalities to allow a visualization. This mainly in-
volves providing guidance to the user and assist him in the
process of visualization,i.e., what should be visualized and
how?

Many static code visualization tools have adopted as
internal representation the basic entity-relationship meta-
model, internally represented as a graph consisting of nodes
(the entities) and edges (the relationships).

The nodes.The nodes represent concrete and inconcrete
software artifacts. Concrete artifacts can be localized in the
source code and include classes, methods, functions, pack-
ages, etc., whereas inconcrete artifacts cannot be localized
within the source code, but represent often abstractions in
the head of the developers. Examples for inconcrete arti-
facts are groups of classes, subsystems, functionalities, etc.

The edges.The edges represent relationships between
the software artifacts. Once again we can identify concrete
relationships like inheritance relationships and invocations

between methods, and inconcrete relationships between in-
concrete artifacts. An example of such a relationship is
a dependency between two subsystems (”subsystem A de-
pends on subsystem B”) which cannot be localized within
the source code.

This representation has the advantage of being domain
independent, therefore making a mapping from a domain
always possible. However, if domain-related information
must be added, the E-R-metamodel is too general. This is
where a parallel domain-dependent plugin hierarchy comes
into play: we have seen that by using a parallel plugin hi-
erarchy we can separate two concerns: one is the repre-
sentation of a graph composed of nodes and edges in the
mathematical sense, including all operations that go with
it (traversing the graph, getting children nodes, etc.), the
other is the domain-relevant information,i.e., the node rep-
resents a certain software artifact and this information must
be modeled as well. One alternative would be to encode ev-
erything in the node and edge classes, thus having a deep
hierarchy of items, composed of classes like ClassNode,
MethodNode, InheritanceEdge, etc. A previous implemen-
tation of CodeCrawler adopted this model, but the limits
in terms of flexibility soon became evident: the nodes and
edges classes became too large, since all item-specific func-
tionality was encoded in them. A separation into two hier-
archies practically froze the core model and made it become
very stable, while the constant enhancements and additions
of functionality have mainly an impact only on the plugin
hierarchy.

4.3 The Visualization Engine

The visualization engine of a SV tool has an influence
on its most prominent aspect, the visualization. Indeed, the
user perceives it as the tool itself, since he does not see any
other internal details. The design decisions to be taken in
this case include the type of engine (3D vs. 2D), the degree
of possible interactivity, and whether the engine comes from
a third party as a possibly commercial product or whether
the SV tool provider chooses to implement himself the vi-
sualization engine as part of the tool.

Engine type (3D vs. 2D).This decision heavily influ-
ences the visualizations provided by the SV tool. The use
of 3D involves more navigation (e.g., fly-through) and more
computing performance. Moreover, the added third dimen-
sion must be exploited intelligently, for it is too easy to gen-
erate nice looking 3D boxes.

Interactivity. Direct-manipulation interfaces which al-
low for several kinds ofdirect interactions are known to be
more user-friendly than others. They effectively reduce the
latency between the perception of something of interest and
the following investigation performed by the user. The user
naturally wants to click on the interface toreduce the dis-
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tancebetween what he sees and what he thinks he sees. This
translates to all kinds of interactions, like selecting, moving,
removing, copying, inspecting, etc. visualized artifacts. We
discuss this aspect in more detail later on.

Implementation. The decision whether to use or not a
third party product (possibly a commercial one) has an im-
pact on the implementation weight that the SV tool provider
has. Naturally, third party and/or commercial products are
more stable, faster and better documented, because the peo-
ple that provide such products are more experienced and
more engaged in graphical issues. It is all too easy for a
SV tool provider to shift his attention towards the visualiza-
tion part by providing nicer, faster and more colorful dis-
plays at the expense of semantics: Ultimately the goal of a
SV tool is to provide meaningful information, and not only
nice displays, to the user. Therefore reusing graph visual-
ization tools and libraries like Dotty, Grappa and GraphViz
can break down the implementation time, but it can also in-
troduce new problems like lack of control, interactivity and
customizability.

A visualization engine is merely a vehicle, and not the
goal of a software visualization tool. In that sense, although
choosing the right engine is important, for the visualization
tool the interface to the engine matters. The better-defined
it is, the less time the tool provider spends on the engine.
In our case we chose to use a lightweight engine which is
easily extensible and which provides for all the necessary
functionality.

One lesson learned is to choose the appropriate engine
and to delegate the job of visualizing as much as possi-
ble to the engine. Furthermore, the easier it is to visual-
ize with an engine, the better. In case the tool provider
chooses to implement his own engine, we recommend to
use a lightweight incremental approach and to strive to ob-
tain visualizations as quickly as possible. Another lesson
learned is that keeping as much control as possible over the
visualization engine, in terms of implementation, helps to
increase the usability of a SV tool. The first experiments we
did with external engines soon reached a limit, because they
were not customizable and flexible enough for our needs.
Put in simple words, total (or as much as possible) control
is necessary in this case.

4.4 The Metamodel

The metamodel used by a SV tool has an influence on
its internal architecture. In some SV tools there is no dis-
tinction between the metamodel and the internal architec-
ture. This has the drawback that the tool has a monolithic
architecture, and that the concern of the metamodel is not
clearly separated from the other parts of the tool. The SV
tool provider has an interest in making this separation, since
the metamodel comes with a considerable level of com-

plexity that should not be added to a software visualization
tool’s complexity. The reason for this complexity resides in
concerns like the collection of information (parsing source
code, reading and writing of files in various exchange file
formats and the storage and querying of this information
(using databases, web browsers, etc.).

The general lesson is to separate metamodel concerns as
much as possible from the implementation of a SV tool.
The SV tool must interface to a metamodel and reuse its
functionalities, but it should not be tied to it to prevent a
mixing of concerns.

4.5 The Interactive Facilities

Modern computers allow for faster and more powerful
displays. This has madedirect-manipulationinterfaces pos-
sible, which allow the user to not only look at informa-
tion on the screen, but to interact with it. Several publi-
cations and books in the human-computer-interface (HCI)
field point out that it is essential to give the user the possi-
bility to ”play” with the displayed information. Since user
interface design is not a topic of this paper we limit our-
selves to point out its importance by citing some essential
literature by Alan Cooper [7, 8], Jef Raskin [28], and Jeff
Johnson [20].

The interactive facilities a software visualization tool
provides heavily influence the quality of the tool in terms
of reverse engineering. Storeyet al. provide a list of 14
cognitive design elements needed for a reverse engineering
process [33]. We deduce from that list that if a tool features
direct manipulation it can facilitate navigation by provid-
ing directional and arbitrary navigation, while at the same
time it reduces disorientation effects by reducing the effort
for user-interface adjustment. Put in simple words we can
say that the user is more at ease with a tool that supports
interactive visualizations.

At the implementation level the problem of interactivity
is that it is a cross-cutting concern,i.e., interactivity must
be provided by all parts of the system: the visualization en-
gine provides graphical interactivity, while the internal ar-
chitecture (and the metamodel) provide context-based inter-
activity. A simple example are pop-up menus, which offer
choices at a graphical level (delete figure, spawn window,
...) but also context-based choices (dive into a class node,
inspect the senders of a method node, ...). In our case we
have seen that the overall bridge architecture is able to cope
with this problem: the context menu on a figure is built in
succession by the figure, its facade, its item and its plugin,
and then presented to the user. Other solutions to this prob-
lem is to separate interactive facilities into separate classes
and offer them as plugins.
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5 Related Work

There have been quite extensive research on the evalu-
ation and comparison of reverse engineering and software
visualization tools. Bassil and Keller [1] compare several
SV tools at a functional and practical level. Storey’s Ph.D.
Thesis [32] is targeted more towards the cognitive aspects
of software visualization. Bellay and Gall [3, 4] evaluate
reverse engineering tools again at the level of offered func-
tionalities and in terms of usability and extensibility. These
and other excellent works are all targeted towards a qualita-
tive evaluation of the tools.

However, to our knowledge there is no explicit work
about the implementation and architecture of reverse engi-
neering tools, and more specifically about software visual-
ization tools. Pieces of this information can be gathered
from the tools’ web sites, their documentation (if it exists)
and the publications of the tool providers. Moreover, indus-
trial and commercial tool providers do not like to disclose
such information. The best-documented software visual-
ization tool we know is Rigi [26], widely used since more
than a decade, which comes with a 170 pages documen-
tation. However, the documentation’s goal is to describe
the functionalities provided by Rigi and not the way it is
implemented, although this can be partly inferred. Shrimp
Views [25], another well-known visualization tool, comes
with a set of publications targeted more at cognitive issues
[33]. Other visualization tools, like Gsee [15] or GASE
[17] and many other excellent tools, come with more or
less consistent documentation, while many of them, despite
being open source, come badly documented. The lack of
documentation, and CodeCrawler is no exception in this, is
mainly due to the academic environment most of these tools
have been developed in. Another phenomenon we have no-
ticed is that consistent research has been conducted on soft-
ware visualization where the tools are basically dropped and
forgotten after the research has finished. Examples of such
research publications include works by Riva [29], Kazman
[22] and Jerding and Rugaber [19].

6 Conclusion

In this paper we have presented the internal architecture
of a software visualization tool and have identified common
problems and issues that are inherent to such systems at var-
ious levels. The levels we have discussed include the over-
all architecture, the internal architecture, the visualization
engine, the metamodel and the interactive facilities of soft-
ware visualization tools.

The overall architecture. An overall architecture which
separates the three main parts (core, metamodel, visual-
ization engine) of a software visualization tool allows for
higher flexibility and greater extensibility. At the same time

the SV tool becomes less vulnerable against software evo-
lution processes.

The core / internal architecture. The design of the core
of a SV tool is largely guided by the goals the tool provider
has in mind. Although the notion of a graph consisting of
nodes and edges seems trivial, the functionality that matters
is the one added to this core and the way this functionality
can be used by the tool’s users. In the case of CodeCrawler
we have seen that there is a separation of the graph notion
from a parallel, extensible, plugin hierarchy. This separa-
tion allows for a great extensibility through subclassing and
addition of functionality.

The visualization engine. The visualization engine’s
main task is bring the visualizations of software to the
screen. However, the degree of integration between a SV
tool’s core and its visualization engine influences the qual-
ity of the visualizations. Apart from providing protection
mechanisms against changes in the visualization engine, the
engine is also largely responsible for the level of interac-
tivity a SV tool offers. Seen in this light we do not rec-
ommend commercial (black-box) products, but favor white-
box products whose classes can easily be reused by delega-
tion or subclassing. In the case of CodeCrawler we protect
it against changes by using a facade [16] and use and ex-
tend a freeware, lightweight visualization framework called
HotDraw. Note that some visualization engines provide a
graph layout library as well. We recommend to use such
libraries, because they can greatly reduce the complexity of
a SV tool.

The metamodel.The metamodel’s task is to collect and
store the data that is visualized by the SV tool. We rec-
ommend the separation of the metamodel from the SV tool
in order to keep the focus on the core functionalities of the
SV tool. The metamodel can be developed by someone else
than the tool provider that has more experience in that area.
To make an example, the SV tool provider should not have
to write a parser by himself, but reuse the existing parsers.

The interactive facilities. Providing interactive facili-
ties to the viewer is essential to the quality of a software
visualization tool. While at a purely technical level this
should be provided by the visualization engine, the inter-
actions that are enriched with context information are often
provided by the the domain model,i.e., the internal archi-
tecture of the SV tool.
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